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ABSTRACT
Fluid mud often exists in coastal areas with an interface separating it from its upper water layer. When a surface wave propagates
over a bed covered with water and fluid mud, it will cause an interfacial wave of the mud-water interface, which damps the
surface wave and results in mass transport of fluid mud. Most researches about wave attenuation and mass transport of fluid
mud are based on the assumption that the mud-water interface is unbroken. This assumption excludes the breaking interfacial
waves that are known as an important mechanism responsible for mass and momentum transport between the two fluids. When
the surface wave is long, its velocity field, which also serves as basic flows, may be susceptible to the Kelvin-Helmholtz (K-H)
instability if the shears at the interface are strong enough. In the present paper, the critical conditions for the K-H instability to
occur for the mud-water interface is investigated via linear stability analysis and numerical simulation. It is found that, for a K-H
instability to occur, the Stokes boundary layer thickness induced by a surface wave must be large enough to penetrate the fluid
mud layer and produce a strong shear at the interface. Meanwhile, a critical condition is found for a long surface wave to cause
breakup of mud-water interface through K-H instability. This is practically instructive for waterway and harbor construction and
protection because it predicts that a thicker mud layer is harder to be taken away by a surface wave.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5083948

INTRODUCTION

Fluid mud is typically a mixture of fine cohesive clay par-
ticles, organic matters and water, and exhibits Newtonian-
like behavior.1,2 In many real situations, the water body is
stratified into two layers with a sharp interface, which is for
the first time termed lutocline by Parker and Kirby.3 The
typical density of fluid mud ranges from 1050 ∼ 1200kg/m3

and its dynamic viscosity varies from ten to thousands times
that of water. When surface waves travel over a fluid mud
bed, interfacial waves occur correspondingly at mud-water
interface, and the energy of the surface waves dissipates
due to the motion of mud.4 The interfacial waves will cause
mass transport in fluid mud layer.5 This process is known as
wave-mud interaction and has been a topic of interest6–8 for
long.

Fluid mud is often mobile in coastal areas. It is now
and then suspended or deposited in channels or harbors.
The bathymetric change resulted from mud transport often
reduces navigability. In this case, dredging is often necessary
to maintain navigation depth, which is very costly. Therefore,
understanding mud transport is of significant importance for
waterway construction and maintenance.

The theoretical investigation of the wave-mud interaction
was first undertaken by Gade,4 who considered a two-layer
fluid system where the mud layer was treated as a Newto-
nian fluid and the water as inviscid fluid. By adopting a shallow
water assumption, Gade derived a dispersion relation, giving
the wave height attenuation rate of surface waves propagat-
ing over fluid mud bed. Since the original work by Gade, the
two-layer fluid system has been extended by many authors to
different cases.
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Dalrymple and Liu8 extended Gade’s two-layer fluid
model by assuming the two fluids viscous and adopting the
linearized Navier–Stokes equations to model small amplitude
wave training with arbitrary wave length propagating in two
layers of fluids. In the frame of linear waves, all variables,
including the surface and interfacial velocities and pressures,
were assumed to be periodical, and the surface and interfa-
cial waves were assumed to have the same wavelengths as
well as decay rates. Then, two fourth-order ordinary differ-
ential equations were obtained for the magnitude of vertical
velocities. The complex wave number was to be determined
from the boundary conditions, provided the water depth, mud
thickness, and wave period are known. Once the complex
wave number is obtained, the spatial wave height attenua-
tion rate, the field velocity and the mass transport induced
by the surface wave can be obtained. This procedure was fol-
lowed by many others who considered a two-layer model in
which water was assumed to be Newtonian fluid and mud was
of different rheology.7,9–12 By introducing equivalent viscosi-
ties, mud with different rheology can also be dealt with as a
Newtonian fluid.

In these previous studies, mud-water interface was
assumed unbroken and no attention was paid on the stability
of the interface. As a matter of fact, the interface may break
due to Kelvin-Helmholtz (K-H) instability when the shear at
the interface is strong enough. It is generally acknowledged
that breaking interfacial waves are responsible for a significant
portion of transport of mass and momentum. Once the inter-
face breaks, the fluid mud is brought into the water column
considerably. Therefore, it is practically necessary to study the
critical condition for onset of the K-H instability of the inter-
face. As we know, a longer surface wave exerts stronger shear
to the mud-water interface. Hence, we investigate the criti-
cal conditions for the breaking of mud-water interface by long
surface waves in the present paper.

The paper is organized as follows. After problem formu-
lation, we simplify the velocity fields induced by long surface
waves into oscillatory two-layer Poiseuille flows generated by
oscillating pressure gradients. The critical condition for onset
of the K-H instability in an oscillatory two-layer Poiseuille
flow is then investigated using a combination of linear stability
analysis and numerical simulations. Finally, some conclusions
are drawn.

PROBLEM FORMULATION

The flow configuration is shown schematically in Figure 1,
where the upper layer is water with depth h and the lower
layer is fluid mud with thickness d. The densities and vis-
cosities of water and fluid mud are denoted by ρ1, µ1 and
ρ2, µ2, respectively. The coordinates x and y are along and
perpendicular to the undisturbed interface, respectively, with
the origin of y located at the interface. ξ , ηare the ampli-
tudes of surface waves and interfacial disturbance waves,
respectively.

For convenience, three dimensionless variables are intro-
duced as follows. r = ρ2/ρ1 is the density ratio; m = µ2/µ1 is
the viscosity ratio; n = d/h is the thickness ratio.

FIG. 1. Sketch of a two-layer fluid flow of water and fluid mud.

The fluids are assumed to be incompressible Newtonian
fluids, and they are immiscible, with a zero thickness horizon-
tal interface between them. In both layers, the continuity and
Navier-Stokes equations

∂uj

∂x
+
∂vj

∂y
= 0, (1)

ρj(
∂uj

∂t
+ uj

∂uj

∂xj
+ vj

∂uj

∂y
) = −

∂pj

∂x
+ µj∇

2uj, (2)

ρj(
∂vj

∂t
+ uj

∂vj

∂x
+ vj

∂vj

∂y
) = −

∂pj

∂y
− ρjg + µj∇

2vj, (3)

are employed to describe the motions of water and mud,
where (uj, 3j) are the velocities in x, y directions, j = 1, 2 denote
the upper and lower layers, respectively, g is the gravitational
acceleration.

OSCILLATING TWO-LAYER POISEUILLE FLOW

From the stability point of view, the method adopted by
Dalrymple8 is a spatial stability analysis with the basic flow
being zero. All perturbation waves are attenuated, because
they can’t receive energy from the basic flow to develop insta-
bility. The interface is unbroken during its evolution, no matter
how strong the shear induced by the surface wave is. This
conclusion is based on assuming no interfacial disturbance is
added to the interface. In fact, when the shear at the inter-
face is strong enough, the wave-induced profile, which also
serves as a basic flow, may become susceptible to the K-H
instability which states that the interface will be unstable if the
disturbance wave is short enough for a given shear. To illus-
trate this, the velocity field induced by a long linear surface
wave is simplified here as an oscillatory two-layer Poiseuille
flow,13 which has very similar profile to the former one. The
oscillatory two-layer Poiseuille flow has an exact analytical
solution that can be readily obtained. This makes it conve-
nient to analyze the stability and the motion of the interface.
The difference between the long wave inducing velocity field
and the oscillatory Poiseuille flow is that the former decays
with time while the latter is periodic in time. The undecayed
periodic flow is a little different from the flow induced by a
long free surface wave, but it is suitable for flows induced
by surface waves driven by winds in real environment. The
surface wave-driven two-layer flow is stable if the oscillatory
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two-layer Poiseuille flow is stable, because the latter flow has
a stronger shear at the interface.

We assume that the surface wave is long such that the
vertical velocity component of the wave induced velocity filed
is very small and the nonlinear term of horizontal momen-
tum equation can be ignored. Thus, the horizontal momentum
equations are linearized as

ρ1
∂u1

∂t
= −

∂p1

∂x
+ µ1∇

2u1 (4a)

ρ2
∂u2

∂t
= −

∂p2

∂x
+ µ2∇

2u2 (4b)

where p1, p2 are the hydrodynamic pressures in the upper and
lower layers, respectively.

Since vertical motion of the interface is small enough, the
vertical momentum equations can be simplified as follows

∂pj

∂y
= µj∇

2uj − ρj
∂uj

∂t
= 0, j = 1, 2. (5)

Hence, we have p1(x) = p2(x) near the interface.
We consider an oscillatory flow with its far field free-

stream velocity expressed as U = U0 sin(ωt), where U0 is the
velocity amplitude and ω is the angular frequency of the wave.
From Euler equation, the stream-wise pressure gradient can
be written as

∂P
∂x
= −ρ1

∂U
∂t
= −ρ1U0ω cos(ωt) (6)

Substituting the pressure gradient
∂pj
∂x =

∂P
∂x = −ρ1U0ω cos(ωt)

into Eqs. (4), we have




ρ1
∂u1

∂t
= ρ1U0ω cos(ωt) + µ1∇

2u1

ρ2
∂u2

∂t
= ρ1U0ω cos(ωt) + µ2∇

2u2

(7)

The flow configuration considered here is shown
schematically in Figure 2. The Stokes boundary layer thick-
ness in the water layer induced by oscillation is δ1 =

√
2ν1/ω,

and the Stokes boundary layer thickness in the fluid mud is
δ2 =

√
2ν2/ω =

√
m/rδ1. The velocity profile of the upper layer

in two-layer Poiseuille flow is nearly uniform in the vertical
direction if the thickness of upper layer d is far larger than the
Stokes boundary layer thickness δ1 near the upper boundary.
Since only the short wave interfacial instability, i.e., K-H insta-
bility, is concerned, a computational thickness d1 ≤ 20πδ1 will
be enough for theoretical analyses and numerical simulations
because the influence depth of oscillation is only 2πδ1. The

FIG. 2. The oscillatory two-layer flow model.

basic flow for the modified oscillating two-layer Poinseuille
flow can be obtained by applying a slip boundary condition
at the upper layer and the no-slip boundary condition at the
lower rigid wall




ρ1
∂u1

∂t
= ρ1U0ω cos(ωt) + µ1∇

2u1

∂u1

∂y

�����(d1 ,t)
= 0

ρ2
∂u2

∂t
= ρ1U0ω cos(ωt) + µ2∇

2u2

u2(−d2, t) = 0

(8)

The equations in (8) can be nondimensionalized by adopt-
ing U0, d1 as the scales and written in complex form




Re
∂u1

∂t
= 2β2 exp(iΩt) + ∇2u1

∂u1

∂y

�����(1,t)
= 0

Re
∂u2

∂t
=

2β2

r
exp(iΩt) +

m
r
∇2u1

u2(−n, t) = 0

(9)

where Re = ρ1U0d1/µ1 is the Reynolds number, Ω = ωd1/U0 is
the dimensionless frequency, β = d1/δ1, n = d2/d1, r = ρ2/ρ1,
m = µ2/µ1, δ1 =

√
2υ2/ω, i =

√
−1, and stars of dimensionless

variables u∗j = u/U0, t∗ = tU0/d1, y∗ = y/d1 have been dropped
for convenience.

The equations have the following complex form of
solutions




U1(y, t) = (A1eα1y + B1e−α1y − i)eiΩt

U2(y, t) = (A2eα2y + B2e−α2y − i/r)eiΩt
(10)

where α1 = (1 + i)β, α2 =
√

r/mα1, and A1, B1, A2, B2 are inte-
gration constant determined by imposing the boundary and
interfacial conditions as follows




A1α1eα1 − B1α1e−α1 = 0

A2e−nα2 + B2enα2 − i/r = 0

A1 + B1 − i − A2 − B2 + i/r = 0

(A1 − B1) −
√

mr(A2 − B2) = 0

(11)

which represent slip velocity condition at the upper layer,
∂U1
∂y

���(1, t) = 0, no-slip velocity condition at the lower rigid
wall, U2(−n, t) = 0, continuity of velocity and shear stress at
the interface y = 0, U1 = U2, ∂U1/∂y = m∂U2/∂y, respec-
tively. Substituting the integration constants obtained from
the simultaneous Eqs. (11) into Eqs. (10), we have
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


U1(y, t) = (
√

mr[(r − 1) cosh(α2n) + 1] cosh(α1 − α1y)
r[
√

mr cosh(α1) cosh(α2n) − sinh(α1) sinh(α2n)]
− 1)ieiΩt

U2(y, t) =
(√mr cosh(α1) cosh(α2y) − (r − 1) sinh(α1) sinh(α2(n + y))

r[
√

mr cosh(α1) cosh(α2n) − sinh(α1) sinh(α2n)]

−
[sinh(α1) sinh(α2y)]

r[
√

mr cosh(α1) cosh(α2n) − sinh(α1) sinh(α2n)]
− 1/r

)
ieiΩt

(12)

It can be derived from Eqs. (12) that the velocity difference at
the interface is:

U1(1, t) −U1(0, t)

=

√
mr[(r − 1) cosh(α2n) + 1][cosh(0) − cosh(α1)]

r[
√

mr cosh(α1) cosh(α2n) − sinh(α1) sinh(α2n)]
ieiΩt (13)

The velocity profile calculated by taking the real part of
Eq. (13) is shown in Figure 3, where T is the wave period,
a is the wave amplitude. The maximum velocity difference
at the interface during one period as a function of d2/δ2,
which is proportional to n if β, m, r are fixed, is shown in
Figure 4. It can be seen that the maximum velocity difference
decreases with d2/δ2 if d2/δ2 < 3, and approaches to a con-
stant when d2/δ2 ≥ 2π. This variation tendency of the max-
imum velocity difference is unfavorable for a K-H instability
development, which requires a sufficiently strong shear at the
interface.

ONSET OF THE K-H INSTABILITY

The K-H instability is associated with steady parallel shear
flow. It is caused by the shear across the interface between
two fluids, and its growth rate increases with the shear

FIG. 3. The velocity profile calculated by taking the real parts of Eqs. (12) for
different fluid mud thicknesses at t = 0.25T for different fluid mud thicknesses.
The parameters are: ρ2 = 1050kg/m3, µ2 = 1Pa.s, h = 50m, a = 0.1h, T = 129s,
δ2 = 0. 2m.

strength. The time scale of the shear instability is inversely
proportional to the velocity difference, and a steady two-fluid
flow with a shear strength of Max(Real(U1(1, t) − U2(0, t)))
at the interface is more unstable than a two-fluid flow with
a periodic shear strength of Real(U1(1, t) − U2(0, t)) at the
interface.

According to the linear theory, the dimensional critical
velocity for onset of an inviscid K-H instability is:14

Ucri =

√
g
α

(ρ2 + ρ1)(ρ2 − ρ1)
ρ2ρ1

=

√
gl
2π

(ρ2 + ρ1)(ρ2 − ρ1)
ρ2ρ1

(14)

where α is the dimensional wave number, and l is the distur-
bance wavelength.

It can be inferred from Eq. (14) that the critical velocity
of the K-H instability decreases with decreasing disturbance
wavelength l, suggesting that a short disturbance wave is more
unstable than a long one for a given velocity difference at the
interface.

Figure 5 shows the critical velocity as a function of the
disturbance wavelength. The wave parameters and the phys-
ical properties of the fluids have been chosen such that
the flow is as less stable as possible. The horizontal line in
Figure 5(a) represents the maximum velocity difference
between the two fluids at their interface during one period
for d2/δ2 = 2π. It can be inferred that, for an inviscid K-H

FIG. 4. The dimensional maximum velocity difference at the interface during one
period, Udmax = U0Max(Real(U1(1, t) − U1(0, t))), as a function of thickness of the
fluid mud layer d2. The parameters are same as those in the caption of Figure 3.
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FIG. 5. Critical velocity as a function
of disturbance wavelength. The param-
eters are same as those in the caption of
Figure 3.

instability to occur, the disturbance wavelength l must be less
than about 0.35δ2. This conclusion is based on the assump-
tion that viscosity and the boundary layer thickness near
the interface have no dissipation effects on K-H instability.
For a viscous K-H instability to occur, a shorter disturbance
wavelength is required to overcome the viscosity dissipation
without consideration of the boundary layer thickness near
the interface. On the other hand, the disturbance may be
attenuated due to viscosity effect if the wavelength is further
decreased and the effect of the boundary layer is considered.
Thus, a decrease of disturbance wavelength does not always
result in a K-H instability if d2/δ2 ≥ 2π. When d2/δ2 becomes
small, as shown in Figure 5(b), the velocity difference at the
interface is quite larger than the inviscid K-H critical velocity
for disturbance with wavelength equal to 0.35δ2. Hence, a vis-
cous K-H instability becomes quite likely to occur. When other
parameter spaces of fluid mud (ρ = 1050 ∼ 1200kg/m3, µ = 0.05
∼ 10Pa · s) are considered, similar conclusions can be drawn.

To complete the analysis, we carry out a viscous anal-
ysis based on steady two-layer Orr-Sommerfeld equations
governing the stability of the basic flow represented by

Eq. (12) with parameters shown in Figure 5(a). Once the
basic flow is determined, a systematic viscous linear sta-
bility analysis based on unsteady two-layer Orr-Sommerfeld
equations with periodic coefficients is possible. According to
the numerical tests carried out by Talib,15–17 a viscous linear
analyses based on the unsteady two-layer Orr-Sommerfeld
equations and Floquet theory with a wide space range of
parameters will cost high computational price. We can make a
compromise between inviscid analyses and viscous analyses
based on the unsteady Orr-Sommerfeld equations and Flo-
quet theory. A viscous analysis with a quasi-steady basic flow
is adopted instead. The quasi-periodicity approach is valid
in detecting K-H instability although it cannot detect the
parametric-instability that may be present in periodic prob-
lems. Fortunately, the parametric-instabilities seldom leads to
breakup of the interface.18–20 Thus, a quasi-steady analysis is
sufficient for the present problem.

The basic flow used here is given by

Ua,1 =

√
real(U1)2 + imag(U1)2, Ua,2 =

√
real(U2)2 + imag(U2)2

(15)

FIG. 6. Basic flows for thick and thin fluid mud thickness with parameters in the caption of Figure 3. (a) The average basic flow represented by Eq. (15), (b) the snapshot of
the periodic basic flow when the maximum shear occur at the interface.
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The subscript a denotes an average of the periodic flow. The
difference between the average flow and the periodic flow
can be seen in Figure 6. The former doesn’t change with
time while the latter undergoes a complex variation during
one period. The average flow rather than the periodic flow
is used as the basic flow in stability analysis because the lat-
ter one is inconvenient for stability analysis and the abrupt
jump of velocity near the interface is still represented by

the former one, although the shear near the interface given
by the latter one at some moment among one period is far
stronger than that of the former one. It is noted that for d2
= 2πδ2, the basic flows shown in Figure 6(a) and (b) are the
same.

The viscous stability of the average basic flow is governed
by the steady two-layer Orr-Sommerfeld equations and the
corresponding boundary conditions as follows21

Re
(
ikU1(

∂2φ1

∂y2
− k2φ1) − ik

∂2U1

∂y2
φ1

)
− (

∂2

∂y2
− k2)2φ1 = cikRe(

∂2φ1

∂y2
− k2φ1)

rRe
(
ikU2(

∂2φ2

∂y2
− k2φ2) − ik

∂2U2

∂y2
φ2

)
−m(

∂2

∂y2
− k2)2φ2 = cikrRe(

∂2φ2

∂y2
− k2φ2)

∂φ1

∂y
= 0, y = 1

φ1 = 0, y = 1

∂φ2

∂y
= 0, y = −1

φ2 = 0, y = −1

φ1 = φ2, y = 0

∂φ1

∂y
+
∂U1

∂y
η̂ =

∂φ2

∂y
+
∂U2

∂y
η̂, y = 0

∂2φ1

∂y2
+ k2φ1 +

∂2U1

∂y2
η̂ = m(

∂2φ2

∂y2
+ k2φ2 +

∂2U2

∂y2
η̂), y = 0

∂3φ1

∂y3
− 3k2 ∂φ1

∂y
− 2k2η̂

∂U1

∂y
− ikRe[(U1 − c)

∂φ1

∂y
− φ1

∂U1

∂y
]

= m(
∂3φ2

∂y3
− 3k2 ∂φ2

∂y
− 2k2η̂

∂U2

∂y
) − ikrRe[(U2 − c)

∂φ2

∂y
− φ2

∂U2

∂y
]

+ ikRe[(1 − r)Fr + k2We]η̂, y = 0

U1η̂ + φ1 = cη̂, y = 0

(16)

where φj(j = 1,2) represents the disturbance wave amplitude,
n̂ the wave amplitude of the interface, Fr = gd1/U2

0 the Froude
number, We the Weber number which is taken as zero to make
the flow more unstable. The stability problem described by the
governing differential equations together with the conditions
at the solid boundaries and the interface represents a gener-
alized eigenvalue problem, in which the wave speed c is the
eigenvalue. A Chebyshev collocation method22 is used to eval-
uate the eigenvalue problem. Once c is obtained, the growth
rate ωi = cik can be readily obtained. If ωi > 0, the flow is
unstable, otherwise it is stable or neutrally stable.

Figure 7 displays the growth rate as a function of dis-
turbance wavelength at different water depths. It should
be noted that δ2 varies with water depth. It is seen from
Figure 7(a) that all disturbances at different water depths
decay for d2/δ2 = 2π. The maximum attenuation rate occurs
at a critical wavelength which is much smaller than δ2. A

decrease of wavelength larger than the critical wavelength
results in a larger attenuation rate, and an increase of water
depth result in a smaller attenuation rate. On the other hand,
if fluid mud thickness is decreased to d2/δ2 = 1, the basic flow
represented by Eq. (12) is unstable to sufficiently short wave-
length disturbances for all water depths. An increase of water
depth results in a higher growth rate and narrower range of
unstable wavelength. The viscous analysis shown in Figure 7(b)
predicts a much shorter wavelength compared with the invis-
cid analysis shown in Figure 5(b). This is because the basic
flow used in inviscid analysis is much stronger than that of the
average basic flow adopted here.

Therefore, d2/δ2 plays a key role in determining the sta-
bility of the interface. When the fluid mud layer is very thick,
for an inviscid K-H instability to occur, the disturbance must
be very short and the viscosity may stabilize the interface. On
the other hand, according to the viscous analyses based on the
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FIG. 7. Growth rates versus wavelength for different water depths with ρ2 = 1050kg/m3, µ2 = 1Pa.s, a = 0.1h, T = 10
√

h/0.3.

average basic flow, the K-H instability is absent at the inter-
face, and all short wavelength disturbances decay. Since the
most unstable basic flow has been adopted in calculations, it
can be declared that the interface is always stable at all water
depths as long as the fluid mud layer is far larger than the
Stokes boundary layer thickness in the fluid mud layer. When
the fluid mud layer is thin compared with the Stokes bound-
ary thickness, both inviscid and viscous analyses predict that
the interface becomes susceptible to the K-H instability. In the
following section, we will carry out numerical simulations to
investigate the effects of viscosity and verify the effect of fluid
mud thickness on the stability of the interface at the same
time.

NUMERICAL SIMULATIONS

The flow configuration is shown schematically in
Figure 2. Eqs. (1–3) are discretized using uniform control vol-
umes and staggered variable arrangement is employed. The
PISO algorithm23 is adopted to solve momentum and conti-
nuity equations. In additional to Eqs. (1–3), the volume of fluid
method(VOF) is adopted to capture the interface between
different fluids. The equation for VOF is

∂F
∂t

+ u
∂F
∂x

+ v
∂F
∂y
= 0 (17)

where F is the volume fraction function which represents the
volume ratio occupied by the fluid mud in a cell, ρ and µ are the
density and the dynamic viscosity of fluid in each cell, respec-
tively, which are determined by the following expressions.

ρ = ρ1F + ρ2(1 − F)

µ = µ1F + µ2(1 − F)
(18)

Youngs algorithm24 is used to march the fluid volume func-
tion, and the physical property parameters are updated via
Eq. (18) (refer to Ref. 21 for details).

At the bottom and top boundaries, no-slip and slip bound-
ary conditions are imposed, respectively. Periodic boundary
condition is applied in the stream-wise direction. The compu-
tational domain Lx × Ly is divided into M × N grids, and grid
coordinates are xi = iLx/M, xj = jLy/N (where i = 0, 1 · · · M;
j = 0, 1 · · · N). Grid independence tests are performed by
increasing M and N until there is no qualitative difference in
the flow patterns. M × N = 220 × 300 is found to be suffi-
cient for all the cases considered below. Our code is validated
with exact laminar solutions of oscillatory flow velocity pro-
file by setting r = 1, m = 1 in Eq. (12). Excellent agreements are
obtained (Figure 8).

Traditionally, the simulations are seeded with the eigen-
mode obtained from viscous stability analyses. Here, the
disturbances are introduced in another manner, which is
convenient to carry out analyses in both numerical simulations
and lab experiments. At the initial time, the fluids are motion-
less, and then a disturbance wave given by a standing wave
theory is introduced to the fluids to obtain an approximately
initial velocity field. The standing wave theory gives25




η = A0 sin(kx) sin(ωt)

u = A0ω
cosh(k(d2 + y))

sinh(kd2)
cos(kx) cos(ωt)

v = A0ω
sinh(k(d2 + y))

sinh(kd2)
sin(kx) cos(ωt)

(19)

where η is the amplitude of the interface, and A0 =
l

20 is the
corresponding maximum wave amplitude. Setting t to be zero
gives an initial flow field with η = 0. Subsequently a periodic
pressure gradient is applied in the stream-wise direction to
drive the fluids. The disturbance will decay because of vis-
cous dissipation if the periodic pressure gradient is absent,
and will grow if the shear due to the pressure gradient is
strong enough to trigger an instability. The stabilizing effect
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FIG. 8. Comparison of flow velocity profile between numerical simulations and exact solutions for different flow conditions. The parameters are: ρ2 = 1000kg/m3,
µ = 0.001Pa · s, d1 = d2 = δ, δ =

√
2υ/ω.

of viscosity and the destabilizing effect of pressure gradient
compete with each other during the developing of the flow.

Figure 9 shows the evolution of the disturbance with
wavelength l=8d2. The computational box contains two con-
secutive waves. It is clear that the disturbance decays as
time elapses and the flow is stable. This is true even if the
disturbance wavelength is further decreased to l = 4δ2 and
l = 2δ2, as shown in Figure 10, Figure 11. Furthermore, as the
disturbance wavelength gets smaller and smaller, the time for
the disturbance to decay becomes shorter and shorter. This
indicates that viscosity has a dissipation effect on the distur-
bances because shorter disturbance is less stable if the vis-
cosity is unconsidered, as demonstrated by Eq. (14). This is
consistent with the finding obtained from the above viscous
stability analysis, which predicts that the decrease of distur-
bance wavelength larger than the critical wavelength (only one
fifth or less of δ2) will result in a more and more stable flow.

Hence, it can be anticipated that a further decrease of the
disturbance wavelength will result in a more stable flow region
and the K-H instability will be absent at the interface.

Now, let us examine the effect of mud layer thickness on
the stability of the interface. Figure 12 shows the snapshots
of the interface when it is close to the breaking point for dif-
ferent mud layer thicknesses. It is clear that the thinner the
mud layer is, the earlier the break begins, indicating the flow
is more and more unstable. This is consistent with the finding
obtained from the linear analyses. Figure 13 shows the evo-
lution of the interface at different time with the mud layer
thickness d2 = δ2. It can be seen that the interface breaks
due to a shear instability if the fluid mud is thin enough. One
may note that the unstable wavelength exceeds the scope of
unstable wavelength predicted by viscous analysis as shown
in Figure 7(b). This is because the shear here is stronger than
that in viscous analysis shown in Figure 7(b).

FIG. 9. Temporal evolution of disturbance with disturbance wave length l = 8δ2, d1 = 10πδ1, d2 = 2πδ2 and the parameters are given in the caption of Figure 3.
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FIG. 10. Temporal evolution of disturbance with the disturbance wave length l = 4δ2. The other parameters are given in the caption of Figure 9.

FIG. 11. Temporal evolution of disturbance with the disturbance wave length l = 2δ2. The other parameters are the same with that in Figure 9.

FIG. 12. The effect of varying fluid mud thickness on the stability. l = d2 and other parameters are given in the caption of Figure 3.
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FIG. 13. Evolution of the interface for fluid mud with thin enough thickness. d1 = 15πδ1, d2 = δ2, l = 2δ2 and the other parameters are given in the caption of Figure 3.

It should be noted that the surface tension has been
ignored and the oscillatory two-layer Poiseuille flow has been
adopted to make the flow more unstable. This makes it favor-
able for formation of the K-H instability, but it doesn’t change
the fact that the fluid mud thickness plays a center role in
determining the stability of the interface between fluid mud
and water. Since the effect of surface tension is stabilizing, it
is reasonable to anticipate that for the interface to break, the
surface wave must be very long, or equivalently, the fluid mud
layer must be very thin. On the other hand, the interface will
be stable if the fluid mud is very thick.

CONCLUSIONS

Mud-water interface, also called lutocline that separates
water and fluid mud, often exists in coastal areas. Its stability
gives significant impact on the fluid mud suspension, which
influences navigation depth greatly. Wave theory tells us that

a longer surface wave produces stronger shear at mud-water
interface. Therefore, mud-water interface can be susceptible
to the K-H instability if a surface wave is long enough. We
have investigated this issue in the present paper by simplifying
the wave inducing velocity fields to the oscillating two-layer
Poiseuille flows.

The critical conditions for the K-H instability to occur
have been examined for different physical parameters of the
two fluids and surface waves. The linear stability analyses
show that the ratio of the mud layer thickness and the Stokes
boundary layer thickness in mud layer induced by surface
waves plays a central role in determining the stability of the
interface. The flow will be stable if the Stokes boundary layer
thickness is far smaller than the mud layer thickness, and
it will become susceptible to the K-H instability if the mud
layer is sufficiently thin. Numerical simulations are then per-
formed as complementary evidences to examine the effects
of disturbance wavelength and mud layer thickness on the
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stability of the interface. The simulations show that a shorter
disturbance wave results in a more stable region if the mud
layer is far larger than the Stokes boundary layer thickness
in the fluid mud layer. On the other hand, the flow becomes
more unstable if the mud layer thickness decreases. The mud-
water interface does break if the Stokes boundary layer thick-
ness is large enough to penetrate the mud layer. This is
consistent with the finding from our linear stability analyses.
A sufficiently long surface wave, or equivalently a sufficiently
thick Stokes boundary layer, will cause instability of the inter-
face because of strong shear at the interface. This is prac-
tically instructive for waterway and harbor construction and
protection.
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