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A B S T R A C T

Polycrystalline metal with well-designed grain structure exhibits different strength and ductility compared with
the conventional macro scale materials. In the present study, the mechanisms of strain hardening and in-
homogeneous deformation in polycrystals are analyzed by considering the interaction between dislocations and
grain boundaries. Firstly, a dislocation density based crystal plasticity model is developed and then used to
quantitatively study the grain size and orientation effects in polycrystals. With the decrease of grain size, the
accumulation and interaction of dislocations are promoted in the grain, resulting in back-stress hardening.
Simultaneously, two opposite effects of the inhomogeneity in grain orientation are obtained by evaluating the
local Schmidt factors in each grain and their standard deviation. The findings highlight the effect of grain
boundary on the strength and provide quantitative insight into the effect of grain orientation on ductility.

1. Introduction

In recent decades, the nanocrystalline (NC) materials, with average
grain size typically at the level of about or less than 100 nm, have at-
tracted widespread attention due to their superior mechanical strength
compared to the conventional coarse-grained (CG) metals. However, for
most NC metals, their ductility under tension is not satisfactory. The
poor ductility of these NC materials has become a seemingly in-
surmountable obstacle for widespread applications. Several published
literatures have revealed the reasons for the low ductility of these NC
materials [1,2], a widely accepted interpretation is that small grains
tend to induce stress concentration, where the nucleation and propa-
gation of micro-cracks would start. Partly because of these reasons, the
structural applications of bulk nanostructured materials shifted towards
ultrafine-grained metals, for which the grain sizes are above ∼100 nm
but below 1 μm. Some polycrystalline metals with well-designed na-
nostructures have been reported, which can achieve a balanced com-
bination of high strength and excellent ductility [3,4]. The basic
strategy to improve tensile ductility of metals without loss of strength is
elaborately building a specific distribution of crystalline grains with
different sizes by a thermo-mechanical treatment [5] or the gradient
microstructures [6]. It indicates that the grain characteristics of pro-
cessed materials have a strong influence on the mechanical properties.
Therefore, it is of significance to clarify the role of different grains for

material design.
To further investigate the deformation mechanism of polycrystalline

metals, especially the effect of grain size, crystal plasticity models [7,8]
have been developed and the effect of grain size on hardening is as-
sumed by the empirical Hall-Petch relationship [9,10]. That is, the yield
stress is proportional to the inverse square root of the mean grain size,
which is suitable for the polycrystals with micrometer-sized grains. By
taking into account the Hall-Petch relationship at the grain level, a fi-
nite element model [11] has been revisited for predicting the me-
chanical behaviors of ultrafine-grained Nickels. In the work of Lin et al.
[12], a finite element based model was developed with quantized
crystal plasticity to study distinctive features of NC metal. The quan-
tized slip events suggested that the magnitude of the largest strain burst
was inversely proportional to grain size. These prior efforts have pre-
dicted the effects of grain size on mechanical response, both flow rule
and hardening law are mostly phenomenological and based on the
conventional Hall-Petch relationship. However, these models are not
able to capture the evolution of internal microstructures, e.g. disloca-
tions.

Due to the limitations of phenomenological models, a number of
crystal plasticity models based on dislocation density have been de-
veloped [13,14] since the plastic flow of metals is mainly controlled by
dislocation motion. Arsenlis et al. [15] developed a dislocation density
based model by incorporating the combined evolution of statistically

https://doi.org/10.1016/j.commatsci.2018.12.010
Received 23 October 2018; Received in revised form 3 December 2018; Accepted 3 December 2018

⁎ Corresponding authors.
E-mail addresses: xiaomingliu@lnm.imech.ac.cn (X. Liu), liuzhanli@tsinghua.edu.cn (Z. Liu).

Computational Materials Science 159 (2019) 86–94

0927-0256/ © 2018 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2018.12.010
https://doi.org/10.1016/j.commatsci.2018.12.010
mailto:xiaomingliu@lnm.imech.ac.cn
mailto:liuzhanli@tsinghua.edu.cn
https://doi.org/10.1016/j.commatsci.2018.12.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2018.12.010&domain=pdf


stored and geometrically necessary densities (SSDs and GNDs), and
investigated the effect of grain boundaries on the stress-strain behavior
and the stress concentrations for the constrained polycrystalline thin
films. In addition to the conventional analysis based on SSDs and GNDs,
another effective strategy to establish the crystal plasticity model is to
gain insight into the simulation results from discrete dislocation dy-
namics (DDD). The discrete dislocation plasticity theories, focus on the
dynamics of individual dislocations, have obtained interesting results
about the behavior of dislocations [16–21]. In particular, the Bau-
schinger effect in the films with multiple grains across the thickness was
investigated by a two-dimensional DDD simulation [22]. The
strengthening mechanism in polycrystals with penetrable and im-
penetrable grain boundaries has been studied [23] and the simulation
results indicate that the Hall-Petch relation can be achieved for both
cases. The DDD simulation approach was also extended to account for
grain boundary sliding and the absorption, emission and transmission
of lattice dislocations at grain boundaries [24]. Nevertheless, it is still of
great challenge to develop a dislocation-based plasticity law from DDD
results due to the discrete distributions and dynamics of dislocations
[25]. In addition, most DDD simulations only consider the case of free
surface and dislocations can easily escape from the surface, whereas
dislocation can be trapped by the grain boundaries in polycrystalline
metals. By carrying out DDD simulations, Cui et al. [26] have in-
vestigated the confined plasticity in coated pillars at submicron scale.
The simulation results have clearly indicated that the dislocations were
trapped by the surface. The back stress is generated in this way that
causes the strain hardening in coated pillars. Since dislocations can pile
up on the grain boundaries, similar hardening mechanism also under-
lays the deformation in polycrystalline metals. The inspiration to de-
velop a dislocation-based plasticity model stems from the similarity of
the coating to grain boundaries.

In this study, a dislocation-based crystal plasticity (DCP) model is
developed from the simulation results of the previous three-dimen-
sional DDD [26] and described in detail in Section 2. The DCP model is
then verified in Section 3. A series of numerical simulations are carried
out in Section 4 to investigate the effects of grain boundary and grain
orientation on the compressive plasticity in polycrystalline nickel. The
relationship between mechanical behavior and corresponding disloca-
tion distributions are studied. Finally, some discussions and conclusions
are summarized.

2. Dislocation-based crystal plasticity model

In this section, the DCP model is formulated. Firstly, we emphasize
the inheritance from our previously DDD simulations [26] and sum-
marize the constitutive law of an individual grain. This hierarchical
multi-scale calculation provides a physical basis to investigate the dis-
location-based plasticity of materials. Then, the elastoplastic crystal
model is introduced in the finite element framework to study the plastic
behavior at the grain scale.

2.1. Constitutive law from discrete dislocation dynamics

By carrying out three-dimensional DDD simulations [26], we have
achieved an insight into the microscopic deformation mechanisms as
well as the dislocation evolutions in confined plasticity. Dislocations
have similar behaviors in the crystalline grain and the confined single
crystalline specimen. The internal dislocations produce plasticity, and
dislocations trapped by the grain boundaries or coated surface give rise
to back stress. It is also necessary to illuminate that only single arm
dislocation sources (SAS) are considered in the simulations since they
are the dominant dislocation mechanism at submicron scale [27,28].
The grain size that we focus on in this work is also in the range of
submicron scales where the SAS mechanism is dominant.

As plastic deformation in metal materials is caused by the motion of
dislocations, a continuum description of collective dislocations is

important in crystal plasticity. Starting from the equation of disloca-
tions motion in DDD simulations and similar to previous work [29,30],
the motion of collective dislocations of slip plane α can be derived as

= + +B bv ·( )b o
( ) ( ) ( ) ( ) (1)

where B is drag coefficient, v ( ) is the average dislocation velocity
vector along the slip direction s( ), = vv s( ) ( ) ( ). b is the magnitude of
Burgers vector, ( ) is the external driving force vector, b

( ) is the back
stress vector and o

( ) is the slip resistance vector including lattice fric-
tion and the interaction between dislocations. The three force vectors
above are defined as

= =s s m s( · · )( ) ( ) ( ) ( ) ( ) ( ) (2)

= sb back
( ) ( ) (3)

= ssgn( )o back open
( ) ( ) ( ) (4)

Here, s( ) and m( ) represent the slip direction and slip plane normal in
the slip system α, respectively. is the stress tensor. back is the back
stress due to dislocations trapped at the grain boundaries. open is the
stress to activate the internal dislocation source. ‘sgn’ is the sign func-
tion. In the study, all grain boundaries are assumed to be impenetrable
to dislocations [22,31], the back stress back and the activation stress

open are delivered from the DDD simulations of the confined plasticity
[26] as follows

= + +µb k µ
b/open m

s
0 0 (5)

= bµdback t0 (6)

where 0 is lattice friction stress, µ is shear modulus, m and t are the
total mobile and trapped dislocation densities of all slip systems in a
grain, respectively, 0, and 0 are all dimensionless constants, is ef-
fective SAS length and related to the grain size, and d is the equivalent
diameter of grain. It is worth pointing out a concept of the sign of
trapped dislocation density t

( ) is introduced to characterize the di-
rections of force vectors b

( ) and o
( ). t

( ) is positive when it is accu-
mulated in the same direction as s( ), otherwise, it is negative. It also
should be noted that Eq. (1) is only valid when

+ >| | | |b o
( ) ( ) ( ) (7)

Otherwise, =v 0( ) . When the average dislocation velocity v( ) is
obtained, the plastic shear strain rate on the slip plane can be evaluated
via Orowan’s equation

= bvp m
( ) ( ) ( )

(8)

For small deformation problems, the plastic velocity gradient tensor
LP can be written as

=L s mp p
( ) ( ) ( )

(9)

Once the operation of dislocations occurs, the evolutions of both
mobile and trapped dislocation densities are

=

=

+

+

·

[ ]·
t bd p

m b bd p

( ) 2(1 cos ) ( )

( ) 1
2

2(1 cos ) ( )
(10)

where is the angle between the normal direction of slip plane α and
the axial direction of the sample.

To further illustrate the three force vectors in Eq. (1), a schematic
diagram for the direction of the force vectors under cyclic loading, with
the assumption that the mobile dislocation density is constant, is shown
in Fig. 1. The symbol ‘+’ means the force vector is in the same direction
as the slip direction s( ) while the ‘−’ indicates the opposite.
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2.2. Finite element analysis at the grain scale

The DCP model is performed in the framework of finite element
analysis at the grain scale. To simulate the mechanical behavior of
crystalline grain more accurately, each grain contains numerous ele-
ments in the finite element analysis as shown in Fig. 2. Thus, two
characteristic lengths are included in the finite element analysis at the
grain scale. One is the grain size d and the other is the element size l.
The Burgers vector b and slip plane n are defined in the grain, i.e. all
elements in one grain share the same grain orientation. In this study,
the slip direction is taken as the same direction as the Burgers vector.
The mobile and trapped dislocation densities are calculated in each
element to describe their inhomogeneous distribution in the crystalline
grain, the initial dislocation densities of all elements in the same grain
are set to the same and the subsequent evolution of dislocation densities
is dependent on the grain size as Eq. (10).

The calculation mainly contains the following procedures: (i) The
stress state, dislocation densities and grain orientation at current step
are obtained to confirm whether the dislocation activation occurs. (ii) If
the criteria Eq. (7) is met, the motion of collective dislocations is cal-
culated to evaluate the plastic velocity gradient tensor. The mobile and
trapped dislocation densities are then evolved according to Eq. (10).
Next, the plastic deformation rate p and the plastic spin rate p can be
obtained by:

= +

=

L L

L L

·( )

·( )

p p p

p p

1
2

T

1
2

pT
(11)

(iii) Afterwards, we get the objective rate of stress :

= C : ( )e p (12)

where Ce is tensor of elastic modulus, is deformation rate tensor. The

equilibrium stress field associated with the homogenized plastic strain
is calculated by finite element analysis in a unified continuum me-
chanics framework, which has the following general forms [32–34]:

+ =Mu F F¨ int ext (13)

dM = N NT

= dF Bint T

= +d dF B BText T 0 T 0

(14)

=
= =

u u
T T T, 0 ( )

0
u

0
f u f (15)

where M is mass matrix, N is the shape function vector and
=B Ngrad[ ]. Fint is the internal force induced by the total stress σ. Fext

is the external force resulting from two parts, one is the applied traction
T0 and the other is the initial stress field 0, which is introduced to
represent the preexisting defects in crystal.

The characteristic of finite element analysis in the study is that each
element belongs to a certain grain and own its self-governed con-
stitutive law which is dependent on the grain size and orientation. The
advantages of this treatment are that the force balance and displace-
ment continuity between adjacent crystalline grains can be achieved
spontaneously under the conventional framework of finite element
analysis. More importantly, the DCP model has a brief form and a small
number of parameters can be obtained by fitting the experimental data
or from the numerical simulations of smaller scale, such as DDD or
molecular dynamics.

3. Convergence and parameter determination

In the present work, the DCP model is carried out to investigate the
stress-strain relation of nickel and compare with the DDD results. The
material properties of nickel are as follows: shear modulus μ is 76 GPa,
Poisson’s ratio ν is 0.31, the magnitude of Burgers vector b is 0.26 nm
and the friction stress 0 is taken as 11MPa for nickel [35]. Two issues
are concerned in this section. Firstly, as illustrated in Fig. 2, numerous
elements are contained in one crystalline grain, the issue emerges that
how many elements in one grain can obtain an accurate mechanical
response. Secondly, the parameter selection is discussed and clarified.
In the DCP model, the dimensionless constants 0, , 0 as well as the
drag coefficient B require carefully determined, in which, 0 is usually
taken as 0.5 and is set at 1.0 to characterize the interaction between
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_
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_
_

+
+
+

_

Fig. 1. Direction instruction of force vectors during a cyclic load.

Grain size: d

Element size: l

,

Fig. 2. Schematic for finite element analysis at the grain scale.
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dislocations and the line tension stress to activate the SASs [35,36],
respectively. Since the rate effect is not considered in this work, similar
to the literature [30], a dimensionless parameter =B B /N 0 is pro-
posed to discuss the influence of viscosity.

3.1. Convergence test of elements

A uniaxial compression of nickel cube with side length 0.8 μm is
studied with element number N=1, 8, 27, 64 and 125, as shown in
Fig. 3(a). The initial dislocation density of crystalline grain is 100 μm−2

and there is no trapped dislocation at the beginning. The normal vector
of slip plane n and the Burgers vector b are defined as one of {1 1 1}
and 〈1 1 0〉 separately under the condition that the two vectors are or-
thogonal, which are the typical FCC slip systems. In the simulation, 0 is
temporarily set to 0.2 and BN is ×9 10 - 7.

A uniaxial compression is performed under displacement controlled
mode along [0 0 1] crystal orientation. The stress-strain responses for a
grain with different number of elements are shown in Fig. 3(b). It can
be seen that one element (i.e. N=1) cannot accurately describe the
deformation behavior of the grain. While for the other cases, after the
initial elastic deformation, the stress reaches the yield point. Then the
hardening process happens subsequently, it indicates that the trapped
dislocation density is constantly accumulating as loading continues. In
the following simulations, at least 27 elements are contained in a grain.

3.2. Parameter determination

As mentioned previously, a few parameters in the DCP model need
to be determined. Except 0 and in Eq. (5), the dimensionless viscosity
parameter BN and back stress related parameter 0 are discussed in this
section. In particular, Eq. (1) describes the motion of dislocations in a
continuum manner via a linear viscosity and preserves some nature of
dislocation dynamics. To model the rate-independent mechanical be-
havior in crystals, an appropriate value of drag coefficient B should be
used. In the DDD simulation [26], the diameters of nickel micropillars
are varied from 0.2 to 0.8 μm and the ratio of height to diameter is fixed
to 2. As a comparison, pillars with diameter of 0.4 μm and 0.8 μm are
also simulated by the DCP model to clarify the concerned parameters.

Firstly, different values of BN are selected to discuss the rate-in-
dependent mechanical behavior and 0 is set to 0.2, a uniaxial com-
pressive load is performed on the top of 0.4 μm diameter pillar along
[0 0 1] crystal orientation. The effect of normalized drag coefficient BN
on the stress-strain relation is shown in Fig. 4. It can be seen that there
is nearly no difference between the curves when the normalized drag

coefficient is ∼10−6 or smaller. Therefore, BN is set to ×2 10 - 6 in the
following simulation.

The dimensionless constant 0 determines the back stress, which
affects the hardening process. The value of 0 can be obtained by fitting
the DDD results. The simulation result at different values of 0 is shown
in Fig. 5(a), and 0 is determined to be as 0.08 since the result obtained
by the DCP model at this value matches well with the DDD model. To
further verify the validity of this value, nickel pillar with diameter of
0.8 μm is also simulated as shown in Fig. 5(b). Due to the nature of
discrete dislocations in DDD model, the stress-strain curves are much
smoother in the DCP model. Despite this, the two sets of curves are
generally in good agreement and the value of 0 is set to 0.08 in the
following simulations.

As indicated above, all the parameters in the DCP model have been
determined for nickel and the DCP model has been clarified to simulate
the mechanical behavior of crystalline grains effectively.

4. Simulation setup and results

In this section, the plastic behavior of polycrystalline nickel is in-
vestigated by using the DCP model. The nickel sample contains a well-
designed distribution of grains. To minimize the effect of sample size
itself, the image force caused by free surface is not considered in the
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simulation. The cross section of all samples is square with side length
4.8 μm, with the ratio of height to side length fixed to 2. The effects of
grain boundary and orientation are studied in this section. The grain
boundary is simulated by setting different grain sizes ranging from 0.4
to 1.2 μm in the samples. For each crystalline grain, the initial dis-
location density is randomly defined in the range of 40–60 μm−2 and no
trapped dislocations are introduced at the beginning. To investigate the
effect of grain orientation, the normal vector of slip plane n and Burgers
vector b of each grain in the simulation are defined as the following two
ways: (i) n and b are one of {1 1 1} and 〈1 1 0〉 separately under the
condition that the two vectors are orthogonal, (ii) n and b are randomly
defined in the orthogonal case to model the disordered grain orienta-
tion. The former way achieves an ordered grain orientation similar to
the twelve FCC slip systems while the latter one obtains a disorganized
configuration.

4.1. Effect of grain boundary

The effect of grain boundaries is investigated by designing different
grain sizes in nickel. In the calculation, the grains are set to be cube and
their side lengths are 0.4, 0.6, 0.8, 1.2 μm, respectively. Firstly, n and b
are defined as the former way above to achieve the ordered grain or-
ientation. The initial dislocation densities for all grains are in the range
of 40–60 μm−2 as mentioned previously. As shown in Fig. 6(a), the
engineering stress-strain response of nickel samples with different grain
sizes as well as the schematic diagram for the sample with grain size of

1.2 μm is illustrated. The well-known size effect can be observed, i.e.
the sample with larger grain size exhibits a lower yield stress. The yield
stresses at strain offsets of 0.0% and 0.2% are also marked in Fig. 6(a).
Soon after the initial yielding, the strain hardening process starts.
Particularly, for sample with grain size of 0.8 μm, when the strain
reaches about 0.2%, the sample starts to yield, i.e., deviating from the
linear elastic stress-strain response, at about 401MPa, which is con-
sistent with the experimental data [37].

To further illustrate the effect of grain boundaries, the yield stresses
initially deviated from elasticity (0.0% offset) and when = 0.2%p
(0.2% offset) are extracted, as shown in Fig. 6(b), respectively. The
boundary space is considered to be the same as the grain size here. By
fitting these two sets of yield stresses, we can obtain the relationships
that = × d 3750.0

0.38 and = × d6010.2
0.66, where is in the unit of

MPa and d is μm. The initial yield strength at 0.0% offset is only related
to the grain size, since no dislocations are trapped at this time and there
is no back stress. While the increase in yield stress at the case of 0.2%
offset is attributed to the pile-ups of dislocations at the grain boundary.
It can be seen that the grain boundary greatly strengthens the back
stress hardening, the size-dependent exponent increases from 0.38 to
0.66, which is consistent with the experimental data quantitatively
[38]. Interestingly, despite the strain hardening phenomenon in spe-
cimen with smaller grains is more pronounced under the same plastic
deformation, the stress levels in different samples exhibit a unified di-
mensional dependence. It motivates us to explore the inherent de-
formation mechanism. The involved length scales in this issue is the
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obstacle spacing in terms of forest dislocations and the grain size. With
the decrease in the boundary space (i.e. the grain size), the mobile
dislocations tend to be trapped by the grain boundaries, which leads to
more pronounced back stress. In this case, the uniform size dependence
law would be still expected when the external load continues. More-
over, since the situation in which the dislocations penetrate the grain
boundary and the mutual annihilation of dislocations at grain bound-
aries are also possible and not considered in the model, the numerical
results maximize the effect of trapped dislocation-induced back stress,
the size-dependent exponents obtained by most of the experimental
data would fall in the range between 0.38 and 0.66 [39,40], as the gray
area shown in Fig. 6(b).

To further investigate the back stress, as shown in Fig. 7(a), the
evolution of overall trapped dislocation density is calculated by the
volume weight average of dislocation density within each grain in a
sample. It can be seen that the trapped dislocation density increases
more rapidly in polycrystals with small grains at the initial stage. It is
consistent with the cognition that the internal dislocations are more
likely to be trapped by the grain boundaries in the case of small
boundary space. Subsequently, as the dislocations gradually accumu-
late on the grain boundaries, the back stress also increases. It makes the
mobile dislocations more difficult to be activated, so that the increase in
trapped dislocation density becomes slow. In addition, the overall
trapped dislocation density and the standard deviation of dislocation
densities in all grains of a sample are evaluated, as shown in Fig. 7(b).
Besides, the probability distribution of trapped dislocation densities is
also presented in Fig. 7(b). It can be seen that the overall trapped dis-
location density is higher in sample with small grains, which can also be
clarified by its probability distribution. As the grain size increases, the
trend of decreasing the dislocation density gradually slows down. This
may also be the reason why the strengthening effect of back stress is
weakened when the grain size becomes larger. Furthermore, the

distribution of trapped dislocations in samples with different grain sizes
are also presented in Fig. 7(c). When the plastic strain is 0.2%, the
dislocation distribution in sample with small grains (d= 0.4 μm) be-
comes non-uniform and the local trapped dislocation density can be as
high as 99.4 μm−2. This heterogeneous distribution of dislocations
tends to cause the stress concentrations, leading to the nucleation of
micro-cracks or other defects. This result revisits the traditional con-
tradiction between high strength and ductility. Due to a large number of
internal grain boundaries, the deformation incompatibility arises and
this leads to poor ductility.

4.2. Effect of grain orientation

To clarify the effect of grain orientation, polycrystalline nickel with
a grain size of 1.2 μm are simulated in this section. For each grain in the
polycrystals, the normal vector of slip plane n and Burgers vector b are
defined by the two ways mentioned above, corresponding to the case of
ordered and disordered grain orientations, respectively. Since the mo-
bile dislocations on the slip system with largest Schmidt factor are most
easily activated and dominate the plastic deformation, the Schmidt
factor for this slip system is used to characterize the local grain or-
ientation. The Schmidt factor Mi of each grain i (appointed as the local
Schmidt factor) in the polycrystals is calculated by:

= n L
n L

b L
b L

M ·
| |·| |

· ·
| |·| |i (16)

where L is the unit vector of load direction. After obtaining the Schmidt
factor of each grain in the polycrystals, the overall Schmidt factor M̄ is
evaluated by averaging all the Mi in a sample, as

= =
N

M̄
Mi

N
i

g

1
g

(17)
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where Ng is the number of grains in the sample. The standard deviation
of these Mi is also evaluated and investigated.

Firstly, the engineering stress-strain curves for samples with dif-
ferent grain orientations which are evaluated with different M̄ values
are presented in Fig. 8(a). After the initial elastic deformation, yielding
and hardening processes are also observed during the subsequent
loading process. However, it can be seen from Fig. 8(a) that the sample
with smaller overall Schmidt factor shows a more pronounced hard-
ening phenomenon with a cost of decreasing ductility. That is, the
higher strength means less plastic deformation and lower ductility. For
simplicity, the ductility is evaluated by the stress level under the same
deformation. Based on this idea, the engineering stress at strain 1% is
shown in Fig. 8(b) to investigate the effect of grain orientation. Inter-
estingly, the engineering stress decreases approximately linearly with
the increase of overall Schmidt factor. It indicates that the grain or-
ientation has a significant effect on the ductility of the polycrystals. The
mobile dislocations in the grains with a larger Schmidt factor are more
easily activated, resulting in more pronounced plasticity and exhibiting
lower stress level. Moreover, since each grain in the polycrystalline
sample has different local Schmidt factor, the standard deviation of Mi

is further investigated to provide more insight into the effect of grain
orientation. Through elaborate design of the grains in each sample, a
series of polycrystalline nickel with the same overall Schmidt factor but
different standard deviations are fabricated. Similarly, the engineering
stresses at strain 1% for these polycrystalline nickel are shown in
Fig. 8(c). For samples with different overall Schmidt factors, the stress
distribution presents two opposite rules with the variation of standard
deviation. For samples with smaller overall Schmidt factor, see

=M̄ 0.1155 and =M̄ 0.1732 in Fig. 8(c), the stress decreases with the

increase of standard deviation. It suggests that for polycrystals con-
taining grains of different orientations, dislocations in grains with large
local Schmidt factor are preferentially activated and dominate the
plastic deformation. In more detail, for samples with =M̄ 0.1732, when
the standard deviation of local Schmidt factors becomes larger, some
grains in the polycrystals have a larger Schmidt factor, thus the local
resolved shear stress is larger in these grains which makes the dis-
locations easier to be activated and produce more plasticity. However,
in Fig. 8(c), samples with larger overall Schmidt factor ( =M̄ 0.2887)
show the opposite characteristics. In the case, the number of grains with
smaller local Schmidt factors increases as the standard deviation in-
creases, as a result, internal dislocations are more difficult to be acti-
vated and the sample exhibits higher stress levels.

For the nano or micrograined metals, it is easy to achieve a re-
markable strength but tend to be brittle [6], so the efforts to improve
the material mechanical performance are usually concentrated on a
better ductility. Accordingly, an issue arises that why the polycrystals
with disordered grain orientation perform weaker ductility. To inter-
pret the issue, the distributions of Mises stress and plastic strain in the
samples are presented at the strain of 1%, as shown in Fig. 8(d). It can
be seen clearly that the distributions of stress and plastic strain are
much more heterogeneous than those in sample with ordered grain
orientation. The probability of deformation incompatibility between
adjacent crystalline grains increases dramatically when the grain or-
ientation is disorganized. The localized high stress makes the poly-
crystalline metals tend to form micro-cracks from grain boundaries.
Instead, the continuity of slip systems in the samples with ordered grain
orientation can avoid the stress concentration. Then the moderate de-
formation can continue so that the cracking process is suppressed. As a
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result, a better ductility can be achieved in the crystalline metals with
ordered grain orientation. By further analyzing the dislocation density
of the two models in Fig. 8(d), it is interesting that the overall dis-
location density of sample with disordered grain orientation at the
strain of 1% is 54.1 μm−2, which is less than 78.5 μm−2 in the sample of
ordered grain orientation. It has been reported that the back stress
hardening is caused by the pile-ups of dislocations [41]. In the dis-
ordered-orientation sample, it is more difficult to generate new dis-
locations due to the significant back stress. A few crystalline grains with
high local dislocation density can lead to a weaker ductility. The results
of DCP simulation indicate that it is the heterogeneity of dislocation
distribution but not the total dislocation density which has more effects
on the plastic behavior of polycrystalline materials.

5. Discussion

Polycrystalline metals with different grain sizes are expected to
deform heterogeneously and only a part of crystalline grains undergo
plastic deformation at the initial yielding [8]. It has also been reported
that dislocations may no longer accumulate inside grains so that grain
interiors are often dislocation free when the grain size is much smaller
than 100 nm [4]. For NC metals with grain sizes range from ∼100 nm
down to ∼10 nm, a transition from dislocation glide dominated de-
formation to grain boundary mediated deformation is suggested by
molecular simulations and experiments [42]. Consequently, the DCP
model developed in this work is effective for polycrystals with grains at
submicron scale by considering the dislocation glide deformation me-
chanism. It is worth mentioning that for polycrystalline materials in
practical applications, the number of grains on the free surface is much
less than that inside the sample such that the surface grains have very
limited influence on the overall mechanical response of materials. In
the simulation, the traction from free surface is not considered, so the
simulation results are more suitable for bulk materials rather than fi-
nite-sized small samples.

The simulation results and analysis above highlight the effects of
both grain size and grain orientation on the mechanical behavior of
polycrystalline metals. The initial elastic rise in the stress-strain curves
is due to that the driven force is not high enough to activate the dis-
location sources and there is no plastic deformation at this stage. Then
the yielding starts when the mobile dislocations are activated. The grain
boundaries trap the dislocation mobility inside the grains, and thus
introduce a pronounced back stress. The back stress promotes the ma-
terial hardening and in turn decreases the ductility, which is the
paradox of material strength and ductility.

The investigation of grain orientation provides new idea for the
design of grain distribution in polycrystalline metals: The effect of grain
orientation distribution on ductility shows opposite trends in different
level of average Schmidt factor. The grains of large local Schmidt factor
are termed as soft grains since the internal mobile dislocations can be
more easily activated. Correspondingly, the grains of small local
Schmidt factor are defined as hard grains. In general, samples with
larger overall Schmidt factor exhibit a better ductility, i.e. a lower stress
level at the same deformation, see Fig. 8(b). In addition, as shown in
Fig. 8(c), polycrystals with =M̄ 0.2309 can achieve an excellent balance
of soft and hard grains. For samples with the overall Schmidt factor
below this value, see =M̄ 0.1155 and =M̄ 0.1732 in Fig. 8(c), hard
grains dominate the deformation, so as the standard deviation of Mi

increases, the number of soft grains increases accordingly. As a result,
the stress level will decrease. While for samples with the overall
Schmidt factor above 0.2309, the soft grains dominate. With the change
of the standard deviation of Mi, the stress level shows the opposite
trend. The material design that combining the hard and soft phases is of
significance to improve the mechanical properties of materials. This
strategy has also been reported in many material designs to achieve an
excellent strength-ductility synergy, e.g., a heterogeneous lamella
structure which is characterized with soft micro-grained lamellae

embedded in hard ultrafine-grained lamella matrix has been fabricated
and exhibits unusual high strength and ductility [41], adding a soft
elastic substrate under the metal film can greatly expand its ductility
[43,44], and the gradient structure in heterostructured materials with
higher volume fraction of gradient domains exhibits higher synergetic
strengthening [45].

6. Conclusion

In the present work, we studied the effect of grain boundary and
grain orientation on the plasticity and ductility of polycrystalline me-
tals, by using a dislocation-based crystal plasticity (DCP) model. The
constitutive law of each individual crystalline grain is proposed based
on the systematical DDD simulations of confined plasticity [26]. By
taking the constitutive law into the finite element analysis at the grain
level, the force balance and displacement continuity between adjacent
crystalline grains can be achieved under the framework of continuum
mechanics. The DCP model is verified and compared with the results of
DDD simulation. It provides an effective way to take account of the SAS
mechanism which is an important factor at submicron scale. Thereafter,
a series of uniaxial compressive tests are performed to investigate the
effects of grain boundary and grain orientation. The simulation results
reveal that the increasing grain boundary density can increase the back
stress and decrease ductility. The loss of ductility is due to the in-
homogeneity of dislocation distribution and strain localization. In ad-
dition, the grain orientation effect is investigated by changing the
Schmidt factor of grains. Polycrystals with larger overall Schmidt factor
generally exhibit lower yield strength. The effect of grain orientation
distribution on ductility shows opposite trends when the average
Schmidt factor changes below or above ∼0.2309.
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