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Abstract The inverse problem of determining three parameters: the film thickness, the film and sub-

strate Young’s moduli of a film/substrate bilayer by indentation, is formulated and solved. The physical

mechanism for the solvability of the inverse problem is that these three parameters have different impacts

at different indentation depth. Their impacts are systematically studied, which also provides a different

approach of finding the three parameters or refining their range. Compared with various atomic force

microscopy (AFM) based techniques of detecting subsurface structures, which have to deal with an ex-

tremely difficult or even an insurmountable inverse problem with the integral equation of dynamics, the

inverse problem here formulated by statics is much more straightforward and simpler. Formulating and

solving such inverse problem can be of some help to the applications such as characterizing subsurface

structures, the out-of-plane properties of two-dimensional (2D) materials, and various bilayer structures.

1. Introduction

Characterizing subsurface structure is critical to almost every area of science and engineering [1]. For

example, one of crucial demands in microelectronics is to detect the integrity of electrical contacts and

interconnects, which are often buried and stacked [2]. Detecting the inner structure of biological sam-
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ples can help to identify the presence of malaria parasites [2] or nanoparticles [3] inside a red blood

cell. Probing the subsurface ionic transport is key to the development of various energy storage and

generation systems [4, 5]. To detect the subsurface structure, various atomic force microscopy (AFM)

based dynamic techniques are developed, such as ultrasonic force microscopy (UFM) [6], atomic force

acoustic microscopy (AFAM) [7], heterodyne force microscopy (HFM) [8], scanning near-filed ultrasound

holography (SNFUH) [2], multifrequency force microscopy [9], resonant difference-frequency atomic force

ultrasonic microscopy (RDF-AFUM) [10] and mode synthesizing atomic force microscopy (MSAFM) [11],

etc. The buried structures, interfaces, defects and particles can all lead to the mechanical property varia-

tions such as stiffness, elasticity, viscosity and adhesion energy [2, 12], which are manifested by the AFM

tip-sample interactions. Those mechanical property variations are characterized by three observable pa-

rameters of an AFM oscillation: amplitude, frequency and phase lag [12]. In the layered film/substrate

structures [13, 14, 15] or the structures with buried particles and defects [16], the change of AFM tip

indentation depth leads to the variations of radiation impedance and contact stiffness, which both result

in the shifts of the AFM contact resonance frequencies. Therefore, the shifts of the contact resonance

frequencies are used to infer the mechanical properties of subsurface layer, particles and defects. Simi-

larly, phase lag, which indicates the energy dissipation, can also be used to image/detect the subsurface

structures [12].

However, for those AFM-based dynamic techniques to detect the mechanical properties of subsurface

structures, there are two major technical challenges in the interpretation of AFM oscillation param-

eters [17]: Firstly, it is not straightforward and even extremely difficult to link the observable AFM

oscillation parameters of amplitude, frequency and phase lag with the specific information about the

subsurface structure. The second one is how to separate topography from mechanical properties in

those parameters. These two interpretation challenges in essence are due to the mathematical difficulty
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of solving an inverse problem [18, 19, 20]. In order to determine the sample properties, the inverse

problem of extracting the tip-sample interactions from the measured motions of the probe needs to be

solved, which is an integral equation [18, 19, 20]. In the integral equation of AFM dynamics, the interac-

tion force/potential is often multiplied/divided by the instantaneous tip displacement or its derivatives.

Mathematically, it is very difficult or even impossible to invert such integral equation, or say, to extract

the interaction force/potential as a function of the measured experimental parameters [9]. The inverse

problem of the AFM dynamic tip-sample interactions in general is unsolvable without making some as-

sumptions to simplify the problem [18, 19, 20]. Although various AFM dynamic techniques as mentioned

above are developed and much more information on the AFM oscillations can be measured, it is still a

significant challenge to transform the myriad of information into the specific knowledge about the subsur-

face structural and mechanical properties [17]. As a result, the current dynamic AFM techniques detect

the subsurface structures in a qualitative rather than a quantitative way [12].

In the film/substrate bilayer indentation tests [21, 22, 23, 24, 25], the elastic field is not confined to the film

layer only and it also extends into the substrate layer. Therefore, the substrate properties play a role in

the indentation test, which is the so-called substrate effect. In those indentation tests [21, 22, 23, 24, 25],

the substrate effect is hazardous because it causes significant troubles of accurately measuring the film

properties. In contrast, the substrate effect is the exact mechanism for those AFM dynamic tech-

niques [13, 14, 15, 16] to detect the mechanical properties of a subsurface layer. On the other hand,

various two-dimensional (2D) materials are combined together by stacking to form heterogeneous struc-

tures [26, 27, 28], which demonstrate some unique and excellent properties because of their anisotropy [29].

One remarkable characteristics of the 2D material anisotropy is that its in-plane elasticity is an intrinsic

property, while, the out-of-plane counterpart is a tunable one [29]. The reason for such tunability is that

it is the weak van der Waals (vdW) force linking the layers [27] and ions/molecules can be easily inserted
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between the layers [28], which essentially changes the vdW force and thus the 2D material out-of-plane

properties. Characterizing the 2D material out-of-plane properties, such as Young’s modulus, is essential

for both fundamental understanding and practical applications [29]. In contrast to various measuring

methods on the in-plane Young’s modulus of 2D material, such as bending and axial tensile test [30, 31],

the indentation test may be the only technique currently available to measure the 2D material out-of-

plane properties [32]. Gao’s method of measuring the out-of-plane Young’s modulus of 2D materials in

essence is to avoid/neglect the substrate effect [32]. In their graphene/silicon carbide (SiC) bilayer inden-

tation test [32], the indentation depth is 0.1 nm and the graphene is ten-layer with the total (estimated)

thickness of 3 nm. Therefore, Gao et al. [32] assumed that the SiC substrate has no impact on the

indentation. To avoid the substrate effect and thus to measure the “film-only” properties, the common

practice is to limit the indentation depth less than 10% of the film thickness [24]. However, this 10%

ratio rule of thumb is actually not reliable [22]. Even when the ratio of the indentation depth to the film

thickness is as small as 1%, the substrate effect can still be significant [33]. The ratio in Gao’s indentation

test [32] is 0.1/3 ≈ 3.33% and as shown later, the substrate effect stands out even more when the Young’s

modulus difference between the film and substrate is larger. Besides a 2D material on a substrate, the

film/substrate model also applies to various coated materials with a bilayer structure [33, 34].

In the above film/substrate bilayer indentation tests [21, 22, 23, 24, 25], which intends to measure the

film Young’s modulus only, both the film thickness and substrate Young’s modulus are the known quan-

tities. As a result, the film Young’s modulus as the only unknown can be uniquely determined because

of the one-to-one relation between the film Young’s modulus and the film/substrate effective Young’s

modulus [21, 22, 23, 24, 25]. The film/substrate effective Young’s modulus is a quantity varying with

indentation depth, which can be extracted from the force-indentation depth curves [21, 22, 23, 24, 25].

However, for those AFM dynamic techniques to detect the structure of subsurface layer [13, 14], the film
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thickness and substrate Young’s modulus are also unknown. When the number of unknown quantity

is more than one, the above one-to-one relation does not exists and as shown later, there are infinite

combinations of those unknown quantities which can result in a same film/substrate effective Young’s

modulus. This is also the mathematical reason for the difficulty of solving the inverse problem. Batog et

al. [15] even concluded that only when either two of the film thickness, the film and substrate Young’s

moduli are known, can a third one be determined. In this study, the film thickness, the film and substrate

Young’s moduli are the three unknowns to be determined as an inverse problem from the indentation data.

Physically, the inverse problem in this study is formulated via the statics of indentation. Compared with

the above AFM dynamic techniques, this statics formulation provides a simpler and more straightfor-

ward method to detect the subsurface structures together with the surface ones. In those AFM dynamic

techniques utilizing the shifts of contact resonance to detect the subsurface structures [13, 14, 16], the

contact stiffness and damping are the two varying quantities determining the contact resonance. In our

statics formulation of inverse problem, the contact stiffness is de facto the only varying quantity, from

which the film/substrate effective Young’s modulus is extracted. Although our inverse solving method

can determine the three unknowns of the film thickness, the film and substrate Young’s moduli, its accu-

racy is strongly dependent on that of the indentation measurements. To overcome this robustness issue,

a systematic approach to improve the accuracy is also presented.
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2. Model development

The contact models of Hertz, Derjaguin-Muller-Toporov (DMT) and Johnson-Kendall-Roberts (JKR) are

given as follows

P =




4E∗a3

3R , (Hertz)

4E∗a3

3R − 2πRγ, (DMT)

4E∗a3

3R − 2a3/2
√

2πE∗γ, (JKR).

(1)

Where P , a and γ are the indentation load, the contact radius and the work of adhesion between the

indenter and film surfaces, respectively. 1/R = 1/Ri +1/Rf (Ri: indenter radius and Rf : the film radius

of curvature). E∗ is the reduced modulus of the specimen/indenter system, which is given as the following

1
E∗ =

1
E′ +

1
E′

i

(2)

As shown in figure 1, the specimen is a bilayer structure of film and substrate. Here E′ is the reduced

modulus of the specimen and its expression will be discussed later in details. E′
i = Ei/(1 − ν2

i ) is the

reduced modulus of indenter with Ei and νi being the indenter Young’s modulus and Poisson’s ratio,

respectively. It is also noticed that the reduced modulus and the plane-strain modulus are the same [25],

which physically indicates that the contact stress is triaxial with a high degree of hydrostatic pressure [21].

Eq. (1) presents the a − P curves. However, the contact radius (a) is not a measured quantity by a

depth-sensing indentation instrument [24, 23, 35, 36]. The following relation holds for the contact depth

(hc) and radius (a) [37, 38]

hc =




a2

R , (Hertz,DMT)

a2

R −
√

2πRγ
E∗ , (JKR).

(3)

Because the layer elastic and plastic deformations can result in sink-in and pile-up, respectively, the

contact depth (hc) and measured indentation depth (h) are often different [24, 35, 39] In the sink-in
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hc
hEf ,νf t

Ei, νi,

Es ,νs

Ri

2a

P

Figure 1. Schematic diagram of an indenter penetration into a film/substrate structure. The indenter is

with the radius of Ri, Young’s modulus of Ei and Poisson’s ratio of νi. t is the film thickness, hc and a are

the contact depth and radius, respectively. P is the indentation load and h is the indenter displacement.

Ef , νf and Es, νs are the Young’s moduli and Poisson’s ratios of the film and substrate, respectively.

scenario as shown in figure 1, hc < h; while, in the pile-up scenario, hc > h [34]. For simplicity, h = hc is

assumed here, which can cause an error. The impact of this error together with others will be discussed

later in details.

With both Eqs. (1) and (3), the h − P curve can be easily obtained. However, in real applications, the

work of adhesion (γ) measured by pull-off forces fluctuates significantly [32], which can cause significant

errors on the h − P curve interpretation. To lessen this adhesion influence, the contact stiffness (K) is

introduced as follows by taking the derivative of dP/dhc [32]

K =
dP

dhc
=

dP/da

dhc/da
=




2E∗a = 2E∗√Rhc, (Hertz,DMT)

4E∗a2/R−3
√

2πaγ

2a/R−
√

πγ/(2E∗a)
, (JKR).

(4)
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In above equation, γ has no impact on the Hertz and DMT models. When γ = 0, dP/dhc of the

JKR models recovers that of the Hertz and DMT models. The derivation of Eq. (4) solely relies on

elasticity. While, plastic deformation often occurs in an indentation [24, 35, 36]. In order to incorporate

the plasticity effect, the following modified version of Eq. (4) is introduced [39]:

K = C
2√
π

E∗√SA (5)

Where C is a dimensionless correction factor to account for the effect of the indenter geometry. For

example, C = 1 for sphere indenter; C = 1.012 for square indenter (punch) and C = 1.034 for triangular

indenter [36]. SA = πa2 is the projected contact area and in a real application, the proper calcula-

tion/estimation of SA can be difficult [40]. The difficulty is due to the hc and h difference as mentioned

above. Because a is not a measured quantity, in order to calculate SA, the hc−a relation of Eq. (3) needs

to be used. While, because of the sink-in and pile-up effects, it can be difficult to obtain hc accurately

from the measured data of h. Clearly, when C = 1, Eq. (5) recovers Eq. (4) of the Hertz and DMT

models.

In an indentation test, P , h, R and γ are the measured quantities. The contact radius a is calculated from

Eq. (3). The contact stiffness K = K(a) or K = K(h) varying with contact radius/depth is calculated

from the measured h− P data. Once K is found, the reduced modulus of the specimen/indenter system

(E∗) can be determined. For example, E∗ = K/(2
√

Rhc) can be easily derived by using the DMT model

of Eq. (4). With E∗ being found, the reduced modulus of the specimen (E′) is determined from Eq. (2)

as follows:

E′ =
E∗E′

i

E′
i − E∗ (6)

Here the indenter reduced modulus of E′
i is a known quantity. E′ is a function of the reduced moduli

of the film and substrate (E′
f and E′

s), the film thickness (t) and contact radius or depth (a or h),

i.e., E′ = E′(E′
f , E′

s, t, a) or E′ = E′(E′
f , E′

s, t, h). By examining various function forms given for E′ =

8
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E′(E′
f , E′

s, t, a), Menčik et al. [21] found that only two function forms can properly fit the experimental

data. One is the following exponential function form:

E′ = E′
s + (E′

f − E′
s)e

−Λa/t (7)

Where Λ is a positive fitting parameter, which can be obtained from the experimental data by the least

square method [21]. The other is the following form [41]

E′ = E′
s + (E′

f − E′
s)φg(x) (8)

Where x = a/t is a dimensionless quantity, and φg(x) is a function given as follows [21, 41]

φg(x) =
2
π

arctan
1
x

+
1

2π(1 − ν)

[
(1 − 2ν)

ln(1 + x2)
x

− x

1 + x2

]
(9)

Here ν is the effective Poisson’s ratio, whose value depends on the contact radius and film thickness, i.e.

ν = ν(a/t). This ν value transitions from the film Poisson’s ratio (νf ) to the substrate one (νs) with the

increase of contact radius/depth (a or h) [41]. Because the impact of this ν variation on the E′ value

as given by Eq. (8) is rather small [42], Menčik et al. suggested to simply use νf for ν [21]. Compared

with Eq. (7), an outstanding characteristics of Eq. (8) is that it has no fitting parameter. Both e−Λx

and φg(x) monotonically decrease from 1 to 0 as x increases from 0 to ∞, the E′ value changes from E′
f

to E′
s as indicated by both Eqs. (7) and (8). Physically this is the indication that the substrate effect

enlarges with the increase of contact radius/depth. In both Eqs. (7) and (8), the contact radius a is used

and therefore, the measured quantity of hc needs to be transformed into a by using Eq. (3).

The following quantities are introduced for the nondimensionalization scheme:

A =
a

ac
, F =

P

Pc
, α1 =

E∗

E′
ii

, α2 =
E′

f

E′
ii

, α3 =
E′

s

E′
ii

, β1 =
ac

R
, β2 =

2πγ

E∗ac
=

2πγ

α1E′
iiac

, T =
t

ac
, x =

a

t
=

A

T

(10)

Here E′
ii = E′

i/2 (i.e., 1/E′
ii = 1/E′

i +1/E′
i) is the reduced modulus as if the indenter is in contact with a

same monolithic material; ac = [9πγR/(8E′
is)]

1/3 and −Pc = −3πRγ/2 are the pull-off radius and force

9
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as predicted by the JKR model. Eqs. (3) and (4) are now nondimensionalized as follows:

H =
hc

ac
=




β1A
2, (Hertz,DMT)

β1A
2 −

√
β2A, (JKR).

(11)

and

S =
Kac

Pc
=




3α1
2β1

A = 3α1
2β1

√
H
β1

, (Hertz,DMT)

3α1A2−3
√

α1A1/2

2β1A−1/2
√

β2/A
= 3α1A5/2−3

√
α1A

2β1A3/2−1/2
√

β2
, (JKR).

(12)

H and S are the dimensionless contact depth and stiffness, respectively. Eq. (6) becomes the following

dimensionless form:

E′

E′
ii

= f =
E∗/E′

ii × E′
i/E′

ii

E′
i/E′

ii − E∗/E′
ii

=
2α1

2 − α1
(13)

Eqs. (7) and (8) are nondimensionalized together as follows:

E′

E′
ii

= f = α3 + (α2 − α3)φ(x) (14)

Where φ(x) can be either the exponential function of φ(x) = e−Λx as given by Eq. (7) or φ(x) = φg(x)

as given by Eq. (8). Actually, the difference between e−Λx and φg(x) is very small. For example, with

Λ = 0.8 and in the range of 10−4 ≤ x ≤ 1.4, the difference is less than 5% [21]. It should keep in

mind that Eq. (14) in essence is an approximate expression. More accurate and strict elasticity analysis

involves solving the integral equation of a Boussinesq problem [43]. However, even with the simplified

expression of Eq. (14), significant mathematical difficulty as shown later can still arise because of the

overdetermined property of solving the inverse problem of indentation [44].

The following equation is derived by equating Eqs. (13) and (14):

F(α1, A, α2, α3, T ) =
2α1

2 − α1
− α3 − (α2 − α3)φ(x) = 0 (15)

Here the dimensionless reduced modulus of specimen/indenter system (α1) and dimensionless contact

radius (A) are the two varying and measured quantities. The dimensionless reduced moduli of film (α2)

10
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and substrate (α3), and the dimensionless film thickness (T ) are the three fixed but unknown parameters

to be determined. Eq. (15) is the very foundation for us to solve the inverse problem.

3. Results and discussion

The following parameters are all taken from Gao’s experimental data [32]: The indenter is made of silicon

with the Young’s modulus of Ei = 169 GPa and the Poisson’s ratio of 0.27; the indenter radius is fixed

as Ri =114 nm and the film/substrate bilayer is flat, which leads to R = 114 nm; the work of adhesion

is fixed as γ = 1 Nm−1. As a result, ac and β1 are fixed as ac = 7.96 nm and β1 = 6.9828 × 10−2.

For silicon carbide (SiC), ESiC = 400 GPa and vSiC = 0.14; for germanium (Ge), EGe = 138 GPa and

vGe = 0.26. In figure 2, there are two types of film/substrate bilayer structures: SiC/Ge (harder film)

and Ge/SiC (softer film). The SiC/Ge bilayer corresponds to α2 = 4.4764 and α3 = 1.6239; Ge/SiC

corresponds to α2 = 1.6239 and α3 = 4.4764. In figure 2, the H − S curves as predicted by both JKR

and DMT/Hertz models are plotted and the dimensionless film thickness is T = 2. The DMT and Hertz

models predict the same contact stiffness as given by Eq. (4) or (12). Adhesion has no contribution to

the contact stiffness as predicted by the DMT and Hertz models. With the increase of indentation depth

(H), the contact stiffness difference between the JKR and DMT/Hertz models shrinks as seen in figure

2. Because the adhesion energy is a small quantity, the adhesion effect on contact needs to be considered

only when the contact radius is very small [42]. It is also noticed that around H = 0.2, the H −S curves

of SiC/Ge and Ge/SiC cross each other. The inset of figure 2 shows the H − S curves as predicted by

the DMT model in the shallow indentation area. For H > 0.2, the contact stiffness of SiC/Ge is smaller

than that of Ge/SiC; for 0 ≤ H < 0.2, it is the opposite: SiC/Ge is with a larger contact stiffness and

Ge/SiC is with a smaller one. To illustrate the crossing mechanism of H −S curves, figure 3 is presented.

Figure 3 plots the f as a function of H with T = 2. Here f = E′/E′
ii as defined in both Eqs. (13) and
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(14) is the dimensionless reduced modulus of the film/substrate. As mentioned above, because of the

monotonically decreasing property of e−Λx and φg(x), the f value experiences the transition from the

film one (α2) to the substrate one (α3) with the increase of H. In figure 3, for SiC/Ge, it is a harder

film on a softer substrate; f starts as f = α2 = 4.4764 and decreases monotonically towards α3 = 1.6239.

While, for Ge/SiC, it is the softer film on harder substrate case, f starts as f = α2 = 1.6239 and then

increases monotonically towards α3 = 4.4764. The two curves also cross each other exactly at H = 0.2.

The change of the reduced modulus of film/substrate [45], or say, the substrate effect, is the mechanism

responsible for the crossings in both figures 2 and 3.

Hertz/DMT
JKR      

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

80

100

120

140

160

H

S

Ge/SiC

SiC/Ge

Crossing point

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

35

40

45

50

H

S Ge/SiC
SiC/Ge

Crossing point

Figure 2. The H−S curves of two bilayer structures: Ge/SiC (softer film/harder substrate) and SiC/Ge

(harder film/softer substrate). The dashed lines are the ones predicted by the JKR model and solid ones

are those by the Hertz or DMT model. The inset plot shows a closer look at the contact stiffness at small

indentation depths. The contact stiffness curves of Ge/SiC and SiC/Ge cross each other around H = 0.2.
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f

Figure 3 The H − f curves of Ge/SiC and SiC/Ge. Here f = E′/E′
ii = α3 + (α2 − α3)φ(x) is the

(dimensionless) effective reduced Young’s modulus of the film/substrate bilayer structure. The two curves

intersect around H = 0.2.

3.1. Detecting the subsurface layer properties

To graphically illustrate how the inverse problem is solved, a special case is presented, in which the film

reduced modulus (α2) is known, the substrate reduced modulus (α3) and the film thickness (T ) are the

two unknowns. Physically, this is an inverse problem of detecting the properties of subsurface layer. In

many applications of detecting the surface properties, measuring the thickness of surface layer (film layer)

can be difficult or even impossible. For Ge/SiC, α2 = 1.6239; the H − S curve as presented in figure 2

can be obtained from the indentation test. Here the DMT model is applied [32] and the film thickness

is T = 2. From Eqs. (11) and (12), A and α1 can be extracted from the H − S curve as A =
√

H/β1

and α1 = 2β
3/2
1 S/(3H1/2). Two (arbitrary) sets of data are thus extracted from the DMT H − S curve

of figure 2 as follows: Shallow indentation of (α1, A, H) = (1.2571, 2.4, 0.4022) and deep indentation of

(α1, A, H, ) = (1.3367, 4.64, 1.5032). According to Eq. (13), the corresponding effective reduced modulus
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of Ge/SiC at shallow indentation is f = 2α1/(2 − α1) = 3.3842. For given α2 = 1.6239 and A = 2.4

(or H = 0.4022), f as a function of both α3 and T is plotted by Eq. (14) in figure 4. The horizontal

plane in figure 4 is the one with the fixed value of f = 3.3842 and intersection of the two planes are

marked by a solid line. Physically, this intersection line means that for given α2 = 1.6239 and A = 2.4,

there are infinite combinations of α3 and T which can yield the same value of f = 3.3842. For the deep

indentation, the corresponding reduced modulus of the film/substrate is f = 4.0305. Similarly, for given

α2 = 1.6239 and A = 4.64 (or H = 1.5032), f as a function of both α3 and T is plotted in figure 5.

In figure 5, the horizontal plane is the one with the fixed value of f = 4.0305 and intersection of the

two planes are marked by a dashed line. Again, this intersection line means that for given α2 = 1.6239

and A = 4.64, there are infinite combinations of α3 and T which can yield the same effective reduced

modulus of f = 4.0305. When these two curves obtained in figures 4 and 5 are projected into the α3 − T

plane as shown in figure 6, the intersection of the two curves is marked with a circle, which corresponds

to the exact solution of (α3, T ) = (4.4764, 2). The intersection mechanism for these two curves, or say,

the mechanism that the inverse problem can be solved is reflected in Eq. (14): at different indentation

depth (H), the impacts of the film thickness (T ) and the substrate reduced modulus (α3) on the reduced

modulus of the film/substrate bilayer (f) are different.

The above graphical solution procedure can be more succinctly presented by using Eq. (15). With

α2 = 1.6239 and two sets of indentation data of (α1, A, H) = (1.2571, 2.4, 0.4022) and (α1, A, H) =

(1.3367, 4.64, 1.5032) as inputs, the following equation set is obtained


F(α1, A, α2, α3, T ) = F(1.2571, 2.4, 1.6239, α3, T ) = 2×1.2571
2−1.2571 − α3 − (1.6239 − α3)φ

(
2.4
T

)
= 0

F(α1, A, α2, α3, T ) = F(1.3367, 4.64, 1.6239, α3, T ) = 2×1.3367
2−1.3367 − α3 − (1.6239 − α3)φ

(
4.64
T

)
= 0.

(16)

Eq. (16) provides two nonlinear equations for solving the two unknowns of α3 and T . The two unknowns

are solved by the Newton-Raphson method [46], which yields the exact solution of (α3, T ) = (4.4764, 2).
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Figure 4. The plot of f as a function of T and α3. The horizontal plane is the one with the fixed value

of f = 3.3842. The intersection of the two planes are marked by a solid line.

Theoretically, an H −S curve obtained by an indentation test can provide infinite data set of (α1, A, H).

Here α3 and T are the only two unknowns to be determined. Therefore, mathematically, only two different

sets of indentation data are needed for solving the inverse problem. If two different sets of (α1, A, H)=

(0.9592, 0.2, 2.7927× 10−3) and (1.3, 3.3, 0.7603) from the DMT H − S curve of figure 2 are (arbitrarily)

taken as the inputs, the following equation set is obtained


F(α1, A, α2, α3, T ) = F(0.9592, 0.2, 1.6239, α3, T ) = 2×0.9592
2−0.9592 − α3 − (1.6239 − α3)φ

(
0.2
T

)
= 0

F(α1, A, α2, α3, T ) = F(1.3, 3.3, 1.6239, α3, T ) = 2×1.3
2−1.3 − α3 − (1.6239 − α3)φ

(
3.3
T

)
= 0.

(17)

Again, the exact solution of (α3, T ) = (4.4764, 2) is obtained. In both Eqs. (16) and (17), the input

data are the exact ones as obtained from the H − S curves. As far as two different sets of (α1, A, H) are

input, the exact solution of (α3, T ) can be obtained. When applying the Newton-Raphson method [46],

the initial guesses for α3 and T need to be provided. One of the advantages for the above inverse

problem formulation is that it is not sensitive to the initial guesses of α3 and T . However, in a real

indentation experiment, experimental data are always with errors. As mentioned above, the assumption
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Figure 5. The plot of f as a function of T and α3. The horizontal plane is the one with the fixed value

of f = 4.0305. The intersection of the two planes are marked by a dashed line.

of h = hc is an important error source. Once the input data are with errors, the above conculsion of two

different sets of (α1, A, H) resulting in the same solution of (α3, T ) cannot hold. The inverse problem

becomes overdetermined [44], i.e., different inputs will yield different solutions of (α3, T ). The robustness

or sensitivity [44] is an issue in the inverse problem solving method. Here the robustness is studied by

inputting the (arbitrarily) errored data.

The two exact data as given in Eq. (16) are (α1, A) = (1.2571, 2.4) and (1.3367, 4.64). The two errored

data sets are taken as (α1, A) = (1.2571× (1− 1%), 2.4× (1 + 10%)) = (1.2445, 2.64) and (1.3367× (1−

0.5%), 4.64 × (1 + 5%)) = (1.33, 4.872). With the two errored data sets as input, Eq. (16) now becomes

the following


F(α1, A, α2, α3, T ) = F(1.2445, 2.64, 1.6239, α3, T ) = 2×1.2445
2−1.2445 − α3 − (1.6239 − α3)φ

(
2.64
T

)
= 0

F(α1, A, α2, α3, T ) = F(1.33, 4.872, 1.6239, α3, T ) = 2×1.33
2−1.33 − α3 − (1.6239 − α3)φ

(
4.872

T

)
= 0.

(18)

With the errored inputs, Eq. (18) yields the solution of (α3, T ) = (4.6804, 2.6701). Compared with the

exact solution of (α3, T ) = (4.4764, 2), the errors of α3 and T are 4.558% and 33.504%, respectively.
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Figure 6. The two intersection curves as obtained in Figs. 4 and 5 are projected into the α3 − T

plane. The intersection of the two curves is marked by a circle, which corresponds to the exact solution

of (α3, T ) = (4.4764, 2).

Further robustness study are carried out by using dozens of errored data as inputs, which, for the sake

of succinctness, are not presented here. The general trend is clear: the above inverse solving method is

extremely sensitive to the α1 error. Small α1 error can result in large errors of α3 and T , and even a

worse scenario that the Newton-Raphson method cannot find a solution. As shown later, this robustness

issue becomes more serious when there are more unknowns in the inverse problem.

3.2. Detecting the properties of both film and substrate layers

Now α2, α3 and T are three unknowns. To solve the three unknowns, total three sets of data are needed.

As the three sets of (α1, A) = (1.2571, 2.4), (1.3, 3.3) and (1.3367, 4.64) are supplied, Eq. (15) yields the

17

Page 17 of 32 AUTHOR SUBMITTED MANUSCRIPT - JPhysD-114890.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



following equation set



F(α1, A, α2, α3, T ) = F(1.2571, 2.4, α2, α3, T ) = 2×1.2571
2−1.2571 − α3 − (α2 − α3)φ

(
2.4
T

)
= 0

F(α1, A, α2, α3, T ) = F(1.3, 3.3, α2, α3, T ) = 2×1.3
2−1.3 − α3 − (α2 − α3)φ

(
3.3
T

)
= 0

F(α1, A, α2, α3, T ) = F(1.3367, 4.64, α2, α3, T ) = 2×1.3367
2−1.3367 − α3 − (α2 − α3)φ

(
4.64
T

)
= 0.

(19)

Again, as far as the exact data are supplied, the Newton-Raphson method is not sensitive to the initial

guesses of α2, α3 and T and their exact solutions are also obtained. Now the robustness issue is studied by

inputting the three sets of errored data: (α1, A) = (1.2571 × (1 − 1%), 2.4 × (1 + 10%)) = (1.2445, 2.64),

(1.33 × (1 − 0.7%), 3.3 × (1 + 5%)) = (1.3207, 3.465) and (1.3367 × (1 − 0.1%), 4.64 × (1 + 3%)) =

(1.3354, 4.7792). With the errored inputs, Eq. (15) leads to the following equation set



F(α1, A, α2, α3, T ) = F(1.2445, 2.64, α2, α3, T ) = 2×1.2445
2−1.2445 − α3 − (α2 − α3)φ

(
2.64
T

)
= 0

F(α1, A, α2, α3, T ) = F(1.3207, 3.465, α2, α3, T ) = 2×1.3207
2−1.3207 − α3 − (α2 − α3)φ

(
3.465

T

)
= 0

F(α1, A, α2, α3, T ) = F(1.3354, 4.7792, α2, α3, T ) = 2×1.3354
2−1.3354 − α3 − (α2 − α3)φ

(
4.7792

T

)
= 0.

(20)

Eq. (20) yields the solution of (α2, α3, T ) = (1.1524, 4.6407, 2.2181). Compared with the exact solution of

(α2, α3, T ) = (1.6239, 4.4764, 2), the errors of α2, α3 and T are -29.03%, 3.67% and 10.91%, respectively.

With one more unknown, the Newton-Raphson method becomes much more sensitive to the α1 errors.

Furthermore, it becomes much more difficult for the Newton-Raphson method to find the solutions un-

less the α1 errors are small and in certain range. The physical mechanism for the inverse problem to

be solved is that the film thickness (T ) and the reduced moduli of film and substrate (α2 and α3) play

different roles in determining the effective reduced modulus of the film/substrate bilayer (f) at different

indentation depth. The formulation of the inverse problem as presented in Eq. (19) is a straightforward

one. However, the robustness is a serious issue here. For the above inverse problem solving method to

work, it requires the supplied data with very high accuracy, which can be extremely challenging in some

indentation tests. This robustness or sensitivity issue is often encountered in solving an inverse problem
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because of its overdetermined and ill-posed properties [44].

To circumvent the robustness issue, the α2, α3 and T impacts on the contact stiffness need to be sys-

tematically studied. Figure 7 presents the film thickness (T ) influence on the H − S. In figure 7, there

are two groups of the bilayer structures: harder film/softer substrate (SiC/Ge) and softer film/harder

substrate (Ge/SiC). The crossing of the H − S curves of these two types of bilayer structures is studied

in figure 2, which occurs in relatively shallow indentation area. Now the focus is on the relatively deep

indentation area, say, H > 0.5. There is an obvious trend as seen in figure 7: At a given indentation

depth H, the contact stiffness of harder film (SiC/Ge) monotonically increase with the increase of T .

In contrast, it is a monotonical decrease of the contact stiffness of softer film (Ge/SiC). The mechanism

is the following: As seen in Eq. (14), increasing the film thickness of a harder film increases f , which

thus leads to the increase of harder film contact stiffness. Similarly, for a softer film, increasing the

film thickness effectively reduces f and thus causes the decrease of its contact stiffness. The “bending

upwards” behavior of SiC/Ge and the “bending downwards” behavior of Ge/SiC with the T increase are

a benchmark difference between the harder film/softer substrate and softer film/harder substrate bilayer

structures. This benchmark difference is also noticed by Li and Chou [47] in a different way of examining

the indenter surface displacement.

Figure 8 presents the combined effects of α2, α3 and T on the contact stiffness. There are five contact

stiffness curves in figure 8, S1 is the H − S curve for the Ge/SiC with (α2, α3, T ) = (1.6239, 4.4764, 2).

Except for S1 of Ge/SiC with the film thickness of T = 2, the other four are with T = 3. S2 is with

(α2, α3) = (3, 7). As the α2 and α3 of S2 are both larger than those of S1, S2 is referred to as the

larger/larger case. S3 is with (α2, α3) = (1, 7). Similarly, as α2 of S3 is smaller than that of S1 and α3

of S3 is larger than that of S1, it is referred to as the smaller/larger case. S4 is with (α2, α3) = (3, 2),

which is referred to as the larger/smaller case. S5 is with (α2, α3) = (1, 2) and is referred to as the
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Figure 7. The H − S curves of the harder film (SiC/Ge) and the softer film (Ge/SiC). As the film

thickness (T ) increases, the contact stiffness of the harder film monotonically increases and in contrast,

that of the softer film monotonically decreases.

smaller/smaller case. In the deep indentation area (H ≥ 0.5), the contact stiffnesses of S2 and S3 are

larger than that of S1 and in comparison, those of S4 and S5 are smaller than that of S1. As the inden-

tation depth progresses, the reduced modulus of the film/substrate, f , rapidly approaches the substrate

modulus (α3). Both S2 and S3 have larger α3, which is responsible for their larger contact stiffness than

that of S1 in the deep indentation area. Similarly, because the α3 of S4 and S5 is smaller than that of

S1, it leads to the smaller contact stiffness in the deep indentation area. The inset of figure 8 shows the

H − S in shallow indentation area. It is noticed that S1 is crossed by two curves of S3 and S4. The

crossing mechanism is the same as that discussed in figure 2: For the smaller/larger case of S3, the smaller

film modulus (α2) plays dominant role in f at shallow indentation, which results in a smaller contact

stiffness than that of S1. While, at deep indentation, its larger substrate modulus (α3) is the dominant

one which is responsible for its larger contact stiffness. In summary, for the smaller/larger case of S3,
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Figure 8. The Young’s modulus impact on the contact stiffness. S1 is with T = 2 and all others are

with T = 3. S1 is the Ge/SiC with α2 = 1.6239 and α3 = 4.4764; S2 is the larger/larger case with α2 = 3

and α3 = 7; S3 is the smaller/larger case with α2 = 1 and α3 = 7; S4 is the larger/smaller case with

α2 = 3 and α3 = 2; S5 is the larger/larger case with α2 = 1 and α3 = 2. The inset is a closer look at the

small indentation depth, which shows the crossing of the S2 and S3 over S1.

its contact stiffness experiences the smaller and then larger transition as the indentation depth increases,

which causes the crossing. Similarly, the larger/smaller case of S4 experiences the larger and then smaller

transition of its contact stiffness, which aslo leads to a crossing. For the larger/larger cases of S2, it

always has larger effective modulus of f and thus larger contact stiffness. Therefore, there is no crossing.

Similarly, the smaller/smaller case of S5 always has smaller effective modulus of f and contact stiffness

and thus no crossing. It is also noticed that the contact stiffness differences between S1 and other curves

enlarge as the contact depth increases. These enlarging differences are more directly illustrated in figure

9. In the deep indentation area as seen in figure 9, S2 − S1 and S3 − S1 increase as H increases; S4 − S1

and S5 − S1 decrease as H increases; both result in the enlarging difference of contact stiffness. Here we
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need to address the mechanism for the enlarging difference of contact stiffness, which is key to finding the

substrate modulus α3. As defined in Eq. (10), α1 is the dimensionless modulus of the bilayer/indenter

system and is related with f by Eq. (13) as follows

α1 =
2f

2 + f
=

2
2/f + 1

(21)

As presented in figue 3, the reduced modulus of the film/substrate (f) starts with the film modulus

α2 and approaches the substrate modulus α3 as H increases. Because f is a monotonical function, α1

monotonically approaches 2α3/(2 + α3) in deep indentation area as given by Eq. (21). According to the

DMT model of Eq. (12), S ∝ α1

√
H, which leads to S ∝ 2α3/(2 + α3)

√
H in deep indentation area.

Therefore, S2 − S1 ∝ [2α2
3/(2 + α2

3) − 2α1
3/(2 + α1

3)]
√

H in deep indentation area. Here α2
3 = 7 is the

substrate modulus of S2; α1
3 = 4.4764 is the substrate modulus of Ge/SiC bilayer of S1. In this study, αi

3

stand for the substrate modulus of the Si curve. Because α2
3 > α1

3, S2 − S1 is a monotonically increasing

function of H. Similarly, because α5
3 < α1

3, S5 −S1 is a monotonically decreasing function of H. In figure

9, it is also noticed that in contrast to the enlarging differences of S2 −S1, S3 −S1, S4 −S1 and S5 −S1,

the slopes of S3 − S2 and S5 − S4 approaches zero in deep indentation area. The reason is simple: The

substrate moduli of S2 and S3 are the same as α2
3 = α3

3 = 7; the substrate moduli of S4 and S5 are the

same as α4
3 = α5

3 = 2. Therefore, because they share the same substrate modulus, their contact stiffness

difference remains unchanged in deep indentation area. Actually, the same mechanism also works for

those curves in figure 7. As seen in figure 7, the three curves of the Ge/SiC are “parallel” to each other in

deep indentation area; the three curves of the SiC/Ge are also “parallel” to each other. The influence of

the film modulus and thickness on the contact stiffness is confined in relatively shallow indentation area.

The substrate modulus is the only dominant factor influencing the contact stiffness in deep indentation

area, which is the mechanism for us to determine the substrate modulus of α3 [45]. Suppose that S1 is

the experimental data of indentation test; α1
3 is its substrate modulus; Sg is the guessed H−S curve with

22

Page 22 of 32AUTHOR SUBMITTED MANUSCRIPT - JPhysD-114890.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



the substrate modulus of αg
3. In deep indentation area, if Sg −S1 is a monotonically decreasing function,

αg
3 < α1

3; if Sg −S1 is a monotonically increasing function, αg
3 > α1

3; if Sg −S1 remains constant or varies

very slowly (for the real application purpose), αg
3 = α1

3 or αg
3 is very close to α1

3. This is an easy and

straight forward method of determining α3.

Once α3 is found by the data of deep indentation, the next goal is to find the film modulus (α2) and
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Figure 9. The contact stiffness difference as a function of H.

thickness (T ) in shallow indentation area. Suppose the that Ge/SiC is the target bilayer structure and

its parameters of αt
2 = 1.6239, αt

3 = 4.4764 and T t = 2 are the unknown parameters to be determined by

its H −S curve obtained from experiment. Here the superscript t stands for “target”. By examining the

data of deep indentation and using the approach outlined above, α3 = 4.4764 can be found and all the

curves in figure 10 are with αt
3 = 4.4764. The H − S curve of the monolithic SiC, i.e., α2 = α3 = 4.4764,

is plotted in figure 10. Because the H −S curve of the target bilayer structure is always below that of the

monolithic SiC, it can be told that it is the case of the softer film on harder substrate, i.e., α2 < α3, which

also effectively confine the α2 range. Firstly, we start to guess a very small film modulus of α2 = 1. The
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Figure 10. The contact stiffness of softer film at small indentation depths. The “bending downwards”

behavior as indicated by the two arrows is noticed. The solid lines are the Ge/SiC bilayer and monolithic

SiC layer.

two curves of α2 = 1 with two different T = 1 and T = 3 are plotted in figure 10. It is noticed that the

curve of α2 = 1 and T = 1 crosses that of the target bilayer. Before the crossing, the contact stiffness with

α2 = 1 and T = 1 is smaller than that of the target bilayer, we can thus tell αt
2 > 1 because at the very

shallow indentation, the film modulus is the dominant impact factor on the contact stiffness. After the

crossing, the contact stiffness of the target bilayer is smaller than that with α2 = 1 and T = 1 and we can

tell that T t > 1. The reasons are the following: the target bilayer is the softer film on harder substrate

and αt
2 > 1. The only choice for the contact stiffness with α2 = 1 and T = 1 to surpass that of the

target bilayer is that the target bilayer has a larger film thickness. Because of the larger film thickness,

the effective modulus f of the target bilayer approaches the substrate harder modulus of α3 = 4.4764

at a much slower rate, which results in the smaller contact stiffness of the target bilayer after crossing.

Compared with that of α2 = 1 and T = 1, the H − S curve of α2 = 1 and T = 3 “bends downwards” as
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Figure 11. The contact stiffness of harder film at small indentation depths. The “bending upwards”

behavior as indicated by the two arrows is noticed. The solid lines are the SiC/Ge bilayer and monolithic

Ge layer.

the film thickness increases, which is the characteristics of the softer film on harder substrate as discussed

in figure 7. It is also seen that there is no crossing and the contact stiffness of α2 = 1 and T = 3 is always

smaller than that of the target bilayer. We conclude that T t < 3. The reason is as follows: If T t > 3, the

same crossing scenario of the curve of α2 = 1 and T = 1 with that of the target bilayer will occur again.

Another two curves of α2 = 3 with two different T = 1 and T = 3 are also plotted in figure 10. Again,

the “bending downwards” curve of α2 = 3 and T = 3 is due to the characteristics of the softer film on

harder substrate. Knowing that 1 < T t < 3 and the two curves with α2 = 3 are always above that of the

target bilayer as seen in figure 10, we conclude that αt
2 < 3. Otherwise, there will be crossing of curves.

In summary, by examining the two groups of contact stiffness with varying film modulus and thickness,

we limit the material property range of the target bilayer as the following: 1 < αt
2 < 3 and 1 < T t < 3.

The above procedure can be systematically carried out to further narrow down the range. For example,
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Step 1:  Examine the deep indentation 

data to find the substrate modulus (α3)

Sg generated with a guessed α3 is compared 
wiith the experimental data of S

monotonically decreasing

 Sg - S : smaller α3

Unchanging or very slowly

changing Sg - S: correct α3

monotonically increasing 

Sg - S: larger α3

Step 2: Examine the shallow indentation data to 

find the film modulus (α2) and thickness (T)

Compare the H-S curve of the target bilayer

with that of monolithic layer with the correct α3

Softer film on harder substrate Harder film on softer substrate

Guess property range for α2 and T

Proper range of α2 and T is found

Use the procdure as discussed for 

Fig. 11 to narrow the range of α2 and T

Guess property range for α2 and T

Use the procdure as discussed for 

Fig. 10 to narrow the range of α2 and T

Figure 12. The flow charts of graphic solution for αt
2, αt

3 and T t by examining the H − S curves.

with the above information, we can start the new procedure by guessing αt
2 = 1.5 and 2.5, T t = 1.5 and

2.5; and repeat the above procedure until a satisfying range is obtained.

The above procedure is for the softer film on harder substrate case. For the harder film on softer

substrate case, things are slightly different. We demonstrate the new procedure with the SiC/Ge as the

target bilayer. Now the parameters of αt
2 = 4.4764, αt

3 = 1.6239 and T t = 2 are the unknown parameters

to be determined. Again, by examining the data of deep indentation and the approach as outlined in

figures 8 and 9, αt
3 = 1.6239 can be found. The H −S curve of the monolithic Ge with α2 = α3 = 1.6239

is plotted in figure 11. It is seen that the contact stiffness of monolithic Ge is always smaller than that
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of the target bilayer and we can tell that the bilayer is the harder film on softer substrate case with

αt
2 > αt

3 = 1.6239, which, again, gives us a range of the film modulus. In figure 11, all H − S curves are

with α3 = 1.6239. We firstly guess a large film modulus. The two curves of α2 = 6 with T = 1 and T = 3

are firstly plotted. The H − S curve with α2 = 6 and T = 1 crosses that the target bilayer and as seen

in figure 11, at very shallow indentation before the crossing, the contact stiffness of the target bilayer is

smaller. Again, due to the dominant impact of the film modulus, we conclude αt
2 < 6 by examining the

very shallow indentation data. Because of the crossing, we conclude T t > 1. The reason is that because

of the the harder film on softer substrate case and αt
2 < 6, the only choice for the target bilayer with a

larger contact stiffness after crossing is to have a large film thickness, which slows down target bilayer

effective modulus f transition to the softer substrate modulus of α3. The H − S curve with α2 = 6 and

T = 3 is always above that of the target bilayer and we conclude T t < 3. The reason that if T t > 3,

the crossing scenario as that of α2 = 6 and T = 1 will occur. The two curves of α2 = 3 with T = 1 and

T = 3 are also plotted and the two curves are always below that the target bilayer. In conjunction with

1 < T t < 3, we conclude αt
2 > 3. In summary, we can confine the material property range of the target

bilayer as: 3 < αt
2 < 6 and 1 < T t < 3. Again, by repeating the above process, the material range can be

further narrowed. In figure 11, the “bending upwards” behavior of the curves with α2 = 6 and α2 = 3 is

noticed. Again, this behavior is to the characteristics of the harder film on softer substrate as discussed

in figure 7.

The above graphic solution procedure for αt
2, αt

3 and T t is summarized in the flow charts of figure 12.

There are two main steps: Step one is to examine the deep indentation data to find αt
3; step two is to

examine the shallow indentation data to refine the range of αt
2 and T t. One characteristics of the bilayer

indentation is that the film/substrate effective modulus f rapidly approaches the substrate modulus (α3)

from the the film modulus (α2) as the indentation depth increases. In the deep indentation area, f is
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(close to) αt
3 and this property is used as an effective way of extracting the substrate modulus. In the

rapid f transition area of shallow indentation area, the contact stiffness shows the distinctive properties in

the softer film on harder substrate and harder film on softer substrate cases as the film thickness increases,

i.e., the “bending downwards” and the “bending upwards” behaviors, respectively. Those properties are

utilized to systematically refine the range of αt
2 and T t.

4. Summary

In many real applications of an indentation test, the film modulus, thickness and the substrate modulus

of a bilayer composite structure are usually the three unknown parameters to determined. An inverse

problem of solving the above three parameters is formulated and solved. The inverse problem formula-

tion is a straightforward one, which directly compares the bilayer effective modulus as obtained by the

experiment and the one predicted by a model. The physical mechanism that the inverse problem can

be solved is due to the different roles of the three parameters playing in determining the bilayer effec-

tive modulus at different indentation depths. However, there is a robustness issue of solving the inverse

problem, which requires very high accuracy for the experimental data of indentation tests. A graphical

solution procedure, which utilizes the bilayer indentation properties in both deep and shallow indentation

areas, is presented to circumvent the robustness issue and systematically refine the parameters’ range.
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