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Abstract: In this paper, a two-dimensional generalized finite integral transform method is developed 

for new analytic bending solutions of orthotropic rectangular thin foundation plates. The vibrating 

beam functions are adopted as the integral kernels to construct the integral transform pairs. By 

imposing the transform to the governing equation, utilizing some inherent properties of the beam 

functions, the title problem is converted to that of solving a system of linear algebraic equations, by 

which the new analytic solutions are elegantly obtained in a straightforward way. Numerical 

examples validate the present method as well as the solutions yielded by satisfactory agreement with 

the literature and finite element analysis. 
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1. Introduction 

Rectangular plates are widely used as key structural elements in various engineering fields such 

as civil, mechanical, marine and aerospace engineering. The mechanical behavior of such structures 

is of permanent interest for both scientists and engineers since theoretical analysis and practical 

design are both indispensable for the safety of structures. 

Many previous studies have dealt with plate problems with different combinations of boundary 

conditions, load patterns and material properties by using various approximate or numerical methods. 

Besides the classical methods such as the finite difference method [1], finite element method (FEM) 

[2] and boundary element method [3], which are still popular in handling plate problems, some 

recently developed effective approaches have shown important progresses in the field, including the 

meshless method [4], isogeometric collocation method [5], boundary particle method [6], finite 

volume method [7], virtual element method [8], discrete singular convolution method [9], simple hp 

cloud method [10], finite-layer method [11], etc. In comparison with the numerical methods, analytic 

methods are sparse, which is attributed to the difficulty in seeking analytic solutions to the complex 

boundary value problems (BVPs) of higher-order partial differential equations (PDEs) that describe 

the plate problems. Besides the well-known semi-inverse superposition method [12] that was applied 

for some simple plate problems, few new analytic methods have been found in the literature, 

including the symplectic approach [13-16], Fourier-type finite integral transform method [17, 18], etc. 

It is notable that the one-dimensional generalized finite integral transform method has been applied 

in the fields of thermodynamics and fluid mechanics [19, 20], by which solving PDEs reduces to 

solving ordinary differential equations where special mathematical techniques are still required. 

This paper presents a first endeavor to extend the one-dimensional generalized finite integral 

transform to two-dimensional transform for new analytic bending solutions of orthotropic rectangular  

thin foundation plates, with focus on typical clamped plates that were difficult to solve by the other 

analytic methods. Taking vibrating beam functions as the integral kernels and conducting the double 

integral transform, solving the governing PDEs reduces to solving a system of linear algebraic 

equations, by which the problems are solved in a straightforward way. Compared with the 

Fourier-type finite integral transform methods, the present method has the advantage of faster 
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convergence with much fewer series terms taken. The validity of the present method is confirmed by 

satisfactory agreement of the obtained solutions with those available in the literature and by the 

FEM.  

 

2. Two-dimensional generalized finite integral transform solutions for orthotropic rectangular 

thin foundation plates 

We consider a clamped orthotropic rectangular thin plate resting on an elastic Winkler-type 

foundation occupying the domain 0 x a   and 0 y b   in the xoy coordinate system, as shown in 

Fig. 1. The governing bending equation of the plate as well associated boundary conditions are 

 
Fig. 1. Schematic illustration of a clamped orthotropic rectangular thin foundation plate. 
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where 
xD  and yD are flexural rigidities in the x and y directions, respectively; 1 2 xyH D D   is the 

effective torsional rigidity in terms of the torsional rigidity xyD , in which 1 y x x yD D D   , with 
x  

and y  being the Poisson's ratios;  ,W x y  is the deflection,  ,q x y  the load, and K the Winkler 

foundation modulus. 

The following two-dimensional generalized finite integral transform pair is defined: 
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where  mX x  and  nY y  are the vibrating beam functions [20]: 
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in which 
m  and 

n  are the roots of the transcendental beam frequency equations 

   ch cos 1m ma a    and    ch cos 1n nb b   , respectively; 
mc  and 

nc  are determined by 
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The integral kernels here satisfy the following relationships, boundary conditions, and orthogonality: 
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Applying the generalized integral transform as shown in Eq. (3) to each term of Eq. (1), putting 

the boundary conditions in Eq. (2), the following simplified relationships are derived in sequence: 
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Substitution of the inversion in Eq. (4) into Eq. (12) leads to 
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Define 
mnq  as the transform of the load function  ,q x y , 
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The integral transform of Eq. (1) finally gives 
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where 4 4

mn x m y nA D D K    . 

Equation (17) constitutes a system of infinite linear equations, where m, n, r, and s are any 

positive integers, with their upper limit taken as t in practical calculation for convenience. Therefore, 

the matrix form of Eq. (17) is 
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Solving Eq. (18) for mnW , the analytic solutions of plate deflections are obtained by Eq. (4). The 

other quantities, e.g., the bending moments xM  and yM , can be readily obtained by proper 

combinations of the derivatives of governing deflection solutions. For example, 

 2 2 2 2

1x xM D W x D W y        and  2 2 2 2

1y yM D W y D W x       . 

3. Comprehensive numerical examples 

To validate the present method and the obtained analytic solutions, we conduct comprehensive 

examinations on the plates under three different loading/support conditions. 

(1) The first example is on uniformly loaded isotropic rectangular plates without foundation [Fig. 

2(a)]. Satisfactory convergence and accuracy are observed from the numerical results listed in Table 

1, including both deflections and bending moments, by convergence of the present solutions to the 

last significant digit of four with only 26 series terms in one direction (i.e., t=26) as well as good 

agreement between the present solutions and those from the literature [12] and FEM by the 

commercial software ABAQUS, in which the thickness-to-width ratio of the plates is uniformly set 

to be 10
-4

 while the 4-node thin shell element S4R and the uniform mesh size a/400 are taken here 

and hereafter. The non-dimensional 3D deflection of such a plate is plotted in Fig. 2(b). 

    
(a)        (b) 

Fig. 2. (a) Schematic and (b) 3D plot of a uniformly loaded isotropic plate. 

Table 1. Deflections and bending moments of uniformly loaded isotropic plates. 

b

a
 t  

 4DW qa   2, 2x a y b    2

xM qa   2, 2x a y b    2

xM qa   0, 2x y b   

Present Ref. [12] FEM Present Ref. [12] FEM Present Ref. [12] FEM 

1.0 5 0.001267 

0.00127 0.001265 

0.02362 

0.0231 0.02291 

−0.04839 

−0.0513 −0.05079 

10 0.001266 0.02309 −0.05011 

25 0.001265 0.02344 −0.05125 

26 0.001265 0.02344 −0.05125 

1.3 5 0.001915 

0.00191 0.001912 

0.03335 

0.0327 0.03273 

−0.06630 

−0.0687 −0.06809 

10 0.001912 0.03293 −0.06768 

25 0.001912 0.03296 −0.06855 

26 0.001912 0.03296 −0.06855 

1.5 5 0.002202 

0.00220 0.002197 

0.03760 

0.0368 0.03677 

−0.07365 

−0.0757 −0.07502 

10 0.002196 0.03671 −0.07532 

25 0.002197 0.03697 −0.07552 

26 0.002197 0.03697 −0.07552 

1.7 5 0.002391 0.00238 0.002382 0.04017 0.0392 0.03927 −0.07823 −0.0799 −0.07919 
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10 0.002383 0.03950 −0.07906 

25 0.002382 0.03945 −0.07975 

26 0.002382 0.03945 −0.07975 

2.0 5 0.002548 

0.00254 0.002533 

0.04221 

0.0412 0.04115 

−0.08183 

−0.0829 −0.08222 

10 0.002533 0.04108 −0.08262 

25 0.002533 0.04109 −0.08275 

26 0.002533 0.04109 −0.08275 

 

(2) The second example is on uniformly loaded orthotropic rectangular plates resting on an 

elastic foundation, where 4y xD D , 0.85xy xD D , 0.075x  , 0.3y  , and 4 100xKa D  . t=24 is 

taken to yield the present convergent solutions. Due to lack of comparable analytic solutions, the 

present results are only compared with those by FEM, as shown in Table 2, where good agreement 

for both transverse deflections and bending moments is found. 

Table 2. Deflections and bending moments of uniformly loaded orthotropic foundation plates. 

b

a
 

 4

xD W qa   2, 2x a y b    2

xM qa   2, 2x a y b    2

xM qa   0, 2x y b   

Present FEM Present FEM Present FEM 

1.0 0.0005047 0.0005047 0.007809 0.007844 −0.02749 −0.02734 

1.3 0.0009896 0.0009896 0.01560 0.01564 −0.04272 −0.04246 

1.5 0.001298 0.001298 0.02053 0.02057 −0.05143 −0.05110 

1.7 0.001555 0.001555 0.02464 0.02467 −0.05826 −0.05787 

2.0 0.001835 0.001835 0.02906 0.02909 −0.06508 −0.06467 

 

(3) The final example is on orthotropic rectangular foundation plates under central concentrated 

loading with intensity P [Fig. 3(a)], which share the same plate and foundation properties with 

Example 2. t=24 is taken to yield the present convergent solutions. From Table 3, it is seen again that 

the present solutions agree well with those by FEM. Figure 3(b) plots the non-dimensional 3D 

deflection of such a plate. 

   
(a)        (b) 

Fig. 3. (a) Schematic and (b) 3D plot of an orthotropic foundation plate under central concentrated loading. 

Table 3. Deflections and bending moments of orthotropic foundation plates under central concentrated loading. 

b

a
 

 2

xD W Pa   2, 2x a y b   xM P   0, 2x y b   

Present FEM Present FEM 

1.0 0.002386 0.002392 −0.04107 −0.04208 

1.3 0.003425 0.003433 −0.07158 −0.07231 

1.5 0.003902 0.003911 −0.08487 −0.08545 

1.7 0.004209 0.004217 −0.09291 −0.09343 

2.0 0.004440 0.004452 −0.09878 −0.09913 

 

On a workstation with Intel Xeon Processor E5-2697 v4 (x2) (45M Cache, 2.30 GHz), the 

computational times of the present method in the software Wolfram Mathematica 10.0 versus the 

FEM in ABAQUS 6.13 are 96.30 s versus 120 s for example 1, 69.03 s versus 117 s for example 2, 

and 69.36 s versus 119 s for example 3 when b/a=1, for example; the condition numbers of the 

matrix in Eq. (18) are 174850 for example 1 and 115246 for examples 2 and 3, without warnings of 

ill-conditioned matrix in calculations. All above examples confirm the validity and accuracy of the 

two-dimensional generalized finite integral transform method for analyzing the bending problems of 

orthotropic rectangular thin foundation plates. 

 

4. Conclusions 
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This work presents a two-dimensional generalized finite integral transform method for new 

analytic bending solutions of orthotropic rectangular thin foundation plates. The primary advantage 

of the method is its simplicity and generality in handling a class of complex BVPs of higher-order 

PDEs as represented by the plate problems; it provides an easy-to-implement tool for exploring more 

analytic solutions of similar intractable problems. 
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