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Highlights

• A model that accurately reconstructs the forces on an immersed body is proposed.
• It is based on the boundary layer (BL) equations and accounts the effects of surface curvature.
• The model requires numerical resolution that places 1 to 2 points in the boundary layer around the particle.
• It is applicable to simulations of turbulence interacting with particles of arbitrary shape.
• Several 2D and 3D benchmark flows are in excellent agreement with reference data.
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Abstract

In this work we propose a hydrodynamic stress model that accurately reconstructs the forces on an immersed body,
with application to the simulation of turbulence interacting with finite-size particles of arbitrary shape. The proposed
model is local and is based on the boundary layer approximation, where the effects of surface curvature on the pressure
variation are accounted for. Numerical experiments show that the model requires about one or two grid points within
the boundary layer to accurately reconstruct the hydrodynamic force distribution. This reduces significantly the cost
of resolving the flow field around the particles. The accuracy of the proposed model is evaluated in a variety of flows
with increasing complexity. In particular, results for the flows over stationary and oscillating circular cylinders, free
falling cylinders and spheres, and the interaction of turbulence with spheres and ellipsoids will be presented.

Keywords: hydrodynamic stress model, immersed boundary method, particle-resolved direct numerical simulations

1. Introduction

Understanding the physics of turbulence-particle interactions is of great importance in a variety of problems in sci-
ence and engineering, such as fluidization in chemical reactors, cloud formation in the atmosphere, pollutant transport
in the oceans, drug delivery in the human body, and so forth [1, 2, 3, 4]. Numerical simulations have greatly enhanced
our understanding of such complex physics and can be classified into two broad categories: point-particle models
which are appropriate when the particle size is smaller than the Kolmogorov length scale at dilute concentrations
[5, 6, 7]; finite-size particle approaches where the flow around around the particles is resolved. Several numerical
schemes have been proposed for this task, including the arbitrary Lagrangian-Eulerian (ALE) method [8], Lattice
Boltzmann methods (LBM) [9, 10, 11], fictitious-domain methods [12, 13, 14, 15, 16], and immersed boundary (IB)
methods [17, 18, 19, 20, 21]. The latter has the advantage of being easily integrated into existing Navier-Stokes
solvers on structured grids, and efficiently dealing with moving boundaries without the need for re-meshing [22]. In
most IB formulations the effect of the solid body on the flow is represented by a volume force term (referred to as IB

forcing term) in the momentum equations, which can be implemented in different ways (see [23] for a review).
Uhlmann [19] proposed a formulation, directly targeting particulate flows, where the Navier-Stokes equations are

solved on a Cartesian grid, and the particle’s surface is defined by a set of Lagrangian control points. The force
density is evaluated at the Lagrangian points using a kinematic constraint, and then transferred to the Eulerian mesh
via transfer kernels. These kernels are designed to ensure momentum conservation, while the total hydrodynamic
force acting on the particle can be directly evaluated from the IB force and the inertia force due to artificial flows
within the particle [19]. This greatly simplifies the computation of hydrodynamic forces, when compared to direct
integration of the friction and pressure forces acting on the surface of the particle. Several variants of this method have
been proposed, and focus primarily on improving the approximation of the non-slip condition on the particle surface
and the computation of the hydrodynamic forces [24, 25, 26, 21, 27, 28]. Example applications using this class of
methods include isotropic turbulence interacting with up to 6400 spherical particles [29], channel flow turbulence
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interacting with thousands of spherical particles [30, 31], and turbulent open channel flow with bed-load sediment
transport [32, 33, 34].

A common trait of the above efforts is that they all involve rigid spherical particles, primarily because the appli-
cation of this methodology to non-spherical and/or flexible particles is not straightforward, even when the particulate
flows are dilute enough to ignore contact forces between solids. This is due to the challenges associated with accurate
computation of the local hydrodynamic surface stresses, as well as, the large expense incurred in tracking and identi-
fying an arbitrarily shaped solid in space. The location of the center of mass, orientation, and possibly a displacement
field with respect to an equilibrium configuration are needed to fully describe the solid motion, in contrast to the center
point location and diameter required for rigid spherical particles. As a result a substantial increase in computational
cost is incurred. Some of the above methods cannot be directly extended to flows involving non-spherical particles as
they are formulated to produce only integral hydrodynamic forces [19].

Local hydrodynamic forces can be evaluated from the local flow information. This requires the boundary layer
around the particles to be resolved, imposing very fine grid requirements (see the details in Section 4.2). In practice,
however, despite the fact that the grid sizes utilized for particulate turbulence are usually much larger than those used
for the corresponding single phase turbulence, the boundary layers around particles are not properly captured and the
accurate estimation of the hydrodynamic forces is a challenge [35, 36]. The primary aim of this work is to address this
challenge and provide an accurate and cost efficient formulation to estimate the distribution of hydrodynamic forces
on coarse grids for particles of arbitrary shapes. We focus on the dilute particles of the order of Taylor-length scale
where the boundary layer around the particles is laminar. Our strategy is to engage a model, which is inspired by the
two-layer model utilized in large-eddy simulations [37], to estimate the quantities that cannot be resolved by the grid.
The proposed hydrodynamic stress model takes into account the effect of the particle surface curvature on the flow,
and is applicable to particles of arbitrary shape.

The rest of the manuscript is organized as follows. The problem description and basic solver are provided in Sec-
tion 2. The proposed scheme to compute hydrodynamic stresses on coarse meshes is outlined in Section 3. Validation
of the method on a range of problems of increasing complexity, and parallel performance of our implementation are
reported in Section 4. Finally, a summary and conclusions are given in Section 5.

2. Problem formulation and numerical method

2.1. Fluid motion and immersed boundaries

The fluid motion is modeled by the Navier-Stokes equations for incompressible flows in a inertial frame, N ,

∂u
∂t
+ ∇ · (u ⊗ u) = −∇p +

1
Re
∇2u + f, (1a)

∇ · u = 0, (1b)

where u is the non-dimensional velocity, p is the non-dimensional pressure, t is non-dimensional time. The charac-
teristic length, velocity, density, time, and force to get the non-dimensional variables are L, U, ρ f , L/U, and ρ f (UL)2,
respectively, where ρ f is the density of fluid. The Reynolds number is defined as, Re = UL/ν, where ν is the kine-
matic viscosity of fluid. The vector f represents external forces applied on the fluid. In the discrete equations, f,
contains the IB forcing term. In this work, Eq. (1a)-(1b) are solved using an explicit, pressure correction, fractional
step method [38]. A standard, second-order, central-difference discretization on a staggered grid is used for the spa-
tial derivatives and an explicit, second-order Adams-Bashforth scheme is used for time integration. To advance the
solution from time tk−1 to tk = tk−1 + Δt, compute:

ũ = uk−1 +
Δt

2

(
3H(uk−1) −H(uk−2)

)
− ΔtG(pk−1) + Δtfk−1/2, (2)

where H is a discrete operator containing the convective and viscous terms, G is a discrete gradient operator. fk−1/2 is
the IB forcing term discussed below. The pressure correction δp is calculated based on ũ:

Lδp =
1
Δt

Dũ, (3)
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where L and D are discrete Laplacian operator and divergence operator, respectively. Finally, the velocity and pressure
at time step k are given by:

uk = ũ − ΔtGδp , pk = pk−1 + δp. (4)

The direct, Lagrangian forcing scheme based on moving least squares (MLS) transfer functions proposed in [25],
is used to compute the IB forcing term. Nevertheless, any IB interpolation method in the literature can be potentially
used on the following derivations. First, the predicted velocity u∗ that doesn’t take into account internal boundaries is
computed by:

u∗ = uk−1 +
Δt

2

(
3H(uk−1) −H(uk−2)

)
− ΔtG(pk−1). (5)

Then, the predicted velocity is evaluated on all Lagrangian points on the surface of the particles, as illustrated in
Figure 1a. In particular the predicted velocity, U∗m, at the mth Lagrangian marker is interpolated from u∗ as follows:

U∗m =
ne∑
i=1

φm
i (xi)u∗i , (6)

where ne is the number of Eulerian points in the support domain associated to m. φm
i (xi) is an interpolation function

relating the Lagrangian marker, m, with each member of its support domain. Here we use MLS interpolation to define
φm

i (xi) [25, 39]. The IB forcing term at the mth Lagrangian point Fk−1/2
m is computed by:

Fk−1/2
m =

Ub
m − U∗m
Δt

, (7)

where Ub
m is the velocity of the boundary at the mth Lagrangian point. The IB forcing term is then transferred at the

Eulerian grid points, i, as follows:

fk−1/2
i =

nl∑
m=1

cmφ
m
i (Xm)Fk−1/2

m , (8)

where nl is the number of Lagrangian points. φm
i is the same shape function in Eq. (6). Xm is the position of the

mth Lagrangian point. cm is the ratio between the volume associated the mth Lagrangian point (as the ΔVm shown in
figure 1a) and the averaged Eulerian grid volume. Conservation of total force and torque acting on the fluid is ensured
by this transfer operation (see [25] for details).

2.2. Particle motion

In this section the equations inherent to arbitrary rigid body motion in three dimensional space are described. Two
reference frames are used to describe motion of particles of arbitrary shape as shown in Figure 1b. The motion of the
center of mass of each particle is described in the inertial frame,N . Besides,N , each particle has a body-fixed frame,
B, attached to the center of mass to define its geometry and orientation.

The motion of rigid particles is governed by the Newton-Euler equations. For the S th particle, we have:

MS

dVS
N

dt
= FS

N,h + FS
N,e, (9a)

IS

dΩS
N

dt
= MtS

N,h +MtS
N,e, (9b)

where the subscript N indicates that the vector is expressed in terms of the basis unit vectors of the inertial frame N .
MS and IS are the mass matrix and inertia matrix of the S th particle, VS

N and ΩS
N are the linear and angular velocity

of the mass center of the S th particle, respectively. FS
N,h

and MtS
N,h are the hydrodynamic force and moment acting on

the S th particle, respectively. FS
N,e and MtS

N,e are the force and moment acting on the S th particle contributed by the
external forces excluding hydrodynamic forces. The calculation of FS

N,h
and MtS

N,h for each particle will be discussed
in Section 3.
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(a)

(b)

Figure 1: (a) Schematic of the supporting domain for a Lagrangian point. m is the Lagrangian point on the particle surface. xm is the closest
Eulerian grid point on which either pressure or velocity is defined. The supporting domain for Lagrangian point m is shown by a (red online) square
(cubic in 3D grid) of 2H around m, where H = 1.2h and h is the Eulerian grid length. The volume ΔVm associated with point m is shown by the
(blue online) dashed line. (b) Schematic of global frame and body-fixed local frame.

Eqs. (9a) and (9b) for a set of rigid bodies s = 1, 2, 3, · · · , n can be rewritten in the general form:[
I 0
0 M

]
d

dt

(
q1
q2

)
=

(
q2
F

)
, (10)

where q1 is the generalized displacement vector of the rigid body system, q2 = dq1/dt is the generalized velocity, I is
the identity matrix, M is the generalized mass matrix, and F is the generalized forces vector. Details of the derivation
of generalized displacement and velocities for each rigid body can be found in the Appendix.

Once the state of each particle is computed by solving Eq. (10), the kinematics of any point P on the S th particle
is computed by:

RP
N = RS

N + [TNB]RP
B, (11a)

VP
N = VS

N +Ω
S
N × ([TNB]RP

B), (11b)

V̇P
N = V̇S

N + Ω̇
S
N ×

(
[TNB]RP

B

)
+ΩS

N ×ΩS
N ×

(
[TNB]RP

B

)
, (11c)

where RP
N , VP

N and V̇P
N are the position, velocity, and acceleration of point P on the S th particle in the inertial reference

frameN . RS
N , VS

N , V̇S
N are the position, velocity and acceleration of the center of mass of the S th particle respectively.

RP
B is the position of point P in the body-fixed reference frame B, andΩS

N is the angular velocity of frame B respect to
N , in the inertial reference frame. Finally, [TNB] is the orthogonal transformation matrix from body-fixed reference
frame B to the inertial reference frame N . To describe rotations in three dimensional space a set of Euler angles is
used [40]. Details are given in the Appendix A. Both sets of equations for fluid and particles are integrated in time
using a partitioned, predictor-corrector scheme [41]. The use of strong coupling, although more expensive, allows for
the use of particle-fluid density ratios of unity or less.

3. Computing hydrodynamic stress on a coarse grid

Evaluation of the hydrodynamic stresses on particle-turbulence interaction simulations is a great challenge, be-
cause the grid around the particle is usually not fine enough to properly resolve the velocity gradients. Below we will
review existing approaches in the context of particulate flows and outline the proposed model.
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3.1. Limitations of available schemes

The momentum balance approach utilized in [19, 27, 21], evaluates the total hydrodynamic force by the sum of
the IB forcing term and the fluid acceleration inside the solid body:

FN,h = −
∫

V

fdV +
d

dt

∫
V

udV, (12a)

MN,h = −
∫

V

r × fdV +
d

dt

∫
V

r × udV, (12b)

where FN,h and MN,h are the hydrodynamic force and moment, respectively. V is the volume occupied by the solid
body on the Eulerian grid. f is the IB forcing term on the Eulerian grid, and r is the position vector with respect to
the object’s center of mass. The first term on the right side of Eqs. (12a)-(12b) is computed by adding the IB forcing
term and its moment on the Lagrangian points, as the transfer functions between Eulerian and Lagrangian grids are
designed to preserve the total force and moment. In spherical particle cases, the second term on the right-hand-side
of Eq. (12a) can be approximated using the acceleration of the center of mass, u̇c, and particle volume Vc [19],
d
dt

∫
V

udV ≈ Vcu̇c, or evaluated numerically using the diameter of the sphere to identify the particle volume [19, 21].
For a particle of arbitrary shape, this method requires the identification the Eulerian cells within the domain

occupied by the particle and the volume fraction of the boundary cells to correctly compute the integral. Moreover, the
use of Eqs. (12a)-(12b) does not provide the distribution of hydrodynamic forces on the surface, and does not provide
sufficient hydrodynamic force information in cases of deformable particles, or when statistics of the hydrodynamic
surface stress are needed.

Alternatively the hydrodynamic forces can be computed by numerical integration of stresses along the body sur-
face:

FN,h =

∫
∂V

τ · ndS , (13a)

MN,h =

∫
∂V

r × (τ · n)dS , (13b)

where ∂V is the particle surface, n is the unit vector in the normal direction, and τ = −pI + (∇u + ∇uT )/Re is the
hydrodynamic stress tensor. This approach can provide both the total hydrodynamic forces and the distribution of the
hydrodynamic stress acting on the particle surface. In [42] and [25] the surface hydrodynamic stresses are computed
using a linear reconstruction along the normal direction (normal probe):

τ|m = −p|m I +
1

Re
(∇u + ∇uT )

∣∣∣
m
,

≈ −( p|e +
Du
Dt

∣∣∣∣∣
e
· n)I +

1
Re

(∇u + ∇uT )
∣∣∣
e
, (14)

where the subscript e indicates the values at an external point e along the normal direction to the surface point m

(see Figure 2). The shear stress at m is approximated by the one at the nearby external point e, implying a linear
variation assumption for the velocity in the normal direction. Numerical experiments have demonstrated that this
approach requires very fine grids to accurately resolve the velocity gradients within the boundary layer rendering it
prohibitively expensive when applied to turbulent flows with finite-size particles.

Both the above methods should yield similar hydrodynamic forces if the grid is fine enough to resolve the particle
boundary layers, which in most cases comes with a high computational cost. In Table 1 we summarize a few recent
computations of particulate flows using IB methods and list the grid resolution utilized to resolve spherical particles,
together with the particle Reynolds number, Rep (based on the particle diameter and the convective velocity). It can
be seen that in most cases the grid size is, dh � D/20, which in the best case for the lower Rep values, will place 2-3
grid nodes within the boundary layer (boundary layer thinkness, δ, is estimated from δ/D ∼ 1/

√
Rep [35]). With this

resolution around a particle, approaches based on the numerical integration of stresses along the body’s surface will
under-predict the hydrodynamic forces.
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Table 1: Grid length and Reynolds number for particle-resolved simulations. D is the diameter of the particle. dh is the grid length. Rep is the
Reynolds number based on the diameter of the particle and the convective or fluidization velocity.

Ref. D/dh Rep flow state
Uhlmann [19] 12.8 ≈ 400 turbulent flow
Uhlmann [30] 12.8 136 turbulent flow
Botto and Prosperetti [36] 16 80 turbulent flow
Xu and Subramaniam [35] 20 50 turbulent flow
Pan et at. [43] 9.3 O(1000) turbulent flow
Wachs [16] 10 29 -
Rahmani and Waches [44] 24 106 to 625 laminar flow
Uhlmann and Dusek [45] 15 to 48 185 to 365 laminar flow
Kempe and Frohlich [21] up to 22 up to 200 laminar flow

3.2. Proposed hydrodynamic stress model

Let us limit our discussion to flows where the particle boundary layers are laminar, which covers a wide range
of applications. In such case the flow can be approximated by the boundary layer equations in a local orthogonal
curvilinear coordinate system. We start with two-dimension flows in the local coordinate system ξ− η (see Figure 2):

∂uξ

∂t
+

uξ

hξ

∂uξ

∂ξ
+ uη
∂uξ

∂η
= − 1

hξ

∂p

∂ξ
+

1
Re

∂2uξ

∂η2 , (15a)

∂hξ

∂η
u2
ξ =

∂p

∂η
, (15b)

where p is the pressure, and uξ and uη are velocity components in the streamwise (ξ) and normal (η) directions,
respectively. Here, the rectilinear axis η is defined in the normal direction to the solid surface (into the fluid region).
The curvilinear ξ is defined by the intersection between the plane spanned by η and the relative velocity of the fluid
at the external point e with respect to point m, and the surface of the body. According to the axis definition, the scale
factor hη is 1 and hξ depends on the surface curvature. In contrast to flat-plate boundary layer flows, the momentum
balance expressed by Eq. (15b), indicates that surface curvature generates a pressure gradient in the normal direction.
Ideally, the local discretization and solution of Eqs. (15a)-(15b) can be employed to obtain the surface stresses [46, 37].
However, for particles of arbitrary shape and orientation with respect to the fluid grid, the implementation of such a
scheme can be very complex leading to costly computations.

3.2.1. Evaluation of pressure on the particle surface

To avoid direct numerical solution of the above equations we can utilize Eq. (15b), which governs the pressure
variation along the normal direction for the flow over a curvilinear boundary. The pressure gradient along a line
ξ = const. can be expressed in a general form:

∂p

∂η

∣∣∣∣∣
ξ=const.

= g(η), (16)

where g(η) is a function of normal coordinate η. The function g(η) depends on the coupled effect of the surface
curvature and the near flow field, and does not admit a universal expression. Assuming as a first order approximation
that g(η) varies linearly within the boundary layer, the pressure gradient and pressure near the particle surface are
given by:

∂p

∂η
= bp + apη, (17a)

p = cp + bpη +
1
2

apη
2, (17b)
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Figure 2: Schematic of the local curvilinear coordinate system and the external point arrary.

where ap, bp and cp are coefficients to be determined by the local pressure information p|e, ∂p/∂η|e, and ∂p/∂η|m.
Here, p|e is the pressure at an external point e along the normal direction (as shown in Figure 2). ∂p/∂η|m and
∂p/∂η|e are the pressure gradient in the normal direction at the point m on the particle surface and the external point
e, respectively.

The pressure at the external point e can be interpolated from the Eulerian grid. In this work the same interpolation
technique used in computing the IB forcing term (i.e. Eq. 6) is employed:

p|e =
ne∑
i=1

φe
i pi, (18)

where ne is the number of Eulerian points in the supporting domain of external point e. Note that φe
i are the shape

functions relating point e to its interpolation stencil. The pressure gradient in the normal direction at point m can be
estimated by using the Navier-Stokes equations on the particle surface:

∂p

∂η

∣∣∣∣∣
m

=

(
−Du

Dt
+

1
Re
∇2u

)
· n

∣∣∣∣∣∣
m

≈ −Du
Dt
· n

∣∣∣∣∣
m
, (19)

where Du/Dt is the material derivative of velocity and n is the unit normal vector at point m on the particle surface.
The term Du/Dt at the particle surface is evaluated from the particle acceleration at m. The viscous force term
(1/Re)∇2u at the particle surface can be ignored, considering that it mainly contributes to the forces in the tangential
direction. The computation of the pressure gradient ∂p/∂η at point e, defined in the curvilinear system ξ − η, is
discussed below. Finally the pressure on the surface of the particle can be estimated by:

p|m = p|e −
1
2

(
∂p

∂η

∣∣∣∣∣
m

+
∂p

∂η

∣∣∣∣∣
e

)
h, (20)

where h is the distance between points m and e.

3.2.2. Evaluation of viscous stresses on the particle surface

The viscous stress on the surface of the particle can be evaluated using Eq. (15a), which can be simplified by
ignoring the effect of inertia and convective terms as suggested by Posa and Balaras [46] and validated in Section 4.2
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of this work. This simplification leads to the constraint that, in order to maintain accuracy, the first computational
point off the wall should be positioned within the laminar boundary layer [46]. Eq. (15a) reduces to,

1
Re

∂2uξ

∂η2 =
1
hξ

∂p

∂ξ
. (21)

The effect of curvature on the variation of ∂p/∂ξ in the normal direction can be investigated by taking the derivative
∂/∂ξ on Eq. (15b)

∂

∂η

(
∂p

∂ξ

)
=
∂

∂ξ

(
∂hξ

∂η
u2
ξ

)
, (22)

where the relation ∂
∂ξ

(
∂p

∂η

)
= ∂
∂η

(
∂p

∂ξ

)
is used. It is seen from the last equation that the surface curvature causes

a variation of ∂p/∂ξ along the normal direction. Similar to the pressure, the variation of pressure gradient ∂p/∂ξ
depends on the coupled effect of curvature and the flow conditions within the boundary layer, not admitting a universal
exact expression. The linear function, ∂p/∂ξ = b + aη, can serve as a first order approximation for the variation of
∂p/∂ξ in the normal direction. In this scenario, Eq. (21) reduces to

1
Re

∂2uξ

∂η2 = b + aη (23)

where a and b are two coefficients to be determined by the local flow information.
Based on Eq. (23), an analytical expression for the velocity profile at ξ = const. can be obtained

uξ(η) = d + cη +
b

2
η2 +

a

6
η3, (24)

where again, the c, d coefficients must be determined from the flow state. We use the non-slip condition at the
boundary point m and the flow information at the external local point e to dynamically compute these coefficients

a =
∂3uξ

∂η3

∣∣∣∣∣∣
e

, (25a)

b =
∂2uξ

∂η2

∣∣∣∣∣∣
e

− ∂
3uξ

∂η3

∣∣∣∣∣∣
e

h, (25b)

c =
∂uξ

∂η

∣∣∣∣∣∣
e

− ∂
2uξ

∂η2

∣∣∣∣∣∣
e

h − 1
2
∂3uξ

∂η3

∣∣∣∣∣∣
e

h2, (25c)

d = uξ
∣∣∣
m
. (25d)

Finally, the viscous stress at point m on the particle surface can be given by

fν|m = 1
Re

∂uξ

∂η

∣∣∣∣∣∣
m

t

=
1

Re

∂uξ

∂η

∣∣∣∣∣∣
e

t − 1
Re

∂2uξ

∂η2

∣∣∣∣∣∣
e

ht − 1
Re

1
2
∂3uξ

∂η3

∣∣∣∣∣∣
e

h2t, (26)

where t is the unit vector in the tangent direction at point m.
The velocity and pressure gradients in Eqs. (25) and (20) at the external point e are defined in the ξ−η system. The

exact computation of these velocity gradients for a particle of arbitrary shape is not trivial. Therefore, an approximate
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method is used to compute the velocity gradients at the external point e

∂p

∂η

∣∣∣∣∣
e

≈ ∂p

∂xi

∣∣∣∣∣
e

ni, (27a)

∂uξ

∂η

∣∣∣∣∣∣
e

≈ ∂u′i
∂x j

∣∣∣∣∣∣
e

tin j, (27b)

∂2uξ

∂η2

∣∣∣∣∣∣
e

≈ ∂2u′i
∂x j∂xk

∣∣∣∣∣∣
e

tin jnk, (27c)

∂3uξ

∂η3

∣∣∣∣∣∣
e

≈ Re
∂2 p

∂xi∂x j

∣∣∣∣∣∣
e

nin j, (27d)

where the subscript i, j, and k are the indices of the tensor, and the Einstein summation convention is applied. n = nin̂i

is the versor in the normal direction at point m, where n̂i (i = 1, 2, 3) are the coordinate unit vectors in N . t = tin̂i

is the versor in the tangent direction at point m. The simplified Eq. (21) for a flat-plate, 1/Re ∂2uξ/∂η
2 = ∂p/∂ξ, is

used to approximate the 3rd order tangential velocity derivatives by, ∂3uξ/∂η
3 = Re ∂2 p/∂ξ∂η. This approximation

was found to have little effect on the hydrodynamic forces in all the cases of this work. The derivatives ∂u′i/∂x j,
∂2u′i/(∂x j∂xk), ∂p/∂xi and ∂2 p/(∂xi∂x j) at the external point e is computed by the central difference scheme on an
3 × 3 points array (as shown in figure 2) for 2D flows and 3 × 3 × 3 points array for 3D flows, centered at point e. The
distance between neighbor points equals to the Eulerian grid length. The pressure on the points array is computed by
using Eq. (18) for each point. The velocity u′ at each point in the local coordinate array is computed by:

u′
∣∣∣
E
=

ne∑
l=1

φE
l ul −ΩS

N × rE
N , (28)

where the superscript E can be any point in the array. ne is the number of Eulerian points in the supporting domain of
external point E. φE

l
refers to the corresponding shape function set, as defined in Eq. (6). ΩS

N is the angular velocity
of the S th particle, where the S th particle is the host of the marker m. rE

N is the vector from the mass center of the S th
particle to external point E. The term −ΩS

N × rE
N on the right-hand-side of Eq. (28) excludes the effect of rigid body

rotation on the shear stress.

3.3. Discussion

The local acceleration and convection terms within the boundary layer are not taken into account in the model
given by Eq. (23). Posa & Balaras [46] conducted a priori testing to investigate the effects of this assumption to the
accuracy of two-layer models for laminar boundary layers, and found when the modeled boundary layer is captured
with at least two grid nodes on the Eulerian grid the predicted wall stress is fairly accurate. If one ignores the pressure
variation in the normal direction caused by curvature, the model given by Eq. (23) reduces to:

1
Re

∂2uξ

∂η2 = b, (29)

which is the Reduced Diffusion Model (RDM) proposed and proposed in [46]. In such case the analytical solution
based on Eq. (29) has the form:

uξ(η) = d + cη +
b

2
η2, (30)

where the coefficients b, c, and d are determined as:

b =
∂2uξ

∂η2

∣∣∣∣∣∣
e

, c =
∂uξ

∂η

∣∣∣∣∣∣
e

− ∂
2uξ

∂η2

∣∣∣∣∣∣
e

h, , d = uξ
∣∣∣
m

(31)

and the corresponding viscous stress at point m on particle surface is given by:

fν|m = 1
Re

∂uξ

∂η

∣∣∣∣∣∣
e

t − 1
Re

∂2uξ

∂η2

∣∣∣∣∣∣
e

ht. (32)
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Eq. (32) contains only the first and second terms on the rhs of Eq. (26). Computing the viscous stress by using only
the first term in Eq. (32), we arrive at the normal probe approach described in [42, 25]. In this sense, both the RDM
and normal probe methods are special cases of the model proposed by this work.

In three-dimensional boundary layers, the curvilinear term of the momentum balance equation in the normal
direction, Eq. 15, will be given by a more complex form involving the curvature in the direction normal to the ξ − η
plane. However, the pressure gradient within the boundary layer can still be modeled by the linear functions in
Eqs. (17a) and (23). Thus, the proposed hydrodynamic stress model is applicable to both two- and three-dimensional
boundary layers. We should also point out that no assumptions on the geometry of the particle are made, as for
example with momentum balance approaches [19]. In this sense, the proposed model works for arbitrarily shaped,
rigid or deformable particles. Potential limitations originate form the validity of the model assumptions locally, as
well as grid resolution.

One aspect that was not discussed in the formulation above is the handling of particle-particle collisions, which
are common in particulate flows. The current formulation could serve as the basis to develop physics-based models
for collisions, but this task is beyond the scope of the proposed work. To address this issue we combine the current
method with a collision model to account for the short-range interaction between the particles. We use the collision
model proposed in [47] for simulations with spherical particles, where a tuned short range repulsive force is defined
to avoid the overlapping of the particles. The repulsive force is computed as follows:

Fp =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, for d > 2R + Δ,
δX
εP

(2R − d)2, for 2R < d ≤ 2R + Δ,
δX
ε′

P
(2R − d), for d ≤ 2R.

(33)

where R is the radius of the particle, δX = Xl−Xt and δX = Xt−Xl are the distance vectors in computing the repulsive
forces for the leading particle and the trailing particles, respectively, Xl and Xt are the position vectors of the mass
center of the leading particle and trailing particle, respectively, d is the distance between the particle mass centers.
Δ = 3dh is the range of the repulsive force, dh is the grid length of the Eulerian grid, εP = 5× 10−7 and ε′P =

√
εP are

small positive stiffness parameters for particle-particle collisions. For the interactions between the particles and the
wall, the distance between the particles is replaced by the distance between a particle and the imaginary particle with
respect to the wall.

4. Results

In this section we present a series of test problems of increasing complexity to demonstrate the accuracy and
efficiency of the proposed hydrodynamic stress model. In the test problems, the geometric shape of particles admits
an analytical expression, in order to use the the well documented benchmarks of these kind of flows. However, the
proposed hydrodynamic stress model is applicable particles with arbitrary shape.

4.1. Flow over a stationary circular cylinder

Consider a circular cylinder of diameter D fixed in a uniform cross-flow with velocity U, at Reynolds number
Re = UD/ν = 40. The flow is steady and two-dimensional. The simulation is conducted on a computational domain
of [−10D, 20D] × [−11D, 11D], where the center of the cylinder is at (0, 0). The uniform upstream flow is specified
at the inlet, and a convective boundary condition is used at the outlet. The free-slip boundary condition is set at the
bottom and top boundaries. The non-slip boundary condition is enforced at the cylinder surface. The flow around a
cylinder at this Reynolds separates and forms a steady ‘dead-water’ region, as shown in Figure 3. The separation point
θ, geometrical measurements of the ‘dead water’ region (L, a and b as shown in Figure 3) and the drag coefficient, Cd,
will be compared to reference data in the litersture. The scope of computations reported in this section is as follows: i)
quantify the sensitivity to grid resolution of a typical immersed boundary approach, which utilizes the normal-probe
to compute hydrodynamic forces; ii) evaluate the accuracy of the proposed model a-priori, utilizing a well resolved
computation; iii) evaluate the accuracy of the proposed model a-posteriori, by comparison to reference results in the
literature.
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Figure 3: Pressure and streamlines around a stationary circular cylinder at Re = 40. The contours for pressure range from -0.5 (blue) to 0.5 (red)
with 10 equal intervals.

(a) (b)

Figure 4: (a) Pressure coefficient, Cp; (b) velocity gradeint, ∂uξ/∂η, on the cylinder’s surface at Re = 40. The color lines shows the results
computed by the normal probe approach based on different grid lengths. The grid lengths are dh = D/24, dh = D/48, dh = D/96, dh = D/192,
and dh = D/384, respectively. The pressure coefficients are shifted by different constants for the simulations with different grids. The black line

shows the reference results by Braza et al. [49].

4.1.1. Sensitivity of hydrodynamic forces to grid resolution

To quantify the sensitivity of the hydrodynamic forces to grid resolution when computed using the normal probe

approach for the MLS direct-forcing scheme discussed above we conducted a series of computations with increasing
resolution. In each case the grid around the cylinder was approximately uniform and in the range of, D/384 < dh <
D/24. The resulting distribution of pressure coefficient, Cp, and the tangential velocity gradient, ∂uξ/∂η, on the
cylinder’s surface are shown in Figure 4. The pressure coefficient is fairly insensitive to the grid resolution, and all
grids are within 2% of the reference solution. The tangential velocity gradient along the wall-normal direction, one
the other hand, is clearly under-predicted on the coarser grids. To quantify the difference with the reference solution,
we list the computed

∣∣∣∂uξ/∂η∣∣∣ at θ = 130◦ on different grids (see Table 2). Approximately 192 grid points across the
diameter of the cylinder are needed for the error to be less than 5%, while on the coarsest grid, dh = D/24, the error
is 33.7%.

The prediction of the hydrodynamic force follows a similar trend. Table 2 also lists the drag force estimated by
the normal probe approach for all grids. As exprected the error in the viscous drag is higher than that on the pressure
drag. For the coarsest grid (dh = D/24) these errors are 14.8% and 2% respectively. The grid resolution has to be
increased at least 8 times (to dh = D/192) in each direction, to keep the errors within 5% when computing the viscous
drag and within 2% in computing the total drag. These results are consistent with the findings of Tenneti et al. [48] on
the convergence of hydrodynamic forces in IB methods.

We should also note that the errors in the computation of the hydrodynamics forces utilizing a normal probe

approach depend on the details of the IB formulation as well as the position of the probe. In the present Lagrangian,
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Table 2: Sensitivity of the tangential velocity gradient and drag force estimated with the normal probe approach for the flow around a circular at
Re = 40. DT: total drag; DP: pressure drag; DV: viscous drag. The reference results are computed from Braza et al. [49] and the difference for a
variable, φ, is defined as (φcomp − φre f )/φre f × 100%

Grid length
∣∣∣∂uξ/∂η∣∣∣ diff % DT diff % DP diff % DV diff %

D/24 7.98 33.7% 0.73 −6.4% 0.50 −2.0% 0.23 −14.8%
D/48 9.57 20.6% 0.75 −3.8% 0.50 −2.0% 0.25 −7.4%
D/96 10.59 12.1% 0.76 −2.6% 0.50 −2.0% 0.25 −7.4%
D/192 11.45 4.9% 0.77 −1.3% 0.51 0.0% 0.26 −3.7%
D/384 11.82 1.9% 0.78 0.0% 0.51 0.0% 0.27 0.0%
Ref [49] 12.05 – 0.78 – 0.51 – 0.27 –

direct-forcing, MLS based IB approach the kernel width of 2.4dh and the probe extends 2.0dh from the wall. We
find this configuration to have optimal cost/accuracy properties. For implementations with wider or narrower support
domains and/or the use of higher order interpolations the force convergence may be different. Nonliner fittings or
interpolations might help to improve the prediction to the wall shear stress in the normal probe approach. For the
spherical particles, for example, spherical hamonic expansions may also give more accurate predictions. The proposed
model, which is practically equivalent to a physics-based correction on the forces predicted by the normal probe

approach, should be applicable to most direct-forcing, immersed boundary methods in a straightforward manner.
Depending on the support domains for the transfer functions of the specific formulation, however, the location of the
external point, e, as well as the grid resolution may have to be adjusted.

4.1.2. A-priori testing of the proposed model

To test the accuracy of model and examine its sensitivity to the location of the external point, e, (see Figure 2)
in an idealized setting, we conducted a-priori testing using the solution on the grid with resolution, dh = D/384 as
reference. Three cases were considered, where the external point, e, was located 2×D/96 ≈ 0.02D, 2×D/48 ≈ 0.04D

and 2×D/24 ≈ 0.08D from the wall. The velocity and pressure at point, e, in each case was interpolated form the fine
grid (dh = D/384) and was the input to the model. The resulting distribution of the pressure and tangential velocity
near the wall are shown in Figure 5, where the corresponding profiles form the high resolution computation are
included for comparison. In particular, three locations are shown with θ = 60◦, 54◦, 45◦ (see Figure 3 for the definition
of θ). The locations were selected be around the separation point (θ = 54◦), after the separation point (θ = 45◦), and
before the separation point at θ = 60◦, respectively. The reference solution on the fine grid (dh = D/384) shows that
the pressure varies along the normal direction as implied by Eq. (15b), indicating that the surface curvature generates
a non-zero pressure gradient in the normal direction near the wall.

For the case corresponding to a computation with the highest resolution (dh = D/96), where point, e, is located at
2 × D/96 ≈ 0.02D from the wall, the resulting pressure distribution is in good agreement with the reference solution
at all locations. In addition, the pressure profiles satisfy the constrains that the pressure gradient is zero on the wall
(uξ = 0 in Eq. 15b) and non-zero away from the wall (uξ � 0 and ∂hξ/∂η � 0 in Eq. 15b). The prediction on the
coarser grid (e is located 2 × D/48 ≈ 0.04D from the wall) is also good at all locations. When the external point is
moved further away to 2 × D/24 ≈ 0.08D, the pressure profiles still give a zero-pressure gradient near the wall and
non-zero pressure gradient at the external point e, but the pressure is over-predicted in the region 0.5 < r < 0.54 (the
error is within 3%). This result is still better, however, from the assumption of a the constant pressure (or zero pressure
gradient) near the wall. The tangential velocity profiles are also shown in Figure 5 for all three cases. The tangential
velocity provided by the model (Eq. 24), captures the main features of the near wall flow even in the separated regime.

We also conducted a series of tests, where the location of the external point, e, was set to a fixed distance from the
wall (h = 2 × D/24), while the interpolation stencils to obtain the coefficients in Eq. (25) for example, corresponded
to grids with increasing resolution and up to D/192. The resulting coefficients were always within 2% of the ones on
the reference grid, indicating that interpolation errors play a lesser role in the accuracy of the model.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: A-apriori testing of the proposed model for the case of the flow around a circular cylinder at Re=40 with varing grid resolution. Left
column: presure profile along the wall-normal direction; Right column: tangential velocity profile along the wall-normal direction. (a,b) θ = 60◦;
(c,d) θ = 54◦; (e,f) θ = 45◦. The grid resolution was: dh = D/24 (−−−); dh = D/48 (; − ·−); dh = D/96 (− · ·−). The external point, e was located
at 2dh from the wall for each case and is indicated by the corresponging vertical dotted lines. The reference profiles are taken from the simulation
with dh = D/384 ( ).
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(a) (b)

Figure 6: (a) Pressure coefficient, Cp; (b) velocity gradeint, −∂uξ/∂η, on the cylinder’s surface at Re = 40. Reference results by Braza et

al. [49];• Proposed model on h=D/24; The normal probe approach on different grids: dh = D/24; � dh = D/192
.

Table 3: Wake and drag coefficient of the flow over a stationary cylinder at, Re = 40, and grid resolution, dh = D/24.

Case L/D a/D b/D θ Cd

Present 2.32 0.76 0.6 54.1◦ 1.55
Wang and Zhang [27] 2.36 0.72 0.6 53.8◦ 1.54
Coutanceau and Bouard [50] 2.13 0.76 0.59 53.8◦ -
Linnick and Fasel [51] 2.28 0.72 0.6 53.6◦ 1.54
Taira and Colonius [52] 2.33 0.72 0.6 53.7◦ 1.54

4.1.3. A-posteriori testing of the proposed model

Finally here we will compare a computation utilizing the proposed model on the coarsest of the grids considered
above (dh = D/24) to a computation without the model, as well as, to reference results in the literature. Figure 6 shows
the predicted pressure and shear stress distribution on the cylinder’s surface with and without utilizing the proposed
model. The reference results by Braza et al. [49] where a boundary-conforming solver is used are also included for
comparison. It can be seen that the pressure distribution is predicted fairly accurately by both schemes and is less
sensitive to grid resolution. The wall stress is captured accurately by the proposed method, and is under-predicted
when the model is switched-off. The predicted separation point, geometrical measurements of the ‘dead water’ region,
L, a and b (as defined in Figure 3) and the drag coefficient, Cd, are listed in Table 3 in comparison to reference data in
the litersture. All quantities are in excellent agreement with the literature despite the coarse grid resolution. The error
in the drag coefficient for example, is less that 2%. As we discussed above, to reduce the error to this level with the
normal probe approach a grid with spacing less than dh = D/384 (16 times finer in each direction) is required.

To better understand the near-wall behaviour of the model, the pressure and velocity fields obtained with the
proposed model on dh = D/24 are compared to a high resolution computation on very fine grid with dh = D/384.
Isolines of the pressure and velocity distribution in the vicinity of the cylinder are shown in Figure 7. The coarse
grid solution consists of two parts: the outer flow computed on the Eulerian grid with dh = D/24, and the near
wall flow predicted by the model. The boundary between the two is indicted by the dashed line in the figure. The
agreement is very good and consistent with the a-priori testing we reported in the previous section. A detailed
quantitative comparison of pressure and velocity profiles near the wall is shown in Figure 8. As with the above figure,
inner (predicted by the model) and outer (computed on the dh = D/24 grid) profiles are compared to the reference
computation with dh = D/384. The velocity profiles (see Figure 8b) are in excellent agreement with the reference
solution in both zones. The pressure profiles agree well with the reference solution in the outer part (see Figure 8a).
Good agreement can be also be observed in most locations at the inner part, with the largest errors in area of the
adverse pressure gradient before separation.
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(a) (b)

Figure 7: Flow around a circular cylinder at Re = 40. (a) Iso-contours of the pressure (range: 0.5 red to -0.5 blue, with an equal interval of 0.05);
(b) Iso-contours of the streamwise velocity (range 1.15 red to -0.1 blue with an equal interval of 0.05). − · − coarse grid computation (dh = D/24)
with the proposed model; fine grid (dh = D/384) computation. The dash-dotted circle indicates the position of the external point e, at D/12
from the wall.

(a)

(b)

Figure 8: Flow around a cylinder at Re=40. (a) pressure profiles along the wall-normal direction, (b) tangential velocity profiles along the wall-
normal direction. The profiles are shifted by different constants along the horizontal axis to avoid overlapping with each other. The 19 lines from
left to right correspond to the angle from θ = 0o to θ = 180o with equal interval of 10o. The spaces between the ticks on the horizontal axis for the
pressure and the tangential velocity are 0.2 and 0.5, respectively. reference computation at dh = D/384; − ·− near wall profile predicted by
the proposed model; � outer velocity profile at dh = D/24. The external point, e, was located at D/12 from the wall as inidicated by the horizontal
dotted lines.
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(a) (b)

Figure 9: Instantaneous vorticity and pressure around an elliptical cylinder with Re = 200 at t = 6.0, (a) vorticity, from -5 (blue) to 5 (red), 10
intervals, (b) pressure, from -1.6 (blue) to -0.6 (red), 5 intervals.

4.2. Unsteady flow over a stationary elliptical cylinder

An elliptical cylinder with aspect ratio of b/a = 2.0, where a and b are the minor and major axes, respectively,
is considered. The object is fixed and is subject to a cross-flow with an angle of attack (AoA) of 45◦. The Reynolds
number is Re = Ub/ν = 200, where U and ν are the magnitude of freestream velocity and kinematic viscosity of
the fluid rerspectively. The computational domain is [−25a, 25a] × [−25a, 25a] and the body is located at the center.
A uniform velocity, U, is specified at the inlet, and a convective condition is used at the outlet. Free-slip boundary
condition is applied at bottom and top boundaries. A uniform Cartesian grid with cell size, dh = a/24, is used. The
cylinder surface is represented by 128 uniformly distributed Lagrangian points.

For this Reynolds number the flow around the ellipse is unsteady. Pairs of vortices are shed from the leading and
trailing edge alternatively as shown in Figure 9. In Figure 10 the hydrodynamic forces acting on the body are plotted
in the form of the drag, Cd = Fx/(0.5ρU2b), and lift, Cl = Fy/(0.5ρU2b), coefficients (Fy, Fx are the drag and lift
forces acting on the elliptical cylinder). At the lower part of the figure the evolution of the corresponding percentage
error when compared to the reference solution at a grid dh = a/192, is also plotted. It is clear that, at this grid size, the
normal probe approach under-predicts these forces when compared to the reference simulation. The maximum error
in the lift coefficients are about 16% of the time-averaged lift coeffcients, while the error of lift coefficient predicted
by using the proposed model is within 4%. The errors on the drag coefficeint are smaller in magnidute, but still
the proposed model performs much better with a maximum error less than 2%. Similar trends can be seen in the
distribution of the pressure coefficient and boundary vorticity on the surface of the body, shown in Figure 11. Overall
the hydrodynamic stress model proposed provides remarkably accurate hydrodynamic total and distributed forces on
the same grid as compared to reference data.

4.3. Unsteady flow over an oscillating circular cylinder

In this case the proposed hydrodynamic model is tested on a canonical flow with a moving boundary. It consists
of a circular cylinder oscillating transversely in an uniform upstream flow. The oscillation is prescribed by,

y(t) = A cos(2π fet), (34)

where y(t) is the time-dependent transverse position of the cylinder center, A is the oscillating amplitude, fe is the
excitation frequency, and t is time. The Reynolds number based on the inflow velocity U and cylinder diameter D is
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(a) (b)

(c) (d)

Figure 10: Drag and lift coefficients of an elliptical cylinder as a function of time, • present model, − · − normal probe approach, and
reference simulation on a fine grid with dh = a/192. (a) drag coefficient; (b) lift coefficient; (c) and (d) is the corresponding percentage difference
form the reference solution defined as ΔCd = |Cd − Cdre f |/

〈
Cdre f

〉
× 100 and ΔCl = |Cl − Clre f |/

〈
Clre f

〉
× 100, where

〈
Cdre f

〉
and

〈
Clre f

〉
are

the averaged drag and lift coefficients during 1 ≤ t ≤ 10.

(a) (b)

Figure 11: Distribution of pressure and vorticity around the elliptical cylinder at Re = 200 on the coarse grid with dl = a/24,• present model, −·−
normal probe approach, and reference, (a) pressure coefficient, (b) vorticity. The reference is the simulation on a fine grid with dh = a/192.
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(a)

(b)

Figure 12: Instantaneous flow field of the transversely oscillating cylinder with the excitation frequency fe/ f0 = 0.8 and Re = 185, (a) vorticity,
from -2 (blue) to 2 (red), 10 intervals, (b) pressure, from -0.3 (blue) to 0.3 (red), 6 intervals.

Re = UD/ν = 185. The oscillating amplitude is A/D = 0.2. The excitation frequency is fe/ f0 = 0.8, where f0 = 0.195
is the natural vortex shedding frequency of a stationary circular cylinder at Re = 185.

The non-dimensional computational domain is [−10, 40]×[−15, 15], where the characteristic length is D. Identical
boundary conditions as in the two previous cases are prescribed in the domain. The uniform grid size is set to a coarse
value dh = D/24, and 128 uniformly distributed Lagrangian markers are mapped on the cylinder surface. The flow
over the cylinder is unsteady, and a pair of vortices is shed in each oscillating period. The vorticity and pressure field
at the time level when the cylinder reaches the maximum vertical position are shown in figure 12. The distribution of
pressure coefficient and boundary vorticity at the same time are shown in figure 13. As shown in the previous cases,
while the normal probe approach under-predicts the viscous stress (represented by boundary vorticity) on coarse
meshes, the hydrodynamic stress model proposed correctly predicts the distribution of hydrodynamics forces on the
same grids. The reference data are taken from the work of Guilmineau and Queutey [53], where the simulation is
conducted on a boundary-conformal mesh with the first points of the mesh in the fluid locating at dh = 0.001D away
from the wall. The simulation based on the IB method with the normal probe approach needs to use a grid size of

(a) (b)

Figure 13: Distribution of pressure coefficient and vorticity around the cylinder at the instant when the vertical position of the cylinder reaches
maximum, fe/ f0 = 0.8, Re = 185,• present model, − ·− normal probe approach, and reference, (a) pressure coefficient, (b) vorticity. The
reference data are taken from the reference [53].
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Table 4: Setup parameters for free falling sphere test cases

Case ρs/ρ f Ut/(m/s) Re = UtD/ν gD/U2
t

I 1.16 0.091 11.6 17.75
II 1.17 0.128 31.9 8.97

(a) (b)

Figure 14: Sedimentation velocity as function of time for a falling sphere at different Reynolds numbers, present model, −− normal probe

approach, and � reference, (a) Re = UtD/ν = 11.6, (b) Re = UtD/ν = 31.9. vp is the dimensional sedimentation velocity, with a unit of m/s. t is
the dimensional time, with a unit of second. The reference results are from [54]

dh = D/250 to get the correct distribution of vorticity on the cylinder surface [25].

4.4. Free falling sphere

In this case, the motion of a free falling sphere due to gravity in a initially stationary flow is simulated, to test the
proposed model in a three-dimensional fluid-structure interaction problem. The simulation is set up according to the
landmark experimental work in [54]. The experiments are carried out in a box filled with silicon oil. The dimensions
of the box are 100mm × 100mm × 160mm along the depth, width and height directions, respectively. The distance
between the sphere center and the box bottom is 127.5mm, and it is released with a zero velocity. The terminal
Reynolds number ranges from 11.6 to 31.9. The resolution around the sphere was set to dh = D/24 for all cases
considered. The density ratios ρs/ρ f , the measured sedimentation velocity Ut, non-dimensional gravity gD/U2

t , and
Reynolds numbers based on terminal velocity Re = UtD/ν for the two cases considered in this study are listed in
Table 4.

In Figure 14 the sedimentation velocities as a function of time are shown for both cases we considered. As the
sphere moves downward under the influence of gravity it accelerates, and after some time, the weight is balanced by
the hydrodynamic force. From that point and on the sphere moves with a constant terminal velocity. The predicted
sedimentation velocities with the proposed model are in excellent agreement with the experimental results. The
normal probe approach, on this coarse grid, over-predicts the sedimentation velocity by approximately 30% in higher
Reynolds number case. The typical flow field just after the terminal velocity has been reached, is shown in Figure 15.

4.5. The drafting-kissing-tumbling of two 2D circular cylinders

To investigate the accuracy of the model in cases with particle-particle interactions we considered the case of
drafting-kissing-tumbling of a pair of circular cylinders. The setup and parametric space were selected to much the
computations reported by Uhlmann [19]. The details are given in Table 5. The pair of circular cylinders with identical
diameters and density, are released in a container with fluid at rest, as shown in Figure 16(a). The initial vertical and
horizontal offsets between the cylinders are 2D and 0.002D, respectively. The initial velocity of the fluid is zero. The
no-slip boundaries conditions are used on all boundaries. The gravity is along the vertical direction (x-axis). The
computational domain is discretized with a uniform grid mesh of dh = D/24. Each cylinder is discretized with 128
Lagrangian points. When the cylinders are released they cylinders sink due to the gravity. The interactions between
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(a) (b)

Figure 15: Instantaneous flow field around the free falling sphere at Re = 31.9, (a) vorticity magnitude, from 0.5 to 4.0, 7 intervals, (b) vertical
velocity in the plane of x = 0, from -1 to -0.2, 8 intervals.

the leading and trailing cylinders involve a thin gap between the cylinders. Short-range hydrodynamic, solid-solid
interaction (lubrication correction), and solid-solid contact models are needed when the gap between the cylinders is
less than the Eulerian grid length. We use a repulsive force model proposed by Wan and Turek [47] to account for
the direct interaction between the cylinders. We conducted two computations: one with the proposed model, and one
where the hydrodynamic forces are computed using the normal-probe approach.

Three snapshots in time from each case are compared in Figure 16, where the distribution of the vorticity and the
position of the cylinders is shown. The trailing cylinder stays in the wake of the leading cylinder in the early stage,
as shown in Figure 16(b,e). The wake of the leading cylinder reduces the drag acting on the trailing cylinder, causing
the speedup of the trailing cylinder, which catches up (see Figure 16c,f). The direct interaction between the cylinders
results in a lateral motion and tumbling, as shown in Figure 16(d,g). The cylinder trajectories for the computations
with and without the proposed model are very different. A quantitative comparison of the sedimentation velocities of
the leading and trailing cylinder is shown in Figure 17. The reference experiments in [43] and the computations by
[19] are added for comparison. The simulations without the model over-predict the sedimentation velocity, especially
the sedimentation of the leading cylinder, which results in late cylinder-cylinder interactions. The proposed model
reproduces the experimental results fairly accurately.

4.6. Turbulence interacting with finite-size particles

To demonstrate efficiency of the proposed approach in challenging configurations we considered the interaction
of forced isotropic turbulence with spheres and ellipsoids. Forced isotropic turbulence is generated in a domain with
dimensions, [−π, π] × [−π, π] × [−π, π], using the linear forcing method proposed in [55], where the source term,
fiso = a0(k0/k)u′, (a0 is a parameter to determine the input energy, k0 is the desired steady state turbulent kinetic
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Table 5: Setup parameters for the drafting-kissing-tumbling of two 2D cylinders

Diameter 0.25
Density 1.5
Gravity 981
Fluid viscosity 0.01
Domain size [0, 6] × [−1, 1]
Initial locations (1, 0.001), (1.5,−0.001)

(a) (b) (c) (d) (e) (f) (g)

Figure 16: The simulations of drafting-kissing-tumbling of two 2D cylinders, (a) schematic of the initial arrangement, (b)-(d) vorticity around the
cylinders in the simulations with the proposed model at t = 1.2, 1.7, and 2.9, respectively, (e)-(g) vorticity around the cylinders in the simulations
without the proposed model at t = 1.2, 1.7, and 2.9, respectively. The contours for vorticity range from −50 (blue) to 50 (red). The dark grey and
light grey cylinder are initially the leading and trialing cylinders, respectively.

(a) (b)

Figure 17: The sedimentation velocities of the (a) leading- and (b) trailing-cylinders, respectively. present model, − − − normal probe

approach, − · ·− reference computation [19], and − · − reference experiment [43].
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energy, k is the instantaneous turbulent kinetic energy, and u′ is the fluctuating of velocity) is introduced in the rhs of
the momentum equation.

The spherical particles have a diameter of D = π/8, while ellipsoidal particles have a major-axis of a = π/4, and
two minor-axes of b = c = π/8. For both cases the density ratio between the particles and the fluid is 1.02. For both
cases we considered a volume fraction of 0.2%. The contact model by Wan and Turek [47] is used to avoid the overlap
among particles, although in a dilute system like the one at hand, contact among particles does not happen often. The
simulations are conducted on a grid of 256 × 256 × 256. The time step is dt = 3.0 × 10−4 consistent with numerical
stability and physical time-scales. The coefficients for the forcing function, fiso are set to, a0 = 0.96, k0 = 17, and the
resulting Reynolds number of Reλ = 116. The integral length scale is L = 3.35, and the large eddy turn over time is
T = 0.96.

Typical flow structures are shown in Figure 18, where the particles are larger than the Kolmogorov scale. The shear
flows generated near the surface of the particles are visible. These shear flows may reduce velocity fluctuations by
increasing the energy dissipation. At the same time, the wakes produced the by the particles enhance the production of
the turbulent kinematic energy and increase the velocity fluctuations [56]. The effects of the particle type on turbulence
can be quantified by computing the probability density function (p.d.f.) of the velocity fluctuations (see Figure 19a).
The p.d.f. of u, for example, can be computed as follows [57]:

p(ui) =
1
δu

Ni

Np

, (35)

where, ui is the ith value of a set of equally spaced values from umin to umax. The velocity interval between two
consecutive values is δu = (umax − umin)/100 and Ni is the number of grid points with ui − δu/2 < up � ui + δu/2.
The probability density functions for the other velocity components, v and w, are calculated in similar manner. We
sampled 100 realizations over a time period of 240 � t < 390, resulting in Np = 100 × 256 × 256 × 256. The extreme
velocity events are damped by the particles, especially the spherical particles. The damping of the extreme velocity
events can be clearly seen in in Figure 19a where the turbulence fluctuations with spherical particles decay faster when
ξ > 3. The ellipsoidal particles generate more energetic wakes than the spherical particles and as a result the velocity
fluctuations decrease with a lower rate.

The p.d.f.s of the angular velocity of the particles is an important quantity in characterizing this complex interac-
tion and are shown in Figure 19b. To compute this quantity, the rotational velocity of each particle is saved at each
time step in the simulation. In this case the number of sample points, Np, used to compute the p.d.f of rotational
velocity is, Np = Nt · np, where np is the number of the particles (np = 9 for ellipsoids, and np = 18 for spheres), and
Nt is the number of discrete time levels used in the sampling. The probability density function of Ω2 is:

p((Ω2)i) =
1
δ(Ω2)

Ni

Np

, (36)

where,Ω2 = Ω·Ω is the inner product of angular velocity. (Ω2)i is the ith component of the equally spaced values from
(Ω2)min to (Ω2)max. The velocity interval between two consequent values is δ(Ω2) = ((Ω2)max − (Ω2)min)/100 and Ni is
the number of grid points with (Ω2)i − δ(Ω2)/2 < (Ω2)p � (Ω2)i + δ(Ω2)/2. The resulting p.d.f. shown in Figure 19b
uses Nt × NP = (8.33 × 105) × 18 points for spherical particles and Nt × NP = (8.33 × 105) × 9 points for ellipsoidal
particles, where Nt = 8.33 × 105 is within the simulation time interval of 250 < t < 500 with dt = 3.0 × 10−4.

Both spherical and ellipsoidal particles show similar behavior when the angular velocity is low (Ω∗2 < 5). At
higher rotation speeds (Ω∗2 > 5), the p.d.f of ellipsoidal particles takes lower values when compared to that of the
spherical particles, likely due to the fact that ellipsoidal particles are less prone to rotation at the speeds defined in
this particular problem setup. This is intuitively expected, given the same level of turbulent forcing on both sets of
simulations, but higher rotational inertia of the ellipsoids. Another reason might be that the ellipsoidal particles tend
to align preferentially with the principal axis of the fluid strain. Overall the effects of the particle types on turbulence,
as demonstrated in by the statistics above, is consistent with the experimental observations by Bellani et al. [56], even
through the current simulations are conducted at lower Reynolds numbers.

We have also conducted the simulations without the proposed model. There is no apparent difference on the p.d.f
of the fluid phase, as shown in Figure 19(a). However, the rotation of the particles will be over-predicted because of
the under-prediction of the shear stress if the proposed model is not used, as shown in figure 19(b). The differences
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between the model and normal probe approach in the p.d.f of the velocity fluctuations is small, probably caused by
the relatively low Reynolds number in the simulation. However, the p.d.f.s of the particle rotation speed are different
and reflect a higher rate for the case of the normal probe approach. This is consistent with the trend by this approach
to under-predict the shear stress on the particle surface. The detailed interactions between the turbulent statistics and
the rotation of the particles at Reynolds numbers comparable to the experiments will be discussed in the subsequent
work.

5. Summary and conclusions

The immersed boundary (IB) method is an efficient tool to investigate the interaction of turbulence with finite-size
particles. Most of the particle resolved simulations of turbulence using IB formulations employ undeformable spheri-
cal particles and compute the total hydrodynamic force by using momentum balance considerations. The application
of the momentum balance method to non-spherical and/or flexible particles is not straightforward, as it does not pro-
vide the distribution of hydrodynamic forces on the particle surface. The reconstruction of flow field near the particle
surface can provide the distribution of the hydrodynamic forces but requires very fine grids to resolve the boundary
layers, rendering the computations prohibitively expensive.

Inspired by the two-layer model in large-eddy simulation and its application in near-wall reconstruction for the IB
method, in this work we propose a hydrodynamic stress model to estimate the hydrodynamic forces in under-resolved
cases. The hydrodynamic model is based on the boundary layer equations and takes into account the effects of surface
curvature on the flow field. The curvature effect is introduced as a factor that directly affects the variation of flow in
the normal direction. By assuming a linear variation of pressure within the boundary layer, analytical expressions for
pressure and velocity are given in a local curvilinear coordinate system. These polynomial function coefficients are
computed dynamically by using local flow information. For accurate prediction of the hydrodynamic stress at any
point on the particle surface, this model requires numerical resolution that places 1 to 2 points in the boundary layer.
The proposed model is applicable to the cases where the particle boundary layer is laminar, which covers a wide range
of the turbulent flows interacting with finite-size particles.

The proposed formulation also serve as the basis to develop, physics-based models for particle-particle collisions.
This however, is a non-trivial task which is the focus of future work. Here the we coupled the current method
with a collision model to account for the short-range interaction between the particles. We used the collision model
proposed in [47] for simulations with spherical particles, where a tuned short range repulsive force is defined to avoid
the overlapping of the particles.
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Appendix A. Rigid body kinematics and dynamics

Appendix A.1. Kinematics

When dealing with multiple detached rigid bodies in a single inertial reference frameN , it is convenient to derive
their equations of motion in terms of this frame. In order to do this, both N and a body-fixed frame B are used to
describe the motion, as shown in figure 1b. The coordinate of a point P on the S th rigid body can be defined as

RP
N = RS

N + [TNB]RP
B, (A.1)

where RP
N is the coordinate vector of point P in the inertial frameN , and RP

B is the location of the point respect to the
body’s center of mass in terms of the body-fixed frame B. All the vectors with subscript N in this work are expressed
in the terms of unit vectors n̂1, n̂2, n̂3 in the inertial frame N , and all the vectors with subscript B are expressed in the
terms of unit vectors b̂1, b̂2, b̂3 in the body-fixed frame B. RS

N is the coordinate vector of the center of mass of the S th
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(a) (b)

(c) (d)

Figure 18: Particle-turbulence interaction, (a) vortex structures around spherical particles, (b) vortex structures around ellipsoidal particles, (c)
vorticity magnitude around one spherical particle, from 0 (blue) to 100 (red), 10 intervals, (d) vorticity magnitude around one ellipsoidal particle,
from 0 (blue) to 100 (red), 10 intervals.

(a) (b)

Figure 19: (a) The normalized probability density function of the turbulence with different particles. (b) The probability density function of the
particle’s rotating speed. normal distribution, −− single phase, − · − ellipsoidal particles with model, − · ·− spherical particles with model,
� ellipsoidal particles, normal probe approach, � spherical particles with model, normal probe approach.
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Figure A.1: Schematic of rotation in Euler angles.

particle. [TNB] is the orthogonal transformation matrix from body-fixed reference frame B to inertial reference frame
N .

The transformation matrix TNB can be expressed in the terms of Euler angles [φ, θ, ψ]T ,

TNB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cψcθ cψsφsθ − cφsψ sφsψ + cφcψsθ
−sψcθ −sψsφsθ − cφcψ sφcψ − cφsψsθ

sθ −sφcθ −cφcθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (A.2)

where c and s are short for cos and sin, respectively. The Euler angles [φ, θ, ψ]T are defined by the following rotation
sequence,

1. Rotation of π radians respect to n̂1 from frame N(n̂1, n̂2, n̂3) to E(ê1, ê2, ê3), as shown in figure A.1
2. Rotation of ψ radians respect to ê3 from frame E(ê1, ê2, ê3) to E′(ê′1, ê′2, ê′3)
3. Rotation of θ radians respect to ê′2 from frame E′(ê′1, ê′2, ê′3) to E′′(ê′′1 , ê′′2 , ê′′3 )
4. Rotation of φ radians respect to ê′′1 from frame E′′(ê′′1 , ê′′2 , ê′′3 ) to B(b̂1, b̂2, b̂3).

The angular velocity of body-fixed frame B with respect to the inertial frame N can be expressed in terms of the
time derivatives of the Euler angles,

ωB
E = ψ̇ê3 + θ̇ê′2 + φ̇ê

′′
1 . (A.3)

Eq. (A.3) can be expressed in the terms of unit vectors (n̂1, n̂2, n̂3) in frame N ,

ωB
N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos θ cosψ − sinψ 0
− cos θ sinψ − cosψ 0

sin θ 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
φ̇
θ̇
ψ̇

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ �= [B] φ̇B, (A.4)

where φ̇B = [φ̇ θ̇ ψ̇]T is the vector of Euler angle time derivatives, and [B] the coefficient matrix. The corresponding
angular acceleration is given by

αB
N = ω̇

B
N = [B]φ̈B + [Ḃ]φ̇B. (A.5)

For the frame B fixed on the S th solid body, we have ωB
N = Ω

S
N and αB

N = Ω̇
S
N . The velocity and acceleration of a

point P on the S th solid body are

VP
N = VS

N +Ω
S
N ×

(
[TNB]RP

B

)
, (A.6)

V̇P
N = V̇S

N + Ω̇
S
N ×

(
[TNB]RP

B

)
+ΩS

N ×ΩS
N ×

(
[TNB]RP

B

)
, (A.7)

where VS
N = ṘS

N
is the translational velocity of the frame B fixed on the S th solid body.
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Appendix A.2. Dynamics

The origin of the body-fixed frameB in this work is at the center of mass. For the S th rigid body, the Newton-Euler
equations of motion can be given by

ṘS
N = VS

N , (A.8)
[MS ] V̇S

N = FS
N , (A.9)

[B] φ̇B = ωB
N , (A.10)

[IN] ω̇B
N = MS

N − ωB
N ×

(
[IN] ωB

N

)
, (A.11)

where FS
N is the external force acting on the S th solid body. MS

N is the resultant moment of external forces respect to
the S th rigid body’s center of mass. [MS ] = diag(mS )3×3 is the mass matrix, where mS is the mass of the S th solid
body. [IN] = [TNB][IB][TNB]T is the inertia matrix in the inertial frame N , and [IB] is the inertia matrix around the
axes of the body-fixed frame B.

In order to be able to use general time integration schemes, the equations are re-casted by using the generalized
displacement and velocity as follows

s(t) =
[
RS

N φ
B γB

]T
(A.12)

u(t) =
[
ṘS

N φ̇
B γ̇B

]T
, (A.13)

where φB = [φ θ ψ]T is the angle vector in the form of Euler angles. γB is defined by

γB =

∫ t

t0

ωB
Ndt (A.14)

with γB(t0) = 0.
The reordered equations of motion are

[MES ]9×9 ṡ = [G]9×9 u (A.15)
[MEU]9×9 u̇ = RE , (A.16)

where

[MES ]9×9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
[I]3×3 [0]3×3 [0]3×3
[0]3×3 [B]3×3 [0]3×3
[0]3×3 [0]3×3 [I]3×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (A.17)

[MEU]9×9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
[MS ]3×3 [0]3×3 [0]3×3
[0]3×3 [B]3×3 −[I]3×3
[0]3×3 [0]3×3 [IN]3×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (A.18)

[G]9×9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
[I]3×3 [0]3×3 [0]3×3
[0]3×3 [0]3×3 [I]3×3
[0]3×3 [0]3×3 [I]3×3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (A.19)

[RE] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
FS

N

−
[
Ḃ
]
φ̇B

MS
N − ωB

N ×
(
[IN] ωB

N

)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (A.20)

Here, I is the identity matrix. In Eq. (A.16), the equation for φ̈B was obtained from Eq. (A.5). Although analytically
the equations for φ̇B and φ̈B are redundant (one is obtained from taking the time derivative of the other), the matrices
[M]ES and [G] are defined such that the constraint on φ̇B given by Eq. (A.4) is enforced exactly. Then, for a given
discrete time integration algorithm, the vector φ̇B can be evolved from φ̈B using the scheme, and then modified to
satisfy the constraint Eq. (A.5) for each time iteration/sub-iteration step.
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For a solid body moving in two dimensional space, the equations of motion (A.15) and (A.16) can be significantly
simplified. For example, the transformation matrix TNB for a rigid body moving in the space defined by the n̂1 and n̂2
reduces to the following form, by setting φ = θ = 0

TNB =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosψ − sinψ 0
− sinψ − cosψ 0

0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (A.21)

The angular velocity vector φ̇B reduces to φ̇B = [0 0 ψ̇]T , and we can get ωB
N = −φ̇B.
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