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Abstract: In this paper, a two-dimensional generalized finite integra' *-ansi. “m method is developed
for new analytic bending solutions of orthotropic rectangular thin found. ion plates. The vibrating
beam functions are adopted as the integral kernels to construct ‘e intr gral transform pairs. By
imposing the transform to the governing equation, utilizing s7...e innerent properties of the beam
functions, the title problem is converted to that of solving a sy ster. ot 'inear algebraic equations, by
which the new analytic solutions are elegantly obtained in a str.ughtforward way. Numerical
examples validate the present method as well as the solutions yi.'ded by satisfactory agreement with
the literature and finite element analysis.

Keywords: Generalized finite integral transform method, o, "“otropic thin plate, elastic foundation,
analytic solution.

1. Introduction

Rectangular plates are widely used as key ~tructu al elements in various engineering fields such
as civil, mechanical, marine and aerospace engi.>."ing. The mechanical behavior of such structures
is of permanent interest for both scientiste and wngineers since theoretical analysis and practical
design are both indispensable for the safety 0. ~trucwures.

Many previous studies have dealt with plate Lroblems with different combinations of boundary
conditions, load patterns and material p- up. *ties by using various approximate or numerical methods.
Besides the classical methods such ac the fini. » difference method [1], finite element method (FEM)
[2] and boundary element method [3], *thi"n are still popular in handling plate problems, some
recently developed effective apprr achr 5 have shown important progresses in the field, including the
meshless method [4], isogeomew. = Ccollr cation method [5], boundary particle method [6], finite
volume method [7], virtual ele nent mi.*".0d [8], discrete singular convolution method [9], simple hp
cloud method [10], finite-lay”  1..~thod [11], etc. In comparison with the numerical methods, analytic
methods are sparse, which i< attribuwcd to the difficulty in seeking analytic solutions to the complex
boundary value problems BV >s) of higher-order partial differential equations (PDEs) that describe
the plate problems. Besiae. t'.e well-known semi-inverse superposition method [12] that was applied
for some simple plat* prable. 3s, few new analytic methods have been found in the literature,
including the symple cic 7 pprc ach [13-16], Fourier-type finite integral transform method [17, 18], etc.
It is notable that the onc ir ensional generalized finite integral transform method has been applied
in the fields of tt ermoc*/namics and fluid mechanics [19, 20], by which solving PDEs reduces to
solving ordinary . 'ifferent al equations where special mathematical techniques are still required.

This paper nres.~* a first endeavor to extend the one-dimensional generalized finite integral
transform to .wo-dii “ensional transform for new analytic bending solutions of orthotropic rectangular
thin foundati *n plate s, with focus on typical clamped plates that were difficult to solve by the other
analytic methoas. «aking vibrating beam functions as the integral kernels and conducting the double
integral 1. ns o, solving the governing PDEs reduces to solving a system of linear algebraic
equations, « / which the problems are solved in a straightforward way. Compared with the
Fourier-type wnite integral transform methods, the present method has the advantage of faster
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convergence with much fewer series terms taken. The validity of the present method is confirmed by
satisfactory agreement of the obtained solutions with those available in the literature and by the
FEM.

2. Two-dimensional generalized finite integral transform solutions for orthotr upic rectangular
thin foundation plates
We consider a clamped orthotropic rectangular thin plate resting on an elastic vvinkler-type
foundation occupying the domain 0<x<a and 0<y<b inthe xoy coordin7.e s\ stem, as shown in

Fig. 1. The governing bending equation of the plate as well associated boundary - )nditions are

Fig. 1. Schematic illustration of a clamped orthotropié i.~tangu'~~ (nin foundation plate.
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where D, and D, are flexural rigidities in the X a.d'y aw cctions, respectively; H =D, +2D,, is the
effective torsional rigidity in terms of the torsic ~al riy dity D, , in which D, =v,D, =v,D , with v,
and v, being the Poisson's ratios; W (x,y) is ti.» acilection, q(x,y) the load, and K the Winkler

foundation modulus.
The following two-dimensional generalized fn..te integral transform pair is defined:

xy !

W, = J'Oaj‘;w XY )5 (X)Y, (y)dxdy (transform) ©)
W (x,y) -a%if/vmnxm(x)Yn(y) (inversion) 4)
m=1 n=1

where X (x) and Y, (y) arethe .*r atin’, beam functions [20]:
X (X ch(a,x)—cos (e, x)—c, [ sh(e,x)—sin(,x)]
Y, (v =ch(p,y)—cos(B,Y)- c,[sh(By)-sin(B,Y)]
in which ¢, and p ar. the roots of the transcendental beam frequency equations
ch(e,a)cos(e,a)=1 a~d cn ?b)cos(Bb)=1, respectively; c and ¢, are determined by
. __ch(ama)—cos(ama) :ch(ﬂnb)—cos(ﬂnb) (6)
" sh(e,a)-sin(e,a)’ " ch(Bp)-sin(Bb)
The integral kern :Is here satisfy the following relationships, boundary conditions, and orthogonality:

©)

d* d*

Tl ax (0. T g (v )
Xm (X)‘X:Qa _ dxgx(x) -0, Yn (y)‘y:O'b _ dY:jf,y) -0 (8)
X0 o= 2 =y 0 ©

Applying the generalized integral transform as shown in Eq. (3) to each term of Eq. (1), putting
the boundary conditions in Eqg. (2), the following simplified relationships are derived in sequence:

2/6



— X, (X)Y, (y)dxdy

0 OX
[ B DL, Ml )"
+I:LbW(X,y)d4);;4(x) Y, (y)dxdy = o'W,
Lafobi;vyxm(X)Yn(y)dxdy
F—
L na 0 e Moy~ g,
ffff%“““n””ﬂ=I§[%xm<x> e m\”]{x R
[ ] oy O
ZJ‘:J;W(X’V)%%WW

Substitution of the inversion in Eq. (4) into Eq. ’12) I «ds to

a b dZX szn y 2 &
jo IDW(X’y) d ) ’4\/ / ZZ rs mr ns

r=1 s=1

y

where | :J“"x (X)% dx and J_ —j (y)d—()dy the values of which are
mr 0 r 2 d

dx
a,[2-¢, 2,a)], m=r
e = 4(ama)2&ai:r\ara)_cm(ama)] 14(=1D)™ | m=r
‘{ a,a’ —(ama)4] [ = }
{ ‘/J”L > J n=s
Jw = = Bb) ﬂb [c Bb)—c,(Bb)] L
o o[(an) - (p)'] [

Define g, as the tra'.sfor n of the load function q(x y)

j _[ )Y, (y)dxdy

The integral tran: form o1 =q. (1) flnally gives
2H
A‘nn mn Zzwrslmr"]ns qmn

r=l s=1

where A =L o, +C B +K.

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

Eque 'z~ 117) constitutes a system of infinite linear equations, where m, n, r, and s are any
positive in.~0 :rs, with their upper limit taken as t in practical calculation for convenience. Therefore,

the matrix fo. m of Eq. (17) is
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2HI _J
A +=——"  m=randn=s
M =1 2m1 3 * >
2 ardns otherwise
ab

Solving Eg. (18) for W,,, the analytic solutions of plate deflec ions are obtained by Eq. (4). The
other quantities, e.g., the bending moments M, and M, , can .~ r.dily obtained by proper

combinations of the derivatives of governing def ecti.i solutions. For example,
M, =—(D,o°W/ox* + D, o'W /oy*) and M, =—(D, oW /ay* + D, 0™ /ox").

3. Comprehensive numerical examples

To validate the present method and the obtained aralyu. so'.tions, we conduct comprehensive
examinations on the plates under three different loading/sup,. ~rt conditions.

(1) The first example is on uniformly loaded isot: -.iv 1cuiangular plates without foundation [Fig.
2(a)]. Satisfactory convergence and accuracy are observe.' from the numerical results listed in Table
1, including both deflections and bending momei. s, .. ~~nvergence of the present solutions to the
last significant digit of four with only 26 series ter. . in one direction (i.e., t=26) as well as good
agreement between the present solutions anc (mnse from the literature [12] and FEM by the
commercial software ABAQUS, in which the thi.kness-to-width ratio of the plates is uniformly set
to be 10 while the 4-node thin shell eleme.™ 547 ind the uniform mesh size a/400 are taken here
and hereafter. The non-dimensional 3D deflectioi. ~f such a plate is plotted in Fig. 2(b).

DW/(qa*)

(b)
Fig. 2. (. Sc’ ematic and (b) 3D plot of a uniformly loaded isotropic plate.

Table 7 Def'ectiou,.3 and bending moments of uniformly loaded isotropic plates.

b, DW/(ga*)  v=42,» =b/2) M, /(aa®) (x=a/2,y=Db/2) M, /(qa*) (x=0,y=b/2)
a Present  7if. [1., FEM Present  Ref. [12] FEM Present Ref. [12] FEM

1.0 5 0.001267 0.02362 —0.04839

10 0.001266 0.02309 —0.05011

25 0.0017°" 0.02344 —0.05125

26 0.00265 . 00127 0.001265 0.02344  0.0231 0.02291 -0.05125 -0.0513 -0.05079
1.3 5 0.00.915 0.03335 -0.06630

10 0.0019.C 0.03293 —0.06768

25 Cuullt? 0.03296 —0.06855

26 0..M,12 0.00191 0.001912 0.03296  0.0327 0.03273 -0.06855 —0.0687  —0.06809
15 5 0.00.°02 0.03760 —0.07365

10 0.002196 0.03671 —0.07532

25 0.002197 0.03697 —0.07552

26 0.002197 0.00220 0.002197 0.03697  0.0368  0.03677 -0.07552 —0.0757 —0.07502
1.7 5 0.002391 0.00238 0.002382 0.04017 0.0392  0.03927 -0.07823 -0.0799 —0.07919
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10 0.002383 0.03950 —0.07906

25 0.002382 0.03945 —0.07975
26 0.002382 0.03945 —0.07975
20 5 0.002548 0.04221 —0.08183
10 0.002533 0.04108 —0.08262
25 0.002533 0.04109 —0.08275

26 0.002533 0.00254  0.002533 0.04109  0.0412  0.04115 -0.08275 -0.."?9  -0.08222

(2) The second example is on uniformly loaded orthotropic rectangule . pl: es resting on an
elastic foundation, where D, =4D,, D, =0.85D,, v, =0.075, v, =03, and .~ '/D, =100. t=24 is
taken to yield the present convergent solutions. Due to lack of comparable «.~alytic solutions, the

present results are only compared with those by FEM, as shown in Tak.e = ‘~here good agreement
for both transverse deflections and bending moments is found.

Table 2. Deflections and bending moments of uniformly loaded or' .uuwopic tuundation plates.

b DXW/(qa“) (x=a/2,y=b/2) MX/(qaz) (x=a/2,y=b/\ Hx/(qaz) (x=0,y=b/2)

a Present FEM Present FEM rresent FEM
1.0 0.0005047 0.0005047 0.007809 0.007 344 —0.02749 -0.02734
1.3 0.0009896 0.0009896 0.01560 0.01.+7 —0.04272 —0.04246
15 0.001298 0.001298 0.02053 0..7N57 —-0.05143 —-0.05110
1.7 0.001555 0.001555 0.02464 0.0240. —0.05826 -0.05787
2.0 0.001835 0.001835 0.02906 102909 —0.06508 —-0.06467

(3) The final example is on orthotropic rectangular founc-tion plates under central concentrated
loading with intensity P [Fig. 3(a)], which share u.. same plate and foundation properties with
Example 2. t=24 is taken to yield the present converaent su. :tions. From Table 3, it is seen again that
the present solutions agree well with those by + =\ r.gure 3(b) plots the non-dimensional 3D
deflection of such a plate.

D,Wi/(Pa®)

fa s
y x/a

a (b)
Fig. 3. (a) Schematic and (b) 3", plot o1 .~ orthotropic foundation plate under central concentrated loading.

Table 3. Deflections and bend.ag mo.. ~nts of orthotropic foundation plates under central concentrated loading.

b DW/("a | (x=a/2,y=D/2) M,/P (x=0,y=b/2)

a Present FEM Present FEM
1.0 0.0023" 6 0.002392 —0.04107 —0.04208
1.3 0.002 ¢25 0.003433 —0.07158 —0.07231
15 0.00.°17 0.003911 —0.08487 —0.08545
1.7 0.n"1209 0.004217 —-0.09291 —-0.09343
2.0 1.00444{ 0.004452 —-0.09878 —-0.09913

On a wor'z*atiu.. with Intel Xeon Processor E5-2697 v4 (x2) (45M Cache, 2.30 GHz), the
computation | times of the present method in the software Wolfram Mathematica 10.0 versus the
FEM in ABANUS € 13 are 96.30 s versus 120 s for example 1, 69.03 s versus 117 s for example 2,
and 69.3% < versus 119 s for example 3 when b/a=1, for example; the condition numbers of the
matrix in ."q. 1) are 174850 for example 1 and 115246 for examples 2 and 3, without warnings of
ill-condition. 1 matrix in calculations. All above examples confirm the validity and accuracy of the
two-dimensional generalized finite integral transform method for analyzing the bending problems of
orthotropic rectangular thin foundation plates.

4. Conclusions
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This work presents a two-dimensional generalized finite integral transform method for new
analytic bending solutions of orthotropic rectangular thin foundation plates. The primary advantage
of the method is its simplicity and generality in handling a class of complex BVPs of higher-order
PDEs as represented by the plate problems; it provides an easy-to-implement tool for exploring more
analytic solutions of similar intractable problems.
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