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ABSTRACT The effects of material plasticity and local slip on the sliding inception of asperity
are studied in the present work. Firstly, a semi-analytical solution is derived under the full-stick
condition to analyze the effect of material plasticity on sliding friction. Then, a friction model with
contact stiffness criterion is proposed to study the cases from partial-slip condition to full-stick
condition. Finite element simulations with the provided model are used to present the friction
map. The friction coefficient of full-stick interface converges at a stable value, approximately
0.3. Plasticity saturation appears as the normalized contact interference ω∗ is larger than 3. A
transition mechanism from slip-dominated to yield-dominated takes place in the sliding process.
The simulation results are compared with the semi-analytical solution.
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1. Introduction
Contact and friction are closely related to engineering industry, especially in the technologies asso-

ciated with rolling bearing, wheel–rail control, head–disk interaction, etc. Understanding the friction
law of contacts is critical in the design of engineering systems.

Sliding across the interface is an integration of various factors, including material properties, inter-
facial roughness, local slip, chemical reaction. The amount of force required for sliding has been a hot
topic in the past decades. The classical study of the sliding of a single contact stemmed from Mindlin in
1940s [1]. According to the Mindlin model, the contact patch between two spheres consists of a central
stick region surrounded by an annular slip zone. The central stick region gradually diminishes and
finally disappears as the tangential load increases, since the material in the central stick region cannot
sustain infinite traction. Different from the analytical solution of Mindlin, Hamilton [2] derived an
explicit expression for the stress field beneath a sliding contact, which has a non-axisymmetric shape.
Further, Chang et al. [3] (CEB friction model) assumed that sliding starts at the instant of yielding,
and used the von Mises yield criterion with Hamilton stress field [2] to determine the maximum tan-
gential load of a single asperity contact. Since the first yield point in a spherical contact is surrounded
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by large volume of elastic material, their results underestimated the real maximum tangential loading
that a single junction can support.

Taking material plasticity into account, Kogut and Etsion [4] combined the finite element analysis
with an analytical expression to provide a semi-analytical solution for the sliding inception of an
elastic–plastic spherical contact. In another study, Brizmer et al. [5] considered the local slip effect and
they studied the influences of full stick and perfect slip on elasticity terminus for the first time and
then extended the research to the elastic–plastic spherical contact [6]. They concluded that the local
slip condition (either full stick or perfect slip) became more dominant on the evolution of the plastic
zone with increasing interference. In addition, other models have made attempts to discuss whether
the full-stick condition [7] or perfect slip condition [8, 9] should be applied to the realistic interface.

The finite element method (FEM) was employed to study the sliding inception between a deformable
sphere (cylinder) and a rigid flat. The sliding friction under highly adhesive conditions was studied
by Brizmer et al. [10], and the plasticity effect on friction parameters such as the junction tangential
stiffness, static friction force and static friction coefficient was extensively investigated. The full-stick
condition was used for the assumption of strong adhesion. In a similar study [11], the adhesive friction
of an elastic–plastic cylinder in contact with a rigid flat was investigated, the results of which built
up the connection between the static friction and the ductility of the junction. Later on, the full-stick
model has been relaxed to the partial-slip condition by Shi and Wu [12–14] for a better characterization
of the friction process. Their proposed model revealed a friction transition between the KE model [4]
and the BKE model [10] (full-stick model). However, they did not analyze the competition mechanism
between the material plasticity and the local slip effects on sliding initiation.

Most of the work mentioned above either studied the plasticity effect in the full-stick model or the
partial slip in the frame work of Mindlin. Few studies paid attention to the transition mechanism from
plastic yielding to full slip during sliding inception, and an accurate prediction is still missing. The
main goal of this paper is to understand the competition mechanism between the two factors and to
provide a quantitative friction map.

In the present work, firstly, a semi-analytical solution for the sliding friction between an elastic-
perfectly plastic cylinder and a rigid flat is provided. Then, a finite element model for sliding inception
is developed by utilizing the contact stiffness criterion, plasticity effect, as well as the local slip effect
on static friction. Plasticity versus slip evolution is compared to investigate the sliding transition from
full slip to full plastic yielding.

2. A Semi-Analytical Solution of Sliding Inception Under Full-Stick Condition
2.1. Analytical Solution of Friction Coefficient for Elastic Preload

The friction between a cylinder and a rigid flat is a classical problem in contact mechanics. As an
infinitely long cylinder is in contact with the rigid flat, the stress/strain field is assumed to be a 2D
plane strain problem. In the present work, a study of the contact between an elastic-perfectly plastic
cylinder (of radius R) and a rigid flat is shown in Fig. 1. The rigid flat is under the combined vertical
load P and horizontal load Q. The vertical load P is acted in the z-direction, and the horizontal force
Q is applied in the x-direction in the coordinate system in Fig. 1. The interference ω and the contact
radius a correspond to the vertical load P .

The slip initiates when all surface contact points reach the maximum allowed local shear stress
(local yield stress). The normal stress field at the contact surface is determined according to classical
contact mechanics (as in Appendix A), so the maximum allowed local shear stress τ∗

xz/Y (Y : yielding
stress of the material) can be determined according to the von Mises criterion [15], similar to the
previous study [4]. The integration of τ∗

xz over the contact patch gives the maximum tangential force
Qmax, whose value can be used to calculate the friction coefficient.

The pressure distribution by normal load P has the form: p (x) = p0(1 − x2/a2)1/2, where p0 is
the maximum contact pressure and a is the contact radius. The equivalent von Mises stress [16] which
correlates with the yield stress has the form:

σeq =

{
1
2

[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6

(
τ2
xy + τ2

zy + τ2
zx

) ]} 1
2

= Y (1)
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Fig. 1. Contact between an elastic-perfectly plastic cylinder and a rigid flat

Fig. 2. Normalized maximum shear stress τ∗
xz/Y versus normalized radial coordinate r/a in the contact area

Fig. 3. System friction coefficient, μsys, as a function of the interference, ω/ωC
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As the stress field on the contact surface is determined (see Appendix A), substituting τxy = τzy = 0
into Eq. (1) gives the dimensionless maximum allowed local shear stress τ∗

xz/Y :

τ∗
xz

Y
=

{
1
3

[
1 −

(
a

ac

)2

C2(1 − 2v)2
(
1 − λ2

)]} 1
2

(2)

where λ = x/a, ac is the critical contact radius, and C is defined as p0/σeq.
The vertical force P is calculated by integrating p (x) over the contact patch, while the maximum

horizontal force Qmax is calculated by integrating τ∗
xz over the entire contact area. They have the form:

P = 2

a∫
0

p (x) dx, Qmax =

1∫
0

2aτ∗
xzd

(x

a

)
(3)

In the present work, Pc and ωC are, respectively, defined as critical vertical load and critical interference,
marking the transition from elastic regime to elastic–plastic regime. The formulas of Pc, ac and ωC

are shown in Appendix B. The variables P/Pc and a/ac as functions of ω/ωC are obtained using the
finite element method (Appendix B). In our simulation, Poisson’s ratio is taken as v = 0.3, so the
corresponding parameter C = 1.794. Hence, the normalized horizontal force Qmax and static friction
coefficient in the elastic regime have the form:

Qmax

Pc
=

4
Cπ

(
a

ac

) 1∫
0

τ∗
xz

Y
dλ (4)

μsys =
Qmax

P
=

Qmax/Pc

P/Pc
=

4
Cπ

(
a

ac

)−1
1∫

0

τ∗
xz

Y
dλ (5)

Based on the relationships discussed above, the expression for μsys in the elastic regime can be obtained
by using Eq. (2) and Eq. (5). Its expression can be fitted using Eq. (6). The simulated data and the
fitting are shown in Fig. 3.

μsys = 0.35
(

ω

ωC

)−0.5

(6)

2.2. Semi-Analytical Solution of Friction Coefficient for Elastic–Plastic Preload

When the vertical load P is larger than its critical value Pc, analytical expression for surface stress
is no longer valid because of plasticity. The local stress distributions on the surface can be obtained
from the finite element simulation. Then, the local maximum shear stress τ∗

xz on the contact surface
can be calculated according to Eq. (1). The subsequent application of the tangential force will not
change the distribution of normal pressure induced by the preload according to the FEM simulations.
The reason is that we use a deformable body against a rigid plane, which is equivalent to one contact
pair with two similar deformable bodies. There is no coupling between the normal and the tangential
parts.

The plastic zone expands as the vertical load increases. When ω/ωC is equal to 3, the plastic region
reaches the cylinder surface, representing the upper limit of the elastic–plastic regime (Appendix B).
The allowed shear stress distribution for different ω/ωc is presented in Fig. 2. In the elastic–plastic
state, the values of τ∗

xz/Y can be obtained according to Eq. (2) using the finite element method. It
can be seen that the value of τ∗

xz/Y decreases with increasing ω/ωC . When ω/ωC is equal to 3, the
minimum value of τ∗

xz/Y is about zero, and its location denotes the free surface. The values of τ∗
xz/Y

are not monotone functions of radial coordinate in the elastic–plastic regime because a crescent plastic
region begins to expand beneath the contact surface. The values of τ∗

xz/Y can be integrated to obtain
Qmax/Pc by using Eq. (4).

Both a/ac and P/Pc are functions of ω/ωC . The corresponding relations can be determined accord-
ing to the finite element solution (Appendix B). Hence, the friction coefficient of the system can be
expressed in the form:
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Fig. 4. Meshing schemes of an elastic-perfectly plastic cylinder in contact with a rigid flat

μsys =
Qmax

P
=

Qmax/Pc

P/Pc
=

3.782
Cπ

(
ω

ωC

)−0.287
1∫

0

τ∗
xz

Y
dλ (7)

The friction coefficient of the system can be calculated, and by proper fitting, the empirical expression
for μsys can be obtained:

μsys = −0.016
(

ω

ωC

)3

+ 0.124
(

ω

ωC

)2

− 0.382
ω

ωC
+ 0.606 (8)

The value of μsys is calculated according to Eq. (5) and Eq. (8). The relationship between μsys and
the normalized interference ω/ωC in the elastic and elastic–plastic regimes is shown in Fig. 3. The μsys

decreases with increasing ω/ωC . The empirical expression for μsys in the elastic and elastic–plastic
regimes (that is, ω/ωC ranges from 0 to 3) is:

μsys = 0.35
(

ω
ωC

)−0.5

for 0 < ω
ωC

< 1

μsys = −0.016
(

ω
ωC

)3

+ 0.124
(

ω
ωC

)2

− 0.382 ω
ωC

+ 0.606 for 1 ≤ ω
ωC

≤ 3
(9)

3. A Numerical Model of Sliding Inception from Full-Slip to Full-Stick Conditions
The semi-analytical solution in Sect. 2 is only valid for full-stick condition. In a realistic material

interface, the finite slip governed by interfacial strength exists. The sliding initiation can be caused
by full slip, partial slip or full stick. The factor determining the transition from partial-slip condition
to full-stick condition is still unclear, which, however, cannot be obtained from the semi-analytical
solution given in the previous section, either. Thus, in this section, a friction model with contact
stiffness criterion is presented to investigate this effect. The transition from full-slip condition to full-
stick condition is studied.
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Fig. 5. Typical response of normalized friction force versus normalized horizontal loading displacement. a ω∗ = 0.5. b
ω∗ = 50

The combined vertical and horizontal loads of a rigid flat on a cylinder are simulated by using the
finite element package ABAQUS. The cylinder radius R is 5 mm, and the length of the rigid flat is 10
mm ([17, 18] and [19, 20]). The finite element model is divided into three zones with different mesh
densities. Zone 1 is 0.011%R distance from the cylinder tip (see Fig. 4), whose mesh density is 0.04%R,
consisting of four-node bilinear plane strain quadrilateral elements. Zone 2 is 0.11%R distance from
the cylinder tip, whose mesh density is 0.06%R, consisting of three-node linear plane strain triangle
elements. Mesh transition is used in Zone 3 which is far away from the contact region. Denser mesh in
Zone 1 (0.005%R, 0.0025%R) is also checked for mesh sensitivity, which shows similar results.

The material of cylinder is modeled as elastic-perfectly plastic, and the Poisson’s ratio is taken
as 0.3, which is similar to the study of Jackson et al. [21, 22]. Three sets of material yield strength
(σy/E = 0.25%, 0.5%, 0.75%) are studied to check the material dependence. Results reveal that these
three cases show similar normal and tangential responses. The dimensionless critical interference ω∗ =
ω/ωC is used to determine the preload state before sliding.

The cylinder is under plane strain condition and the bottom of the cylinder is fixed in all directions.
Loads are applied in two steps: vertical load first, followed by horizontal load. Both the vertical and
horizontal loads are applied under displacement control. The interfacial friction coefficient μint is served
as an independently controlled parameter to study the failure mechanism of shear behavior. The value
of μint, ranging from 0.1 to 104, is set to simulate the interfacial condition from partial slip to full
stick. Results show that there is no big difference between the cases with μint = 15 and μint = 104.
Therefore, μint = 15 is used to present the full-stick condition.
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Fig. 6. Effect of plasticity on friction behavior. a ω∗ ≤ 64. b ω∗ ≤ 7

After vertical loading, a horizontal displacement ux of the flat is applied. The instantaneous hori-
zontal force Q is obtained from the x-component of the reaction force. The corresponding instantaneous
tangential stiffness KT [10] of the junction is calculated as:

(KT )i =
(

∂Q

∂ux

)
i

≈ Qi − Qi−1

(ux)i − (ux)i−1
(10)

where i is the increment of consecutive tangential displacement. A criterion for sliding inception is set
in the form:

(KT )i

(KT )0
≤ α (11)

where (KT )0 is the initial tangential stiffness of the joint corresponding to the first horizontal loading
step, and α is a small pre-defined number. The value of 0.1 is selected as in literature [10], since a
lower value of α negligibly increases Qmax, but requires a much higher cost of computing time.

From the macroscale experiment, the maximum static friction force is determined by the drop of
tangential force on the tangential force-displacement curve. The systematic instability denotes the
sliding inception, where the macroscale static friction coefficient can be measured. In our study, we are
aiming to investigate the effect of interaction between the local Amontons’ law and material plasticity
on the systematic instability. There exist two extreme cases: (1) the instability of purely elastic interface
is only determined by the interfacial slip with Amontons’ law, as stated by the reviewer, and (2) the
instability of full-stick interface will not appear in purely elastic contact and will be dominated by
yielding for plastic case. By plotting the system energy as a function of horizontal displacement, we
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Fig. 7. Effect of interface on overall friction behavior, which shows that the friction coefficient of full-stick interface
converges at a stable value. a μint < 15. b μint ≤ 1.5

conclude that the system energy reaches a minimum value as the tangential stiffness approaches zero.
The criterion is based on the energy of the system, so it is irrelevant to whether the contact interface is
full stick or full slip. As a result, the local Amontons’ law is not able to uniquely determine the friction
coefficient of the system μsys.

4. Results and Discussion
4.1. Friction Response

Results from the finite element simulations are shown in this section. Figure 5 shows typical friction
forces as a function of sliding distance at two different levels of interference: elastic interference in
Fig. 5a and plastic interference in Fig. 5b. Horizontal loading starts with an elastic response, which
shows almost a constant stiffness. Then, the horizontal force reaches a plateau (the full-slip regime)
right after the linear regime when the value of interfacial friction μint is low, for example, 0.1, 0.2 and
0.5. As the sliding barrier increases, the tangential response shows full-stick feature as μint is larger
than 0.8. The horizontal load Qmax at sliding inception can be determined by the instability criterion
as in Eq. (10). It is the static friction force from which the static friction coefficient can be calculated.

From the semi-analytical solution of Eq. (9) for full-stick case, the theoretical value of μsys decreases
with the increase in interference ω∗, as shown in Fig. 6b. Figure 6 also shows the variation of μsys from
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Fig. 8. Diagram of force-displacement relationship. a Elastic regime. b Plastic regime

the finite element simulation under the finite-slip condition. It should be noted that μsys converges to
an up-limit line when μint is large than 0.8, corresponding to the full-stick condition. Reminding that
the semi-analytical solution of Eq. (9) is only valid for the full-stick case, Eq. (9) shows a similar trend,
but always underestimates the friction coefficient compared with the FEM. The deviation comes from
the assumption that in the theoretical model the contact stress field does not change with the applied
horizontal load. This assumption is not the case by checking the stress field from the FEM results.
With the increase in initial plasticity, the value of μsys converges to 0.3, which agrees with Archard’s
assumption and the BKE model [10].

For ideal elastic interfaces, the system friction coefficient μsys is equal to the local friction coefficient,
as shown by the dashed line in Fig. 7b. However, the value of μsys deviates from the elastic trend
when taking the plastic effect into account. As the difficulty in interfacial slip increases, the plasticity
contribution goes up in such a way that μsys reaches a plateau and maintains in a steady state, as
shown in Fig. 7a. In the regime where μint ranges from 0.1 to 1.5, the friction transition from full slip
to plastic yielding is more explicit, as shown in Fig. 7b.

4.2. Plastic Effect

In this section, we discuss the plastic effect on tangential shear. The total shear relative displacement
stotal of contact pair is decomposed into three parts: the elastic deforming displacement selastic, the
plastic deforming displacement splastic and the interfacial slip part sslip:

stotal = selastic + splastic + sslip (12)
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Fig. 9. Slip distributions along the contact patch. a ω∗ = 0.2. b ω∗ = 1.0

When the contact is in the elastic regime, the displacement can be calculated using the analytical
method. As the cylinder is considered as infinite, we assume that the contact area is an ellipse with
semi-axes a and b, where b >> a. The tangential displacement can be calculated according to Vermeulen
and Johnson [23]:

selastic =
μp0a

2G

[
1 −

(
1 − Q

μP

) 2
3
]

Γ
(a

b

)
(13)

where Γ is a function of the complete elliptic integrals according to Jaknke and Emde [24]. We assume
that a/b = 0.01, so that the semi-axis b is sufficiently long and the value of selastic can be calculated for
the value of cylindrical contact case. The analytical relationships between Q/P and the displacement
are shown by the dash lines in Fig. 5a. When the contact is in the plastic regime, the contribution of
selastic, splastic and sslip can be divided according to the diagram in Fig. 8b.

The value of sslip reflects the magnitude of interfacial slip. Figure 9 shows the slip distribution at the
inception of sliding with different initial interferences. It can be seen that the central area (where sslip
is zero) represents the stick region of the contact, which expands with the increase of μint. Comparing
Fig. 9a with Fig. 9b, it can be seen that increasing initial interference will decrease the slip region,
which leads to a more sticky sliding inception.

Figure 10a and b presents the proportions of splastic, selastic and sslip in terms of μint and ω∗. It
can be seen that the proportion of splastic increases with the increase in interfacial condition μint and
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Fig. 10. Proportions of plastic deformation, elastic deformation and slip under different interfacial conditions

initial ω∗. Figure 10a shows that, in most practical cases, as μint is smaller than 0.5, the percentage
of splastic is less than 10%, which means interfacial slip dominates the sliding. In the cases that μint is
larger than 10, the proportion of sslip is close to 0 and most of the deformation is plastic. It should be
noted that even with a large value of initial ω∗, sslip can be a dominant part if the interfacial friction
μint is very low.

Figure 11a shows the contribution of plastic deformation splastic under different interfacial conditions
and magnitudes of normal interference. When μint is smaller than 0.3, the plastic displacement ratio
splastic/stotal is less than 30%, so interfacial slip dominates the sliding in this region. When μint is
larger than 1, the ratio splastic/stotal continues to increase until reaching 100%; therefore, in this region,
material yielding gradually dominates the sliding. During the transition stage (0.2 < μint < 0.8), the
change of plastic displacement ratio splastic/stotal represents a transition from interfacial slip dominant
to plasticity dominant.

Figure 11b shows the contribution of plastic deformation splastic in terms of initial ω∗. It can be seen
that when μint is relatively small (μint = 0.1, 0.2, full slip), the preload state ω∗ has little influence on the
slip profile. When μint is relatively large (μint > 0.8, full stick), the corresponding plastic displacement
ratio shows the same changing trend. However, during the transition stage (0.2 < μint < 0.8), the ratio
splastic/stotal changes differently, representing the transition from slip to stick.

4.3. Comparison with Other Models

A semi-analytical solution is useful not only in spherical contact, but also in line/cylindrical contact;
however, the corresponding results are completely different. We compare the relationship between the
maximum horizontal load Qmax/Pc and the contact load P/Pc, as shown in Fig. 12. Kogut and Etsion
[4] concluded that Qmax/Pc is 0 when P/Pc is larger than 14. They underestimated the capacity of
horizontal load during the plastic stage, because from our work, Qmax/Pc is a monotonic function
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Fig. 11. Contribution of slip caused by plasticity under different interfacial conditions

Fig. 12. Maximum horizontal load as a function of contact vertical force
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Fig. 13. Equivalent plastic strain distribution (ω∗ = 3)

Fig. 14. Normalized mean contact pressure, p/Y , versus the dimensionless interference ω∗, which shows that ω∗ = 54 is
the beginning of fully plastic regime

of P/Pc, and its value can never be zero when P/Pc is larger than 14, as shown in Fig. 11. The
relationship between Qmax/Pc and P/Pc is affected by the value of interfacial friction coefficient μint,
as μint changes from 0.5 to full-stick condition and Qmax/P coincides with one line with a slope equal
to about 0.3.

5. Conclusion
1. A semi-analytical model for full-stick case, as in Eq. (9), is able to predict the friction coefficient

with the change of interference.
2. A friction model with contact stiffness criterion is proposed. It is implemented in the finite element

simulations to study both material plasticity and local slip effects on the friction map. When μint is
smaller than 0.3, interfacial slip dominates the sliding. When μint is larger than 0.8, material yielding
dominates the sliding. In the interfacial system with 0.3 < μint < 0.8, a transition mechanism should
be considered by comparing the contributions from interfacial strength and material plasticity.

3. Plasticity saturation appears as interference ω∗ is larger than 3. The friction coefficient of full-stick
interface converges at a stable value of 0.3.
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Appendix A: The Stress Field Under Vertical Load
According to the coordinate system in Fig. 1, the stress field on the axis of symmetry is presented

as ([25, 26]):

σx

p0
= −

(
1 + 2ς2√

1 + ς2
− 2ς

)
;

σz

p0
= − 1√

1 + ς2
;

σy

p0
= 2v

(
ς −

√
1 + ς2

)
;

τxy

p0
= ς − ς2√

1 − ς2

(A1)

where ς = z/a. As a result, the equivalent stress in the axis of symmetry has the form:

σeq

p0
= f

(z

a

)
=

(
4ς2 − 8ς3√

1 + ς2
+

4ς4 + 1
1 + ς2

+
4vς√
1 + ς2

− 4v + 8v2ς2 + 4v2

−8v2ς
√

1 + ς2 +
4ς3v√
1 + ς2

+ 4ςv
√

1 + ς2 − 8ς2v +
2ς2

1 + ς2

− 2ς√
1 + ς2

)1/2

(A2)

Similar to Jackson [21], the location ςY with maximum von Mises stress can be obtained by using
equation: ∂

∂ς

(
σeq
p0

)
|ς=ςY

= 0. Substituting ςY into Eq. (A2) and using σeq|ς=ςY
= Y , the relationship

between ςY and the Poisson’s ratio v can be obtained. Hence, the fitting function can be expressed by

Eq. (A3). And the dimensionless parameter C =
(

σeq
p0

)−1

can also be obtained in Eq. (A3).

ςY = −2.39v2 + 2.32v + 0.222
C = −2.92v2 + 2.98v + 1.163 (A3)

The stress field at the surface is shown in Eq. (A4), which is used to calculate the friction coefficient
in the elastic regime.

σx

p0
=

σz

p0
= −

(
1 − x2

a2

) 1
2

σy

p0
= −2v

(
1 − x2

a2

) 1
2

(A4)

Appendix B: Fitting Parameters
According to Johnson [25], the critical contact radius ac, the critical vertical load Pc and the critical

interference ωC can be determined by the following equations:

Pc =
πR(CY )2

E∗ (A5)

ac =
2RCY

E∗ (A6)

ωC = Pc
1 − v2

πE

[
2 ln

(
4R

ac

)
− 1

]
(A7)

where 1
E∗ = 1−v2

E , representing the equivalent Young’s Modulus in the present work.
The contact stays elastically when the normalized interference ω∗ = ω/ωC is less than 1. The

contact enters the elastic–plastic region as ω∗ is larger than 1. The plastic zone expands, as it reaches
the surface (ω∗ = 3), as shown in Fig. 13, and the indentation enters the plastic state. It is consistent
with the simulation [11], in which the cylinder surface begins to yield once the interference reaches
about 3 to 3.5 times ω∗. As the vertical load increases, the mean contact pressure p/Y increases until
it reaches the full plastic region, from which p/Y decreases. Figure 14 shows the change of p/Y when
the interference ω∗ increases from 0 to 200. The value of p/Y starts to decrease at point ω∗ = 54,
which represents the fully plastic regime. Thus, we define that the contact is in fully plastic regime
when ω∗ > 54.
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The entire elasto-plastic response is divided into four regimes, which is similar to the KE model
[27]. It is listed as follows:

Elastic state ω∗ ≤ 1
Elastic–plastic state 1 < ω∗ ≤ 3
Plastic state 3 < ω∗ ≤ 54
Fully plastic state ω∗ > 54

We parametrize the FEM results for contact force P and contact area A as the functions of inter-
ference in each regime through a power law:

P

Pc
= α

(
ω

ωC

)m

;
A

Ac
= β

(
ω

ωC

)n

(A8)

The following table presents the fitting parameters.

α m β n

0 < ω
ωC

≤ 1 0.998 1.117 0.998 0.551

1 < ω
ωC

≤ 3 1.022 1.039 0.966 0.752

3 < ω
ωC

≤ 54 1.632 0.710 2.328 0.647
ω

ωC
> 54 4.861 0.424 3.735 0.521
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