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As a simple and robust minimization algorithm with high efficiency, the fast inertial relaxation engine (FIRE)
method has been widely applied in various fields. Different from the viewpoint of previous reports, the present
study found out that integration formulations in the FIRE method have huge influence on its convergence
performance and capability of critical analysis. Specifically, the Forward Euler (FE) integration is found ill-suited
for all the trial applications due to the outdated velocity update; the Velocity Verlet (VV) integration shows
robust convergence and superior efficiency, but loses the ability of critical analysis; the Semi-implicit Euler (SE)
integration endows the FIRE method with the critical analysis ability as well as good efficiency, but its con-
vergence is conditional. It is also found that the FIRE method using a modified energy monitor shows more
robust convergence than using the original power monitor. Further investigation indicates that the SE in-
tegration combined with the energy monitor should be the first choice for the FIRE method in general molecular
statics simulations. These findings extend the capability of FIRE and provide practical suggestions for selecting

minimization algorithms in molecular simulations.

1. Introduction

Energy minimization (EM) of atomistic systems is one of the most
common tasks in computational material sciences [1], solid-state physics
[2], chemistry and biology [3]. EM is also the core algorithm in many
simulation methods, such as molecular statics (MS) [4], coarse-grained
methods [5] and recently developed multi-scale methods [6]. Improving
the efficiency of EM, therefore, is of great importance to reduce the
computational cost in simulations. A variety of well-established mathe-
matical optimization methods, like the steepest decent (SD), conjugate
gradient (CG) and quasi-Newton method have been widely used [7,8].
When combined with multigrid method, EM shows the superior effi-
ciency in simulations of elastic deformation [9] and dislocation relaxa-
tion [10,11]. Some other EM methods are variants of molecular dy-
namics (MD) and have been applied in MS simulations, such as Quick-
Min (QM) [12] and Fast Inertial Relaxation Engine (FIRE) [13]. Among
the MD-like methods, it is reported that FIRE is significantly faster than
standard implementations of CG method and often competitive with the
more sophisticated quasi-Newton schemes typically in ab initio calcula-
tions. The robustness and versatility in critical point analysis also make
FIRE more intriguing than other EM methods.
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Due to its high efficiency, simplicity and low computational con-
sumption, FIRE has been implemented as an effective minimizer into
various simulation packages, such as LAMMPS [14], HOOMD-blue
[15,16], BigDFT [17] and EON [18], which play an important role in
the frontier research of material sciences. Rogan et al. adopted FIRE as
an efficient local minimizer to search for the global and local minimal
energy states of freestanding nanoclusters [19]. Fayon et al. utilized
FIRE to optimize geometry in HOOD-blue to study the formation me-
chanism of ultra-porous framework materials [20]. Hwang et al. used
FIRE to study bubble super-diffusion and soft glassy materials [21]. As
emphasized by Bitzek [13], integration formulation has little influence
on the FIRE method. However, our preliminary results indicate that
FIRE with the default integration formulation is much less efficient than
CG in LAMMPS package, which is inconsistent with the conclusion in
aforementioned work. Recently, a new structure relaxation algorithm
based on micro-canonical ensemble (NVERE) proposed by Yang et al. is
reported faster than FIRE in relaxing soft structures like graphene sheet
[22], which implies that FIRE is still worth further exploring in different
applications. Here in this work, we are focusing on the influence of
integration formulation on the performance of FIRE so as to extend its
capability and provide practical suggestions on general applications.
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Fig. 1. Computational flow chart of the FIRE method in energy minimization of atomic systems.

Table 1
Details of integration formulations used in the work.

Formulations

Forward Euler (FE)
Semi-implicit Euler (SE)
Velocity Verlet (VV)

Position update
Xn+1 = Xp + vy AL
Xn41 = Xn + vy At

Xnt+1 = Xn + vy AL + %anAtz

Velocity update Storage
Vptl = Vp + ap At 3N
Vn41 = Vn + Apy1 At 3N

4N

1
Vn4l = Vn + E(an+1 + ap) At

. FIRE method and integration algorithms

Fig. 1 shows the flow chart of FIRE when minimizing the energy of a
given system. Like QM, FIRE removes kinetic energy from the given
system conditionally to find a local minimal energy state. However, its
superiority over QM lies in two key aspects: velocity modification with
more inertia effect and adaptive time step by monitoring power state P
of the system. In an atomic system, let x be position vector, E(x) be total
potential energy, then F = —VE(x) is atomic force vector; v =X is
velocity vector. The power P is defined as P = F-v and used to monitor
whether the system goes toward the lower energy state or not. If P
becomes negative, the system will be frozen by setting v = 0 to avoid
further uphill movement; and time step will be reduced by half in the
next iteration. While if P is positive, the system will go further with
increasing time step by 10% so as to promote the convergence rate. The
contribution of force in velocity modification, a, will also be adjusted
automatically during iterations.

The MD integration in Fig. 1 can be performed with different for-
mulations. Three commonly used expressions are Forward Euler (FE),
Semi-implicit Euler (SE) and Velocity Verlet (VV) as listed in Table 1.
One of the most popular MD simulation packages, LAMMPS [14], takes
FE as the only integrator for FIRE in the latest version. The difference of
integration formulations rests on how to update atomistic positions and
velocities. FE and SE use forces of the last and current step respectively
to update velocities. VV uses velocities and forces of the last step to
update positions, and then uses averaged forces of the last and current
step to update velocities. Given a system with N atoms, both FE and SE
are first-order integrator, and 3N vectors are required to store position,
velocity and acceleration data of the current step. VV is a second-order
integrator and needs extra N vectors to store acceleration data of the
last step.

In order to explore the influence of integration formulations on the
performance of FIRE, three typical minimization systems are in-
vestigated: (i) optimization of the two-dimensional (2D) spiral potential
energy function, which is the trial problem in the original FIRE paper
[13], (ii) relaxation of a 2D crystal atomic system which is a typical
problem in molecular simulations and (iii), propagation of a 2D edge
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dislocation with atoms jumping over minor energy barriers. Results are
discussed in comparison with that of the conventional CG and the
limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) methods.

3. Results and discussions
3.1. Spiral-shaped potential energy function

With a corrugated and intricate landscape, the spiral-shaped po-
tential energy function (Eq. (1) offers a heuristic benchmark to compare
different minimization methods. The inset in Fig. 2(a) shows the
landscape of the function with the minimum point locating at the center
of the “disc”, and an initial guess near the edge is selected as the
starting point. Fig. 2(a) shows the evolution of the azimuthal angle 6 in
Eq. (1) versus the number of function calls of different methods. Ob-
viously, LBFGS is always ahead of CG. FIRE with different integration
formulations present huge difference. FIRE using SE takes only 296
function calls to reach the minimum point, which is even faster than
LBFGS of 200 function calls. FIRE using VV is slightly slower than using
SE, and surpasses LBFGS after 230 function calls. FIRE using FE moves
to 6 of only about /12 after 296 functions calls, which is much slower
than CG and LBFGS. For the rate of change, SE and VV increase non-
linearly, whereas CG and LBFGS increase linearly. Although FIRE using
SE and VV are slower at the beginning, they show better efficiency than
CG and LBFGS overall.

The above difference can also be observed from their trajectories.
Fig. 2(b) gives the whole trajectory of SE and the partial trajectories of
FE, CG and LBFGS within the dashed box. SE moves almost along the
bottom spiral curve smoothly and perfectly, and each function call
makes a positive contribution to the minimization process. VV is
roughly close to SE, and the final difference comes from the 296th
iteration. Different from the former two integrators, FE moves with
random distances and wild directions which often deviates from the
bottom spiral curve and goes uphill. Each function call in FE makes less
or even negative contribution to the minimization process, so that the
efficiency is much worse than that of SE and VV. As for classical
minimization methods, LBFGS goes farther than CG in each iteration,
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Fig. 2. (a) Evolution of the azimuthal angle 0 versus the number of function calls of CG and LBFGS, FIRE with different integration formulations. The inset shows the
landscape of objective function, initial guess and minimum point. (b) Trajectories of SE, FE, CG and LBFGS.
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Fig. 3. Time step evolution of the three integration formulations during the optimization of the spiral-shaped energy function.

and both of them deviate from the bottom spiral curve in a certain
extent.

E = [sin(76 + r/2)]? + r?/10 D

Fig. 3(a) presents the evolution of adaptive time step of the three
integration formulations. The initial time step is set as 0.03, and FIRE
could accelerate the evolution adaptively with maximum time step of
0.3. The accelerated efficiency 7 is defined as the ratio of iterations with
the maximum time step over total iterations. Simulation results show
that n = 1.69%, 86.15% and 81.76% for FE, SE and VV respectively.
The three curves coincide with each other at the beginning, and then SE
and VV increase quickly and reach the maximum time step 0.3 after 43
and 55 iterations. No reduction of time step is observed for SE and VV,
since their trajectories are very close to the spiral curve. However, FE
shows completely different behavior. At the iteration C in Fig. 3, FE
drives the system to the point A in Fig. 2(b) where the trial step is far
away from the bottom spiral curve. The monitor P becomes negative
and the system is frozen. Therefore, time step is reduced by half at the
next iteration, and the system stays at point A due to zero velocities.
Similarly, iteration at D in Fig. 3(a) corresponds to the other turning
point B in Fig. 2(b), and all drops in Fig. 3(a) are corresponding to
turning points in Fig. 2(b). Apparently, SE and VV can predict the on-
going path better than FE, and hence results in the better accelerated
efficiency.

Compared with CG an LBFGS, inertia effect plays an important role
in FIRE to improve its efficiency. From the view of algorithm design,
FIRE has more physical meaning than CG and LBFGS. CG and LBFGS
use modified gradient and non-exact line search to update positions,
while FIRE takes velocity as the whole (SE) or major (VV) contribution
when updating positions. In FIRE, inertia can be accumulated gradually

during the dynamics evolution if no freezing operation is triggered, like
the results of SE and VV in Fig. 3(b). When the accumulated inertia
effect prevails over non-exact line search, FIRE using SE and VV will
surpass CG and LBFGS in efficiency as shown in Fig. 2(a). In this ap-
plication, FE is a bad formulation to accumulate inertia as shown in
Fig. 3(b). Once the system is frozen, only local forces with tiny time step
can be used to update velocities and positions, so it is much slower than
CG and LBFGS. Without a sufficient accumulation of inertia, the effi-
ciency of FIRE is not competitive as it would be.

3.2. Relaxation of atomistic structures

Relaxation of initial atomistic configuration is a basic application in
molecular simulations. A 2D atomistic configuration as shown in Fig. 4
is used to investigate the performance of different minimization
methods. The configuration is modeled by 2D square-shaped single
crystal with free surfaces as shown in Fig. 4. The initial lattice constant
is assigned as 2.5A. All atoms are colored by individual force norm
Wl = Jf2 + fy2 + f7. Before minimization, only the outer layers of
atoms are under the non-equilibrium state due to surface effect. The
convergence criterion is |[f|| < 1 x 107'°eV/A. The L-J potential is
used to describe the atomic interaction: V(r) = 4e[(o/M'? — (0/9°],
where 0 = 2.3276 A and ¢ = 0.4912 V.

Fig. 5(a) shows the evolution of averaged force norm
fae = 25 IfiII/N versus number of energy evaluation of different mini-
mization methods. Again, FIRE with the three integration formulations
exhibits different performance. Specifically, f,,. of FE decreases slowly
with frequent fluctuation and small slopes, which has the worst per-
formance among the others. FIRE with SE and VV show superior per-
formance even better than LBFGS and CG. Convergence rate of SE is
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Fig. 4. Atomistic configuration before and after energy minimization (atoms are colored by force norm).
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Fig. 5. (a) The averaged force norm f,,. as a function of the number of force evaluations. (b) Evolution of time step during the minimization of FIRE using FE, SE and

VV integration formulations.

slightly better than that of VV. As mentioned above, the two key fea-
tures of FIRE method are the introduction of adaptive time step and
more inertia effect. The accelerated efficiency of FE, SE and VV is 1.6%,
74% and 77% respectively. FIRE using SE and VV are slower than CG
and LBFGS in the first 5 function calls, because inertia effect is not
strong enough at the beginning. Although the system is frozen for
several times thereafter in SE and VV, few function calls are needed to
re-accumulate sufficient inertia to exceed CG and LBFGS, while FE fails
to accumulate inertia continuously.

3.3. Dislocation propagation in atomistic system
Dislocation evolution and propagation are the fundamental issues in

deformation and failure analysis of crystalline materials. In atomistic
view, dislocation propagation involves atoms moving between adjacent

energy barriers. Here the propagation of a 2D edge dislocation is si-
mulated using different minimization methods to compare their per-
formance. As shown in Fig. 6, an initial dislocation is inserted into a 2D
single crystal slab by displacing atoms according to the elastic dis-
placement field around an edge dislocation core [23]. The top and
bottom layers of atoms are fixed to provide constraints. A simple shear
loading is applied to drive the edge dislocation as illustrated in Fig. 6.
The convergence criterion is fave < 10~ *€V/A. The atomic potential is
the same as that described in Section 3.2.

Minimization process in this case can be divided into two stages.
Firstly, the potential energy decreases gradually as the dislocation
moves to the right end and secondly, the system approaches to a steady
state with slight decreases due to local adjustment of atomic positions
after the dislocation disappears or stops. When the applied shear strain
is increased to 0.03, the dislocation moves to the right end and a slip

DN

26.14 nm

wu gy

Fig. 6. Atomistic model for simulations of edge dislocation propagation.
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step is formed, as shown in the inset of Fig. 7(a). As expected, LBFGS is
faster than CG like in the former two cases, and both of them can
converge to a low energy state of —6145eV. For the different in-
tegrators in FIRE method, FE is still the worst one, while SE and VV
finish the first stage with only 580 and 800 function calls respectively.
However, the iteration of SE is not terminated in the second stage, as
the system energy vibrates around a higher value of —6137 eV. The
convergence criterion of VV is met after 100 function calls when the
dislocation disappears, which is faster than LBFGS. According to the
evolution of time step in Fig. 7(b), accelerated efficiency » are calcu-
lated as 0.7%, 98.6% and 79.7% for FE, SE and VV respectively. Since
the potential landscape in dislocation evolution is more complicated
than that in 2D spiral function and structure relaxation, accelerated
efficiency of FE is smaller than that of the other two cases. SE is the
fastest in the first stage, but the uninterrupted acceleration gives no
chance to extract kinetic energy from the system, which leads to cea-
seless vibration of energy in the second stage. Therefore, VV is the only
integration formulation that makes FIRE better than LBFGS and CG in
this case.

FIRE has the direct ability to critical analysis [13], i.e., a class of
typical relaxation problems used to determine saddle points, transition
states or critical points, which is not possible with some conventional
EM algorithms like CG and LBFGS due to their strict adherence to
minimizing forces. The study of mechanical stability, like calculating
the Peierls stress of a dislocation or determining a transition state, is a
common task of critical analysis in computational material sciences. For
example, EM was used to calculate the pressure dependence of the
Peierls stress in Aluminum [24]. In order to explore the influence of
integrator on the ability, the shear strain is decreased to 0.025. As
shown in Fig. 7(c), FIRE-FE is still the worst one. FIRE-VV, CG and
LBFGS converge to the same energy of —6133.5eV successively, but
the dislocation is trapped into the system as shown in Fig. 7(d). Only
FIRE-SE can decrease the energy further to —6136.5eV after the dis-
location passes through an energy platform with minor barriers as
shown in Fig. 7(f). The dislocation moves to the right end and a slip step
is formed (Fig. 7(e)). SE can drive the system to go through a shallow
valley with very small forces that FIRE-VV, CG and LBFGS cannot.

600 800

Function calls
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Nevertheless, SE is still unable to converge. Therefore, the ability of
critical analysis of FIRE is dependent on integration formulations. In
this application, only SE endows FIRE with the ability of critical ana-
lysis, but its convergence cannot be guaranteed.

The results from different integration formulations in Fig. 7 can be
understood by analyzing the atomic trajectories in Fig. 8 when the
shear strain is 0.03. Propagation of a dislocation happens by the repeat
of the breaking and formation of atomic bonds near the dislocation
core. As shown in Fig. 8(a), the atom 1 moves along a convex parabola-
like curve from A to B, while the atom 2 moves along a concave
parabola-like curve in the opposite direction, which constitutes the
basic propagation unit of the dislocation. The shape of trajectories de-
pends on minimization methods. The trajectory of FE is close to a
symmetry parabola. Curves of SE and VV are thinner and taller, bend to
the glide direction and coincide with each other except at the right tail.
The atom 1 in SE dangles at the right tail of the trajectory which leads
to the endless fluctuation of the potential energy as shown in Fig. 7(a).
The trajectories of CG and LBFGS show similar features of SE and VV,
but deviate from each other at the top of the curves. Fig. 8(b) gives
enlarged trajectories of dashed box labeled in Fig. 8(a). The curve of FE
is rough due to frequent freezing operations, while SE and VV are much
smoother. Besides, the atom 1 in SE moves with larger distance than
that in VV, which gives SE the ability to jump minor energy barriers.
Compared with CG and LBFGS, the smoother curves of SE and VV in-
dicate that FIRE can predict lower energy path with proper integration
formulations. The transition path of dislocation evolution in Fig. 8
shows the connection between minimization algorithm and physical
meaning which may be helpful for designing new efficient minimiza-
tion methods.

3.4. Role of monitor

As discussed above, FE is ill-suited for all the three cases; SE shows
the best efficiency but cannot reach the minimal state in the case of
dislocation propagation; and VV requires higher memory usage. The
role of monitor is investigated here to make FIRE more favorable for
energy minimization. It is interesting that both FIRE and QM use power
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Fig. 8. (a) Trajectories of the atom 1 in the dislocation core obtained from different methods. (b) Enlarged trajectories in the dashed box of (a).
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Fig. 9. (a) Optimization of spiral-shaped energy function and (b) dislocation propagation using FIRE with different integrators and monitors.

P rather than energy change as monitor in minimization. For a con-
servative system, a positive power P indicates that energy is transfer-
ring from potential to kinetic, i.e., the potential energy decreases, so the
power monitor should be equivalent to energy monitor. However, the
velocity modification and discrete numerical integration in Fig. 1 break
energy conservation and lead to increase of potential energy for posi-
tive P, as shown in Fig. 7(a) and (c). Compared with power monitor, we
found that energy monitor is more direct and stricter in energy mini-
mization, thus it can be used to limit acceleration efficiency and assure
convergence of FIRE.

The energy monitor is defined as the energy change AE = Ejn—Eou
and replaces power monitor in Fig. 1. If AE < 0, the accelerated dy-
namics is used, otherwise the system is frozen by setting all velocities to
zero. Fig. 9(a) shows the minimization results of the 2D spiral potential
function using different methods. For FE, no obvious change is observed
between energy and power monitor. SE and VV with energy monitor
are slightly slower than that with power monitor, but still faster than
LBFGS and CG. Fig. 9(b) shows the evolution of potential energy during
the dislocation propagation at strain of 0.03 obtained from different
methods. Changing to energy monitor has little influence on the per-
formance of VV, but restrains the vibration of SE and assures its con-
vergence. Therefore, the energy monitor imposes stricter control than
power monitor, and makes SE behave like VV. Considering memory
usage, SE with energy monitor should be the better choice for FIRE in
general MS simulations. Nevertheless, SE with power monitor is the
only option for critical analysis.

4. Summary
FIRE method with three commonly used integrators (FE, SE and

VV), CG and LBFGS are applied to three typical energy minimization
problems to investigate the influence of integration formulations on the
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performance of FIRE. The results indicate that efficiency, convergence
and the ability of critic analysis of FIRE are strongly dependent on in-
tegration formulation which is different from the viewpoint of the FIRE
authors. Among these EM methods, FIRE-FE is ill-suited for all the trial
applications, and always leads to terrible efficiency and convergence
performance. Aggressive SE endows FIRE with good efficiency even
higher than CG and LBFGS. FIRE-SE also shows the capability of critical
analysis, but its convergence is conditional. Fortunately, a stricter en-
ergy monitor is found effective to make SE converge. FIRE-VV is a
moderate strategy and shows good efficiency and convergence in all
cases, but it is not suitable for critical analysis. Generally, based on the
results, SE combined with energy monitor shows superior convergence
and should be the first choice for MS simulations when using FIRE
method. However, for critical analysis, FIRE-SE along with power
monitor should be used.
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