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1. Introduction

Let 2 C R*(n > 2) be a domain with a sufficiently smooth boundary. We consider a non-Newtonian
incompressible fluid which is governed by the following system

W +u-Vu — div (|D(u)|r_2D(u)) Y Vr=0, in®x(0,T),
divu =0, in 2 % (0,7), (1)
u(0,x) = up(x), in 2.

where u = (u1, ug, ug) denotes the unknown velocity of the fluid and 7 the pressure, and
1
D(u) = 5 (Vu+ (Vu)™).

We first give the definition of a weak solution to (1). To this end, we denote by C§°(2) the space of smooth
functions with compact support. Let C§%(2) = {¢ € C°(R2)|V - ¢ = 0}. L2(R?) denotes the closure of
C6%,(£2) in the norm || - ||, H&’g(()) denotes the closure of C§%, (£2) in the norm ||V - [|,. We write

T q
g = / la()2dt ], 1<q<oo,
0
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and

[a(®)llp,c0 = ess sup {[ullp.
0<t<T

Definition 1. Let r > 2f2, ug € L2(2). A vector-valued function u € L>(0,7T; L2(£2))NL?(0,T; Hé;(Q))

is called a weak solution to (1) if the following identity

(uo, (0)) + / ' [(w,00) = (u- Vu, ) = (ID(w)"D(w), D(p) ) | dt =0 2)

holds for all ¢ € Cg° ([0,7T); C5%,(£2)). Here, one restricts 7 > ;2% to make sure that the expression
fo u - Vu, ) dt makes sense.

The existence of weak solutions of (1) is shown in [1,2] with the periodic boundary condition, and in [3]
for the whole space. In [4], J. Wolf showed the existence of weak solutions with Dirichlet boundary condition

for r > 2Antl)

iz - Moreover, we know that a weak solution satisfies the global energy inequality

@l +2 [ 1Pl < ol 20

A natural question is to consider the possible validity of the energy equality. For Newtonian fluids, i.e. r = 2,
the pioneering results by Prodi [5] and Lions [6] concern the validity of energy equality for a weak solution
such that

uc LY0,T, LY ().

Later, Shinbrot [7] enlarged the range of exponents proving that if a weak solution belongs to

1 1 1
ueLq(OaTva(‘Q))’ -+ - S ) p24
poq 2
More results in this respect, the reader can see [8] and references therein. However, as far as I know, there is
no result for the non-Newtonian fluids. In this paper, we will extend Shinbrot’s result to the non-Newtonian

fluids. Our main result is stated as follows.

2(n+1)
n+2 7

Theorem 1. Letr > v’ is the Holder conjugate ofr uo € L2(2), and let u be a weak solution of

(1). If u e LU0, T; LP(12)), where 2r' < p < 2_’" and 1 —|— < ,, ifr>2;p>2r and Tp%l < ’”51, if
r < 2. Then u satisfies the energy equality

@l +2 [ Ip@lar = fuol3 0<t<T 0
Remark 1. Here, since the existence of weak solutions to (1) is still unsolved for r < 2(7?7:21)7 see [4], we
have to restrict r > 2(7?7;1)

Remark 2. It is well known that the weak solution is strong and unique for r > 3”j'227

thus the weak solution satisfies automatically the energy equality. It is remarkable that our result is consistent

see for example [2],

with this fact. Actually, by virtue of Gagliardo—Nirenberg inequalities and Korn’s inequality, one easily

verifies
I 2 2 1 (n+2)7‘272n7‘ o
L=(0,T5 Ly (2)) N L0, T Hy o (2)) — L™= (0, T; L7 (2)).

When 7 > 2242 one can easily check that

1 n n < 1
21" (n+2)r2 —2nr — !’

3n+2
n+2 °

which implies a weak solution of (1) must satisfy the energy equality for any r >
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2. The proof of Theorem 1

Firstly, we have the following property of weak solutions.

Lemma 2. Letr > 2(::21) ,ug € L2(02), and let u be a weak solution of (1). Then, after suitable redefinition

of u on a set of values of t of one-dimensional measure zero, we have

(u(®), (1)) = (uo, (0)
+ / [(w,8,0) = (- V) = (ID@)() D)), D(@)()) [ dr =0 (1)

holds for all ¢ € C§° ([0,T); C5%(£2)) and all 0 <t < T.

This lemma is completely similar with that of Lemma 2.1 in [9], see also [5,10,11], we omit the details
here.

Lemma 3. Letr>1, ¢ € LP(Q), € Hy" (), x € L*(2) N LP(2), where

2
2r/§pgrj2, if > 2 (5)
p>2r, if 1<r<2.
Then
(@~ Vo, X)| < 1BVl x5 lx 7 (6)
where
11
g_a_» _2p—0)
5—35 -2

and q is defined by % + % =1

s

Proof. If x € L9({2), then
[(@- VY, x) | < @l Vel lIxllq-

From the assumption (5), one can easily check that 2 < ¢ < p. Hence we can use interpolation and write ¢

1
1 0 4 1=6 1 : . 4" p _ 2(p—q)
= = = —, Wl h 1 = 9T = 75\ h
as ;=5 + P ch give us 6 i1 2(—=2) ['hus,

(@ Vb, X)| < 1Bl VIl xSl x5 ~°
Lemma 4. Letr > 1, and
¢ € LU0, T;LP(R)), ¥ € L"(0,T; Hy" (1)), x € L*(0,T; L*(2)) N L7(0, T; LP(£2)),

where p satisfies the assumption (5). Then

(i) Ifr>2and%+%:%, one has

T 11 q_
/0 (1) - V), x(®) dt| < Tl 2199l Il 27 (7)
(i) Ifl<r<2and ’";1—1—%:%, one has
T q_
/0 (1) - V1), x(8)) dt| < [[Bllp all Vb lor I oo Il 25 (8)
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Proof. If r > 2 and % + % = %, one can easily check that

1 1 1-46 1 1
—t+t-t+—+| 55 0=1,
q T q r 2

then by Hoélder’s inequality, one can obtain (7) by Lemma 4. If 1 < r < 2 and % + ’“;1 = ’"51, it is easy to
know that
1 1 1-9
-+ -4+ — =1,
r q

thus, one can get (8) by virtue of Lemma 4.

Now, using the above result, we can prove Theorem 1.
Proof of Theorem 1. The proof follows [7]. Let
to
(ke x @) (t) = / ko (t — 1)o(T)dT
0
be a mollifier, so that k. is C'°, real-valued, nonnegative function, supported in [—e,¢], and integrat-

ing to unity. Let {u,} C C§°([0,00); C5%(£2)) be a sequence converging to u in L*(0,T;L2(£2)) N
L™ (0,T; Hé;(())) N L0, T; LP(12)). Set t =ty and ¢ = k. * u,, in (4). One obtains

/0 ’ ko(to — t)(u(to), um(t))dt
:/0 ke(—t) (ug, um(t)) +/0 /0 Otk (t — 7)(u(t), up (7))d7dt
= [ [ k=) [ - o, wnm) + (D@ D@0, D)) drt )
0 0
From Lemma 3, we have

/Oto /Oto ke(t — ) (u(t) - Vu(t), un(r) —u(r)) det’

° v — a2 (1) —u(r)||Ldr
S/O ||u(t)le\Vu(t)Ilrdt/0 [un (7) = u(7)[[2[um(7) —u(r)|,~"dr.

Since r’ < q, we have

to
/0 [u(®)[[pIVu@)[-dt < C(to) lullp,qllVullr,-

On the other hand, since % + % <1, we have

to
/O [ (7) = u(r)[[llun(7) = u(r) |, "dr < Clto)llum — ullf 2 lum —ull," — 0, asm — oco.

Thus, let m — oo in (9), we have
/O " ke(to — £)(u(to), u(t))dt
:/O ke(—t) (uo,u(t))+/0 /O Otk (t — 7)(u(t), u(r))drdt
- [ [ k=) ) 9uo.um) + (D@07 D)o, D)) | drde. (10
0 0
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The term here involving the derivative vanishes if k is chosen to be even. We send ¢ to zero in the remaining
terms. Because of the usual properties of mollifiers,

| [ k= n) (Ipe o1 D). D)) drde [ D)oz
0 0 0
In addition, ,

/ k. (to — ) (ulto), u(t))dt = / k(1) (uto), ulto — £)) dt,

0 0

since as a function of ¢, u is continuous in the weak topology of L2(£2) (see [4] Theorem 1.3 for example),

we have o .
| etto = O(atta), u@)at = [ Olluta)l + o1t - 3ol
0 0
Similarly,

| ko0, unat - 5wl
0

Finally, we consider the nonlinear term in (10). We have
/ / kot — 7) (u(t) - Vu(t), u(r)) drdt — /0 " (a(®)Vu(t), u(t) dt
= [ o) wuio, (e wie) - we ()

By Lemma 4, this is bounded by

9 g-1
C(to)l[allp,qlVuallrrllke * u —ull3 o |k ¥ u —ull5q

This goes to zero because of usual properties of mollifiers. Thus (11) goes to zero. Now, we prove

Oto (u(t) - Vu(t),u(t)) = 0. From Lemma 4, we have that the function F' defined by

ﬂuszWwwvwmnmﬁ

is continuous on L2(0, to; Hy" (£2)) x L9(0,te; LP(£2)). On the other hand, integration by parts shows that
F(1,v) = 0 if 9 is smooth. Let {u,,} be a sequence from C§°([0,T); C§%, (2)) converging to u in the
appropriate spaces. Then we find

0 = F(um, uy) = F(u,u).

All of this shows that to rto
/ / (t —7) (u(t) - Vu(t),u(r))drdt — 0

as € = 0. Now, let ¢ — 0 in (9), we have
Gl + [ 1D O dr = ol

which is (3) for ¢t = . Since t¢ is arbitrary, we have finished the proof of Theorem 1.
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