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Abstract 

The prebuckling deformation of structures is usually very small in conventional concepts, 

and is always neglected in the conventional buckling theory (CBT) and numerical method 

(CNM).  In this paper, we find a class of structures from the emerging field of stretchable 

electronics, of which the prebuckling deformation becomes large and essential for determining 

the critical buckling load.  Although great progress has been made for the buckling theory in the 

past hundred years, it is still challenging to analyze the buckling problems with finite 

prebuckling deformation (FPD buckling) straightforwardly.  Here, the experimental stretch of a 

series of serpentine interconnects was firstly conducted as a representative example to show the 

FPD buckling behaviors and inapplicability of the CBT and CNM.  The CNM can yield a huge 

error of 50% on the critical buckling load for the case with thickness-to-width ratio of the cross 

section h/b=0.6.  Most importantly, a systematic and straightforward theory (FPD buckling 

theory) is developed to analyze the FPD buckling behaviors of beams with the coupling of 

bending, twist and stretch/compression.  As a comparison, various theoretical and numerical 

methods are applied to three classic problems, including lateral buckling of a three-point-bending 

beam, lateral buckling of a pure bending beam and Euler buckling.  Our FPD buckling theory for 

beams is able to give a good prediction, while the CBT (by Timoshenko et al.) and CNM (by 

commercial program packages) yield unacceptable results (with 70% error for a three-point-

bending beam with h/b=0.8, for example). Discussion on the FPD buckling of bulk structures is 

deferred to a following paper. 

Keywords: buckling, three-point bending, critical buckling load, finite deformation mechanics, 

stretchable electronics  
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1. Introduction 

Buckling, the concept of which was brought to the world by Euler and Lagrange in the 18
th

 

and 19
th

 centuries (Euler, 1744; Lagrange, 1867; Timoshenko and Gere, 1961), is a classic 

mechanics problem but is full of new vitality in recent years.  It exists widely in both fields of 

engineering and science, ranging from the conventional civil and mechanical engineering to the 

emerging nano and micro science and technology (Fan et al., 2018; Jiang et al., 2007; Khang et 

al., 2006; Kim et al., 2008; Su et al., 2012).  The critical buckling load, beyond which 

catastrophic consequences usually occur, is one of the most important properties of engineering 

structures.  The engineering structures are always designed to avoid buckling.  However, instead 

of being avoided, buckling is ingeniously adopted to achieve the stretchability of the structures in 

the rising research field of stretchable electronics (Fan et al., 2014; Fan et al., 2018; Khang et al., 

2006; Kim et al., 2008; Su et al., 2017; Su et al., 2012; Xu et al., 2015; Xu et al., 2013).  In this 

context, the research and applications of buckling become increasingly important. 

Euler buckling is used here to show the concept of buckling process of structures, as 

depicted in Fig. 1a. The structures usually undergo four regimes: 1) the original regime without 

any load; 2) the onset of buckling subject to the critical buckling load, with the prebuckling 

deformation of axial compression; 3) the buckling regime subject to the critical buckling load, 

with lateral displacements; and 4) postbuckling under increasing/decreasing load.  The 

prebuckling deformation of structures is usually very small (Fig. 1a, L L ), thus, it was 

always neglected in the conventional buckling theory (CBT) and numerical method (CNM) 

developed by Euler, Lagrange, Timoshenko, Koiter, etc. (Euler, 1744; Koiter, 1945; Lagrange, 

1867; Su et al., 2012; Timoshenko and Gere, 1961).  For instance, the critical compressive strain 

of Euler buckling (regime of the onset of buckling in Fig. 1a) is only  2 23 0.128%L L      
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for a slender beam with length-to-thickness ratio 50  . Therefore, in the eigen differential 

equation 0EI y Py    ( EI  = bending stiffness, y  = lateral displacement) for determining the 

buckling load, which can be found in most textbooks of mechanics of materials, the prebuckling 

deformation L L  is always neglected, while only the critical buckling load P  is considered.  

Buckling plays a key role in achieving the stretchabiliy of flexible electronics (Fan et al., 

2014; Jiang et al., 2007; Khang et al., 2006; Kim et al., 2008; Zhang et al., 2014).  Because of the 

fabrication methods of deposition and etching, most of stretchable structures of electronics are 

thin-film-like interconnects.  It is easy to buckle for this type of structures when they are subject 

to stretch.  Their buckling behavior at the bifurcation point is the same as that of the conventional 

structures, since the prebuckling deformation is also very small.  However, the case is 

significantly different for thick interconnects.  Recently, an important progress in the field of 

stretchable electronics has shown that thick serpentine interconnects (Fig. 1b) can surprisingly 

provide both large mechanical stretchability and high electronic performance, which may bring 

revolutionary change for the design strategy of stretchable electronics (Su et al., 2017).  The 

stretchability of thick interconnects can reach as large as 350%, and the resistance and the 

generated heat can be reduced to 1/50 of those previously reported for thin interconnects. As 

shown in Fig. 1b, the interconnects have already undergone large prebuckling deformation of in-

plane bending before the out-of-plane buckling, i.e., L  is of the same order of magnitude as L .  

It is referred to here as the „buckling problems with finite prebuckling deformation‟ (FPD 

buckling). 

In the history of the buckling theory, Koiter made a significant contribution to the systematic 

theoretical framework of the buckling and postbuckling problems (Koiter, 1945), particularly to 

the imperfection sensitivity of buckling. von Karman, Budiansky and Hutchinson did the pioneer 
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work on the postbuckling behavior of plates and shells (Budiansky, 1973; Hutchinson and Koiter, 

1970; Karman, 1941).  Regarding classic buckling problems, Timoshenko developed a series of 

systematic theories on beams and plates that play important roles in engineering practice 

(Timoshenko and Gere, 1961).  For beams that buckle in three-dimensional (3D) space, coupling 

bending, twisting and stretch/compression, Su et. al. have established a systematic fundamental 

theory and a solution method for arbitrary complicated problems in recent years (Su et al., 2012). 

Fan et al., Liu and Lu, Zhang et al., and Jiang et al. applied and developed the buckling theory in 

the field the stretchable electronics, with focus on curved interconnects (Fan et al., 2018; Liu and 

Lu, 2016), hierarchical interconnects (Zhang et al., 2014) and wavy structures (Jiang et al., 2008; 

Jiang et al., 2007).  In regard to the effects of prebuckling deformation on the critical buckling 

load, a few researchers in the field of civil engineering made some explorations (Davidson, 1952; 

M.C.E, 1899; Pi et al., 1995; Pi and Trahair, 1992a, b; Vacharajittiphan et al., 1974).  Michell 

and Mell introduced the prebuckling rotation into the governing equation of the lateral buckling 

of beams,  but actually did not consider the effects of the prebuckling deformation on the critical 

buckling load (M.C.E, 1899).  Vacharajittiphan et al. investigated the effect of in-plane 

deformation on lateral buckling of I-section beams subjected to three-point bending, I-section 

beams subjected to both axial force and bending moment, and portal frames subjected to three 

concentrated forces (Vacharajittiphan et al., 1974). After about two decades, Pi and Trahair 

studied the prebuckling deflections and lateral buckling by the energy method, numerical 

simulation and experiments with the examples of I-section straight beams and arches (Pi et al., 

1995; Pi and Trahair, 1992a, b).  However, these attempts are still not enough to analyze the FPD 

buckling problems straightforwardly. 
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The objective of this work is to present the FPD buckling problems via stretchable 

interconnects and the inapplicability of the CBT and CNM, and to establish a systematic and 

straightforward theory for FPD buckling of beams with the coupling of bending, twist and 

stretch/compression.  We first present the FPD buckling behavior with serpentine interconnects 

of stretchable electronics and the inapplicability of the CBT and CNM by experiments, 

numerical simulation and comprehensive analysis in section 2.  In section 3, a general systematic 

buckling theory for FPD buckling of beams is established. The newly developed theory is 

applied in section 4 to three classic examples, including lateral buckling of a three-point-bending 

beam, lateral buckling of a pure bending beam and Euler buckling.  The effects of the 

prebuckling deformation are explicitly expressed.  Conclusions and discussion are given in 

section 5.  This paper presents the FPD buckling problems and develops the theory for beams.  

The theory for bulk structures will be established in a following paper. 

2. Buckling of stretchable serpentine interconnects with various thicknesses and the 

inapplicability of the CBT and CNM 

A simple stretch test of serpentine interconnects with the Young‟s modulus 200E GPa  

and Poisson‟s ratio 0.3   is performed in order to present the FPD buckling behavior explicitly.  

Without losing the nature of the problem, the serpentine interconnects are scaled up compared to 

those of stretchable electronics for convenience of the experimental operation.  Figures 2a and 2b 

show a sample of serpentine interconnect with apparent length 6R=15 mm (straight distance 

between the two ends), length of straight portion l=60 mm and rectangular cross section of 

dimension b×h.  Five serpentine interconnects were fabricated with the same width 1b mm , 

but with thickness h  0.2, 0.3, 0.4, 0.5 and 0.6 mm, respectively (see Appendix for the 

fabrication method).  Apparent displacement of stretch 
appliedU  is applied to the serpentine 
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interconnects, as depicted in Fig. 2a (see Appendix for details of the test).  With the increase of 

appliedU , the maximum lateral displacement at the peaks of serpentine interconnects is recorded 

by the optical method, as shown in Figs. 2c and 2d and Movie S1.  From the top and oblique 

views, Fig. 2d and Movie S1 show the optical observation of the prebuckling and buckling 

deformation of serpentine interconnects under applied stretch.  In the stretching process, the 

maximum lateral displacement stays zero in the regime of in-plane bending at the beginning, 

increases suddenly at the transition from the onset of buckling to the buckling regime, with 

bifurcation at the critical applied displacement criticalU , and then increases rapidly during 

postbuckling.  In this way, the onset of buckling and criticalU  are captured accurately.  criticalU  

increases by orders of magnitude with the increase of the thickness of interconnects.  The critical 

apparent stretching strain  6criticalU R  before the onset of buckling can reach as large as ~200% 

for thick interconnects with h=0.6 mm. 

The CNM implemented in the commercial program package ABAQUS (Dassault-Systèmes, 

2010), which is based on the CBT, is used to compare with the experimental results (see 

Appendix for details).  Figure 3a shows the comparison of the dimensionless critical applied 

displacement    1 2 6critical criticalU EI EI C U R  from the experimental tests and numerical 

results for various cross-section aspect ratios h/b, where 

    3 4 41 3 0.21 1 12C Gbh h b h b   
   

is the torsion stiffness,  2 1G E    
 
is the 

shear modulus, 3

1 12EI Ehb
 
and 3

2 12EI Ebh  are the bending stiffnesses along the two 

directions, respectively (Fig. 2b).  They agree well with each other when h/b→0.  However, the 

experimentally observed criticalU  increases significantly with the increase of h/b, while the result 
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from the CNM stays constant.  The former can be as large as twice of the latter for h/b =0.6 (Fig. 

3a).  

The large difference in Fig. 3a can be attributed to the neglect of the prebuckling 

deformation in the CBT and CNM.  Here, we use a special numerical method named disturbing-

loading-unloading method (DLU, being valid only for simple elastic structures) to give an 

accurate prediction of criticalU  through considering the finite prebuckling deformation (see next 

paragraph for details).  For each thickness of interconnect, two curves of applied force P versus 

applied displacement 
appliedU  are obtained, as shown in Fig. 3b, i.e., the curve for pure in-plane 

bending throughout the stretching process, and the curve for real deformation mode with both in-

plane bending at the beginning of stretch and the following out-of-plane buckling (see next 

paragraph for details).  By comparison of the two curves, the critical buckling displacement is 

obtained at the bifurcation, beyond which the applied force and the elastic energy in the in-plane 

bending regime are usually higher than those in the out-of-plane buckling regime.  The real 

buckling point, for large cross-section aspect ratio h/b, is far beyond that obtained by the CNM 

(Fig. 3b).  The dimensionless value of real critical buckling displacement criticalU  for each h/b has 

been plotted in Fig. 3a for comparison. The prediction from the DLU method agrees very well 

with the experimental test, while the solution based on the CNM results in an unacceptable error 

(as large as 50% for h/b=0.6).  It is obvious that the prebuckling deformation becomes 

significantly important and non-negligible. 

In the following, we will show how to obtain the curve for real deformation mode with both 

in-plane bending and out-of-plane buckling by the DLU method, as illustrated in Fig. 3b.  In Figs. 

4a and 4b, the CNM (Dassault-Systèmes, 2010) is firstly used to capture the approximate 

buckling mode (imprecise).  Together with the applied in-plane displacement for stretching, 
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additional out-of-plane disturbing constraints are applied on certain positions of the interconnect 

(Fig. 4c) in order to yield the deformation being similar to the buckling mode captured by CNM.  

When the applied in-plane displacement is far beyond that by the critical buckling load, the 

additional out-of-plane disturbing constraints are released.  The interconnect can automatically 

balance to its real postbuckling regime.  By unloading the applied in-plane displacement 

gradually, the real force-displacement curve with a transition between out-of-plane buckling and 

in-plane bending regimes is captured (Fig. 3b).  Because of the reversibility of the elastic 

structure, the force-displacement curve for loading is the same as that for unloading.  It is worth 

pointing out that the DLU method is only valid for simple elastic structures, rather than for 

general problems. 

Moreover, it is important to point out that the serpentine interconnects are adopted as a 

representative structure to present the FPD buckling behavior explicitly.  In applications to 

stretchable electronics, serpentine interconnects are usually bonded onto the soft substrate (Su et 

al., 2017), while sometimes the freestanding regime is also used (Su et al., 2015; Zhang et al., 

2014).  The substrate affects the deformation of the serpentine interconnects during the stretch 

and buckling process, but usually does not change the occurrence of FPD buckling, as it is soft 

enough. In this work, the substrate is neglected in the analysis and experiments for simplification 

without loss of the nature of the problem.  

3. FPD buckling theory of beams 

In order to further investigate the underlying mechanism of the fundamental problem, a 

systematic and straightforward theory for the FPD buckling of 3D beams is developed in this 

section. 

3.1. Geometric relations for the finite deformation of 3D beams 
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Figure 5a shows a beam with Z denoting the central axis in the undeformed configuration 

(red).  Ei (i=1,2,3) are the unit vectors in the Cartesian coordinates (X, Y, Z).  A point X=(0,0,Z) 

on the undeformed central (red) axis moves to X+U=(U1,U2,U3+Z) after deformation (blue), 

where Ui(Z) (i=1,2,3) are the displacements along the undeformed coordinates.  The unit vectors 

Ei in the undeformed configuration rotate to ei in the deformed configurations.  They are related 

by the direction cosine aij 

 i ij jae E    (i=1,2,3, summation over j). (3.1) 

The orthonormal conditions 

 i j ij e e  (3.2) 

give 6 independent equations for the cosine aij, where ij  
is the Kronecker delta. The length dZ 

on the undeformed central axis (red) becomes dZ in the deformed configuration (blue) because 

of stretch or compression, where  is the ratio. Without consideration of twist, the stretch can be 

obtained in terms of the displacements as 

    
22 2 2 2

1 2 3 3 1 2

1
1 1

2
U U U U U U               , (3.3) 

Here    d dZ  , and the terms higher than the 2
nd

 power of displacement are neglected 

because they do not affect the critical buckling load.  The unit vector 3e
 
rotated from E3 can be 

expressed as  

 
 

3

d

dZ




X U
e . (3.4) 

The other two unit vectors, e1 and e2, involve the twist angle  of the cross section around the 

central axis.  Their derivatives are related to the curvature vector  of the central axis by (Love, 

1927) 
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  1,2,3i i i   e κ e , (3.5) 

where 
1  and 

2  are the curvatures in the  2 3,e e  and  1 3,e e  planes in the deformed 

configuration, respectively, and the twist curvature 
3  is related to  by 

 
3







 . (3.6) 

The above 12 equations are solved to determine 9 direction cosines aij and 3 curvatures i in 

terms of Ui and  as 

  

   

   

 

22 2

1 1 2 1 3 2

1

2 2 2

2 1 2 2 2 3 1

1 2
2 2

1 3 2 3 1 2

1 1

2 21 0 0 0
1 1

0 1 0 0 ,
2 2

0 0 1 0
1

2

ij

U U U U U U

U

a U U U U U U U

U U

U U U U U U

  


   

 
          

     
     

                     
           

         
 

(3.7) 

where    2

1 2 1 2

0

1

2

Z

U U U U dZ       is the 2
nd

 power of displacements, and the 3
rd

 power of 

displacements and twist angle are neglected because they do not affect the critical buckling load.  

As to be shown in the next section, the work conjugate of bending moment and torque is ˆ κ κ , 

which is given in terms of the power of Ui and by 

  

 

 

1 2 3
2

1 2 1 3
ˆ

0

i

U U U
U

U U U U



 



      
            
      

 

, (3.8) 

where the 3
rd

 power of displacements and twist angle are neglected. 

3.2. Constitutive relations for the finite deformation of 3D beams 
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Let t=tiei and m=miei denote the forces and bending moment/torque, respectively, in the 

cross section Z of the beam in the deformed configuration.  The principle of virtual work gives 

work conjugates of t3 and m to be -1 and κ̂ , respectively, while t1 and t2 do not involve the 

constitutive relations.  For example, the virtual work of m is dsm κ , where ds=dZ represents 

the integration along the central axis in the deformed configuration.  This integral can be 

equivalently written as ˆdZm κ  in the undeformed configuration.  The linear elastic relations 

give t3 and m in terms of Ui and  by 

  3 1 1 1 2 2 2 3 3
ˆ ˆ ˆ1 , , , ,t EA m EI m EI m C         (3.9) 

where EA is the tensile stiffness, EI1 and EI2 are the bending stiffness, and C is the torsional 

stiffness. 

3.3. Equilibrium equations for the finite deformation of 3D beams 

As depicted in Fig. 5b, the equilibrium of forces t=tiei requires 

 0 t p ,   or   

1 2 3 3 2 1

2 1 3 3 1 2

3 1 2 2 1 3

ˆ ˆ 0

ˆ ˆ 0

ˆ ˆ 0

t t t p

t t t p

t t t p

  

  

  

    

    

     

, (3.10) 

where p is the distributed force on the beam per unit length in the deformed configuration.  The 

equilibrium of moments m=miei requires 

 3 0    m e t q ,   or   

1 2 3 3 2 2 1

2 1 3 3 1 1 2

3 1 2 2 1 3

ˆ ˆ 0

ˆ ˆ 0

ˆ ˆ 0

m m m t q

m m m t q

m m m q

   

   

  

     


     
     

, (3.11) 

where q and q
 
are the distributed moment on the beam per unit length in the deformed and 

undeformed configurations, respectively.  

3.4. Governing equations for the FPD buckling analysis 
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The behavior of structures at the onset of buckling should be studied before solving the 

governing equations of the buckling and postbuckling problems.  Let 
o

U  and   denote the 

displacements and the twist angle at the onset of buckling (prebuckling deformation).  Here, “
o

” 

denotes the variables at the onset of buckling.  The corresponding stretch 1  along the axis 

and the curvatures ˆ
i  (prebuckling deformation) are 

 
2 2

3 1 2

1
1

2
U U U

 
       

 
. (3.12) 

and 

 

1 2 1 2 3

2 1 2 1 3

3

ˆ

ˆ

ˆ

U U U U

U U U U

 

 

 

         
 

        
 



. (3.13) 

according to Eqs. (3.3) and (3.8).  The constitutive relations (3.9) give 
3t  and 

im  in terms of 
iU

and   by  

 3 1 1 1 2 2 2 3 3
ˆ ˆ ˆ1 , , ,t EA m EI m EI m C   

 
     

 
. (3.14) 

The equilibrium equations (3.10) and (3.11) become 

 

oo o
o o o

31 2
2 3 1

2

oo o
o o o

32 1
1 3 2

1

o o o
o o o

3 2 1
1 2 3

2 1

0

0

0

md t m
t t p

dZ C EI

md t m
t t p

dZ C EI

d t m m
t t p

dZ EI EI







   

   

   

, (3.15) 
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and 

 

oo o
o o o o

31 2
2 3 2 1

2

oo o
o o o o

32 1
1 3 1 2

1

o o o
o o o

3 2 1
1 2 3

2 1

0

0

0

md m m
m m t q

dZ C EI

md m m
m m t q

dZ C EI

d m m m
m m q

dZ EI EI

 

 



    

    

   

. (3.16) 

at the onset of buckling.  Here, only the linear terms given in Eqs. (3.15) and (3.16) will be 

adopted in solving the equilibrium for the onset of buckling, while the nonlinear terms are listed 

for convenience of derivation of Eqs. (3.21) and (3.22) later. 

The increments of the force and the bending moments/torque due to buckling are defined as 

 
3 3 3 1 1 1 2 2 2 3 3 3, , ,t t t m m m m m m m m m           . (3.17) 

Substitution of the constitutive relations (3.9) and (3.14) into Eq. (3.17) gives 

  3 1 1 1 2 2 2 3 3
ˆ ˆ ˆ1 , , ,t EA m EI m EI m C            , (3.18) 

where 

 

  3 1 1 2 2

1 1 1 2 1 1 2 3 2 3

2 2 2 1 2 2 1 3 1 3

3 3

1 1 1

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

U U U U U

U U U U U U U

U U U U U U U

     

        

        

  

                  
   

                     
   

                    
   

  3 

 (3.19) 

are the increments of the stretch and curvatures obtained from Eqs. (3.3), (3.8), (3.12) and (3.13).  

1U , 2U , 3U  and   are the increments of displacements and twist angle, respectively.  The 

underlined terms here (and hereafter) are for the effect of the prebuckling deformation, which are 
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neglected by the CBT and CNM.  They are considered for the current FPD buckling problems. 

The influence of the prebuckling deformation on the direction cosines aij is also considered: 

 

 

 

111 1

222 2

1 233 1 2

2,1
1 212 2 1

2,1
1 221 2 1

1 1 3 213 1 3 1 2

31 1

1

1

1

1 1

2 2

1 1

2 2

a U U

a U U

a U U U U

a U U U U

a U U U U

a U U U U U U U U

a U

  

  

 

    

    

    



    

    

     

       

        

             

 1 1 33 1

2 2 3 123 2 3 2 1

2 2 332 2 3 2

U U U U U

a U U U U U U U U

a U U U U U U

 

    

  





















       



             



        


,

 (3.20) 

where  2,1
1 2 1 22 1 2 1

0

1
+

2

Z

U U U U U U U U dZ    
 

        
 
 


.

  Here, the direction cosines aij are 

for the status of buckling consisting of both the prebuckling and incremental deformations.  

Substitution of the force 
o

Δ t t t  and moment 
o

Δ m m m , where Δt  and Δm  are the 

increments beyond the onset of buckling, into the equilibrium equations (3.10) and (3.11), 

together with Eqs. (3.14)-(3.16), give 
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 

 

 

o o
o o o o o

31 2
2 3 2 3 2 3 1 1 1

2

o o
o o o o o

32 1
1 3 1 3 1 3 2 2 2

1

o o
o o o o o

3 2 1
1 2 1 2 1 2 3 3 3

2 1

ˆ ˆ 1 0

ˆ ˆ 1 0

ˆ ˆ 1 0

md t m
t t t t p p p

dZ C EI

md t m
t t t t p p p

dZ C EI

d t m m
t t t t p p p

dZ EI EI

   

   

   


              


              


              

 (3.21) 

and 

 

   

   

o oo
o o o o o o

3 31 2
2 3 2 3 2 3 2 2 1 1 1

2

o oo
o o o o o o

3 32 1
1 3 1 3 1 3 1 1 2 2 2

1

o o
o o o

3 2 1
1 2 1 2 1 2 3

2 1

ˆ ˆ 1 1 0

ˆ ˆ 1 1 0

ˆ ˆ

m td m m
m m m m t t q q q

dZ C EI EA

m td m m
m m m m t t q q q

dZ C EI EA

d m m m
m m m m q

dZ EI EI

    

    

 


                   


                   


          

o o

3 3 1 0q q      

(3.22) 

for the equilibrium at the onset of buckling in terms of the increments.  

4. Examples 

4.1. Lateral buckling of a three-point-bending beam 

Lateral buckling of a three-point-bending beam, which is a classic mechanical problem 

analytically solved by Timoshenko (Timoshenko and Gere, 1961), is used here as an example to 

validate the FPD buckling theory.  Figure 6a shows a constrained beam of three-point bending 

with length L, width b and thickness h, being subject to a concentrated force P at the center.  

Lateral buckling occurs if the applied force is beyond the critical buckling load.  The buckling 

mode is shown in Fig. 6b.  Considering the governing equations (3.12-3.16) at the onset of 

buckling but neglecting the nonlinear terms, it is easy to obtain the non-zero force and bending 

moment as 
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o o o

2 3 1

1 1
, 0,

2 2 2

L
t P t m P Z

 
    

 
, for 0Z  . (4.1) 

Here, only the right half of the beam is considered according to the symmetry.  The 

displacements 

 
2 3 3

3 2

1

1 1 1
0,

4 2 3 12

P
U U LZ Z L

EI

 
      

, for 0Z  . (4.2) 

are obtained by integration of the deformation components.  

For lateral buckling, it is reasonable that the increments of the displacement 1U  and 

rotation   during buckling are the 1
st
 order, and those of the displacements 2U and 3U  are 

the 2
nd

 order (Su et al., 2012), i.e., 

  
2

1 2 3 1~ , ~ ~U U U U     . (4.3) 

The curvature 2
ˆ  and 3

ˆ  for critical buckling can be obtained by the degeneration of Eq. 

(3.19) according to Eq. (4.3) as 

 2 1 2 1 3 3
ˆ ˆ,U U U U     

          
 

. (4.4) 

Here, the terms with underlines denote the effect of the prebuckling deformation on the solution 

of critical buckling load.  The direction cosine Eq. (3.20) degenerates to 

 

 

 

2,1
2 3 211 12 1 13 1 1

2,1
2 2 2 2 321 1 22 2 23 2 3 2

3 2 2 3 231 1 1 32 2 3 2 33 2

1
1, ,

2

1
, 1 ,

2

, , 1

a a U U a U U U U

a U U a U U a U U U U U U

a U U U a U U U U U U a U U

     

      

     

           

                  

                

, (4.5) 
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where  2,1
2 21 1

0

1

2

Z

U U U U dZ  
 

    
 
 
 .  The dominating equilibrium equations for critical 

buckling of the three-point-bending beam can be yielded by the degeneration of Eqs. (3.21) and 

(3.22), 

 

1
3

2
3 1

1

3 2
2

1

ˆ 0
2

ˆ1 0
2 2

ˆ1 0
2 2

d t P

dZ

d m P C L
Z t

dZ EI

d m EIP L
Z

dZ EI








  

   
           

   
         

. (4.6) 

Figures 6c and 6d depict the symmetric conditions at Z=0, i.e. 1 3 0 e E , 3 0m  and 

o o

2 2 2 1 1 1 1 1 0t t t t 
   

        
   

e E e E , and the mechanical constraints at 2Z L , i.e. 1 0U  , 

2 1 0 e E and 2 0m  , which yield 

0Z   
o o

13 3 21 2 2 11 1 10, 0, 0a m a t t a t t
   

         
   

, (4.7) 

2

L
Z   1 21 20, 0, 0U a m     , (4.8) 

Using Eqs. (3.18), (4.4) and (4.5), Eqs. (4.7) and (4.8) can be further expanded as 

0Z   1 3 1
ˆ0, 0,

2

P
U t        , (4.9) 

2

L
Z   1 2 1 1

0

0, 0, 0

Z

U U U dZ U           . (4.10) 

Equation (4.6)1 can be integrated, using Eq. (4.4)2 and boundary conditions (4.9), as 

 1
2

P
t    . (4.11) 
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Substitution of Eq. (4.11) into Eq. (4.6)2,3 gives 

 

2
3

1

3 2
2

1

ˆ1 0
2 2 2

ˆ1 0
2 2

d m P C L P
Z

dZ EI

d m EIP L
Z

dZ EI

 



   
           

   
         

. (4.12) 

The elimination of 2̂  and 2m  induces 

 

23 2 2

2

3 2

2 1 1

2

2

2 1

1
1 1

4 2

2

1 0
4 2

EId d P C L d
Z

LdZ dZ EI C EI EI dZ
Z

EIP L
Z

EI C EI

  



     
               
 

  
         

. (4.13) 

Here, 3

1 12EI Ehb , 3

2 12EI Ebh  and     3 4 41 3 0.21 1 12C Gbh h b h b   
   for 

rectangular cross section. 

Let 2 2

2 1EI EI h b    and       4 4 2 2

1 2 1.26 1 12 1C EI h b h b h b          
 

be the ratios among the bending stiffnesses and torsional stiffness. The dimensionless 

coordinates, displacement and buckling load are defined as  2Z L Z ,  1 12U L U    

and  2

28P PL EI C , respectively. Equations (4.13) and (4.12)2 become 

 
 

      

     

3 2
22 2

3 2

22

1

2 2

1
1 1 1 1 1 0

1

1 1 1 0

d d d
P Z P Z

dZ dZ dZZ

d Ud
P Z P Z

dZ dZ

  
   

 
  



  
         



 
       

 

. (4.14) 

Equations (4.9) and (4.10) yield the corresponding boundary conditions 

0Z   1 0, 0
d d

U
dZ dZ


   . (4.15) 
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1Z    
2

1
1 12

0

0, 1 0, 0

Z
d U d

U P Z dZ U
dZ dZ

 


        . (4.16) 

The perturbation method with   as a small parameter is used to solve the buckling problem 

defined by Eqs. (4.14), (4.15) and (4.16). The dimensionless critical buckling load 

 2

28P PL EI C  is obtained as 

  
2

2
2.117 1.0585 1.6568

h
P

b
   . (4.17) 

where       4 42 1.26 1 12 1h b h b     
   

is a dimensionless parameter in term of h/b 

and  .   

For a thin beam ( 0h b ), the dimensionless critical buckling load given by Eq. (4.17) 

degenerates to 2.117P  , which agrees exactly with that obtained by Timoshenko (Timoshenko 

and Gere, 1961) based on the CBT.  For a relatively thick beam, the underlined term in Eq. (4.17) 

becomes significant.  This problem is also solved by the CNM and DLU method as introduced 

above.  As shown in Fig. 6e, the DLU method shows that the accurate dimensionless buckling 

load P  increases with h b  ( 0.3  ).  However, the CBT used by Timoshenko and Gere 

(Timoshenko and Gere, 1961) and CNM (Dassault-Systèmes, 2010) both give a constant P  for 

different h b .  The accurate dimensionless buckling load P  can be as much as ~3 folds of the 

solution from the CBT and CNM when h b  is around 0.8.  On the other hand, Equation (4.17) 

obtained by the FPD buckling theory is able to give a much better prediction of the buckling load 

(Fig. 6e). 

4.2. Lateral buckling of a pure bending beam 
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The geometric model and constraints of lateral buckling of the pure bending beam are the 

same as those of the three-point-bending beam, while the concentrated force at the center of the 

beam is replaced by a pair of moments at both ends in the (Y, Z) plane, as shown in Figs. 7a and 

7b for its undeformed configuration and buckling mode, respectively.  The force, bending 

moment and torque in the beam at the onset of buckling are 

 1 1 2 3 2 3, 0m M t t t m m            , for 0Z  . (4.18) 

where M is the bending moment applied at the ends.  Here, only the right half of the beam is 

considered according to the symmetry.  The displacements are 

 

o
2

21
3 2 2 2

1 1 1 1

0, , ,
2 4

m M M M L
U U U Z U Z

EI EI EI EI

 
       

 
, for 0Z  . (4.19) 

Equation (4.3) also holds here, i.e., the displacement 1U  and rotation   during buckling are 

the 1
st
 order, and displacements 2U  and 3U  are the 2

nd
 order (Su et al., 2012).  Therefore, the 

geometric relations, Eqs. (4.4) and (4.5), also work for lateral buckling of the pure bending 

beams.  Being similar to Eq. (4.6), the equilibrium equations (3.21) and (3.22) degenerate to 

 

1

o
2

1 3 1

1

o
3 2

1 2

1

0

ˆ1 0

ˆ1 0

d t

dZ

d m C
m t

dZ EI

d m EI
m

dZ EI








 
      
 
 

 
    
 
 

. (4.20) 

Elimination of 1t  in Eq. (4.20), together with Eqs. (3.18), (4.4) and (4.5), give the equilibrium 

equations in terms of displacements: 
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2

2

1 1 2

2
1

1 1

1 1 0

1 0

EI C M

EI EI EI C

EI M
C M U

EI EI

 

 

  
        

  
  

  
         

  
  

. (4.21) 

The boundary conditions are the same as those of the three-point-bending beam, i.e., 

0Z   
o o

13 3 21 2 2 11 1 10, 0, 0a m a t t a t t
   

         
   

, (4.22) 

2

L
Z   1 21 20, 0, 0U a m     . (4.23) 

Using Eqs. (3.18), (4.4), (4.5), (4.18) and (4.19), the boundary conditions become 

0Z   1 10, 0, 0U t       , (4.24) 

2

L
Z   2 21 1 1 1

10

1
0, 0, 0

2

Z
M

U U U U U dZ U
EI

 
 

               
 
 
 . (4.25) 

Let 2 2

2 1EI EI h b   ,       4 4 2 2

1 2 1.26 1 12 1C EI h b h b h b          
 and 

2/ 2M ML EI C  be the dimensionless parameters. The dimensionless equilibrium equations 

can be obtained as 

 

  

 

3
2

3

22

1

2 2

1 1 0

1 0

d d
a M

dZ dZ

d Ud
M M

dZ dZ

 


 
  



 
   

 
     

 

 (4.26) 

and the dimensionless boundary conditions become 

0Z   
1 0, 0

d U d

dZ dZ

 
  , (4.27) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

23 
 

1Z 
    

2 2
/2

1 1 1
1 2 20

0, 0, 0
L d U d U d U

U M MZ dZ M
dZ dZ dZ

   
   

         
 

 . (4.28) 

Note that Eq. (4.26)2 and boundary condition Eq. (4.28)3 can yield the conditions for  , 

1Z   
2

2
0

d

dZ


 . (4.29) 

The general solution for Eq. (4.26) is 

      1 2 3sin 1 1 cos 1 1A M Z A M Z A              
      

. (4.30) 

Substitution of Eq. (4.30) into the boundary conditions Eq. (4.27)2 and Eq. (4.29) gives 

   1 2 cos 1 1 0A A M      
  

. (4.31) 

The solution for the critical buckling moment is thus obtained as 

 
  2 1 1

M


 


 
. (4.32) 

Besides Eq. (4.32) based on the FPD buckling theory, this problem is also solved by the 

CBT (Timoshenko and Gere, 1961), CNM (Dassault-Systèmes, 2010) and DLU method. As 

depicted in Fig. 7c ( 0.3  ), the dimensionless critical buckling moments M  given by the four 

methods approach to the same value ( 2 ) for a thin beam ( , , 0h b    ). Nevertheless, the 

terms with underline in Eq. (4.32) plays important roles when the thickness of the beam is larger.  

The accurate results given by the DLU method increase with h b  by a considerable amplitude, 

while the CBT used by Timoshenko and Gere (Timoshenko and Gere, 1961) and CNM 

(Dassault-Systèmes, 2010) gives a constant M . On the other hand, the prediction by the FPD 

buckling theory (Eq. (4.32)) agrees very well with the accurate critical buckling load. The 

neglect of prebuckling deformation can yield an error more than 50% for the buckling load. 
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4.3. Euler buckling 

Euler buckling is also studied here since it is the most classic buckling problem, although the 

effect of the prebuckling deformation is not so significant for this case.  Consider the Euler 

buckling of a beam with length L and thickness h, as shown in Fig. 8a, the equilibrium equations 

Eqs. (3.20) and (3.21) degenerate to 

 

o

32
1

o
1

3 2

1 0

ˆ 0

td m
t

dZ EA

d t
t

dZ


 
     

 
 


  

. (4.33) 

The estimation of 1t  gives 

 

o
2

o
32

3 22
ˆ1 0

td m
t

dZ EA


 
     

 
 

, (4.34) 

which, together with the linear constitutive relation Eq. (3.18) and geometric relation Eq. (3.19), 

yield the governing equation in terms of displacements: 

 

o
4 2

o
31 1

2 34 2
1 0

td U d U
EI t

dZ EA dZ

 
    

 
 

. (4.35) 

With the boundary conditions 

 1 1
1 10

0

0
Z Z L

Z Z L

d U d U
U U

dZ dZ 
 

 
      , (4.36) 

the buckling load 
o

3FIDP t   can be obtained as 

 

2 2

2 2

3 4
1 1 1 1

2 3
FID classicP P

 

 

  
      

  
  

, (4.37) 
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where the length-to-thickness ratio L h  ; the underlined item is the difference between the 

solutions by the FPD buckling theory and the classic solution 2 2

14classicP EI L .  As shown in 

Fig. 8b, the difference  FID classic classicP P P  increases with the decrease of  .  For 10   and 8 

in the range of Euler-Bernoulli beams, the differences  FID classic classicP P P  are 3.52% and 

5.75%, respectively. 

5. Concluding remarks 

i) The prebuckling deformation is usually very small in the conventional buckling problems 

and is neglected in the CBT and CNM.  In this paper, we find a class of buckling problems 

with finite prebuckling deformation (FPD buckling) from the emerging field of stretchable 

electronics. 

ii) With a serpentine interconnect as a representative example, we experimentally show the 

FPD buckling behaviors and the inapplicability of the CBT and CNM.  The dimensionless 

critical applied displacement appliedU  increases significantly with the increase of the cross-

section aspect ratio h/b, while the prediction of the CNM keeps constant for different h/b.  

The CNM can yield a huge error of 50% on the critical buckling load for the case with 

h/b=0.6.   

iii) Although great progress has been made for the buckling theory in the past hundred years, it 

is still challenging to analyze the FPD buckling behaviors straightforwardly.  A systematic 

and straightforward FPD buckling theory is developed for 3D beams by considering the 

effects of finite prebuckling deformation. 

iv) Four methods, including the CBT, CNM, DLU method and FPD buckling theory, are 

applied to the classic problems, including lateral buckling of a three-point-bending beam, 

lateral buckling of a pure bending beam and Euler buckling.  Compared with the accurate 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

26 
 

buckling load from the DLU method, the FPD buckling theory is able to give a good 

prediction, while the CBT and CNM yield unacceptable results (with 70% error for a three-

point-bending beam with h/b=0.8).  

v) When should the prebuckling deformation be considered? According to the examples 

including the serpentine interconnect, the three-point-bending beam and the pure bending 

beam, an experiential criterion of h/b>0.2 for rectangular cross section is suggested for 

lateral buckling of beams. 
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Figure captions 

 

 

Figure 1. Buckling process of structures. (a) Euler buckling. The critical buckling load L
 
is 

much smaller than the original length L. (b) Buckling of a thick serpentine interconnect.  The 

critical lateral buckling load L
 
can be larger than the original length L. 
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Figure 2. Experimental stretch of serpentine interconnects. (a) A serpentine interconnect 

sample (top) and the equipment for stretching interconnects (bottom).  (b) Layouts and the cross 

section of serpentine interconnects.  (c) Curves of maximum warping displacement vs. applied 
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displacement for serpentine interconnects with various thicknesses.  (d) Optical observations of 

serpentine interconnects with h/b=0.3 and 0.5 subject to increasing applied stretch (One scale of 

the ruler on the platform denotes 0.5 mm). 
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Figure 3. Critical buckling load of serpentine interconnects. (a) Curves of dimensionless 

critical buckling displacements vs. cross-section aspect ratio h/b for serpentine interconnects 

obtained by various methods. (b) Force-displacement curves for stretching serpentine 

interconnects of various thicknesses with deformation modes of in-plane bending and out-of-

plane buckling, respectively. 
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Figure 4. Schematic illustration of the DLU method.  (a) Layouts of the serpentine 

interconnect with h/b=0.6 and (b) its buckling mode obtained by the conventional numerical 

method.  (c) Detailed operations of the DLU method. 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

37 
 

 

Figure 5. Schematic illustrations of the (a) kinematic relationship and (b) equilibrium of a 

beam with finite deformation. 
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Figure 6. Buckling analysis of a three-point-bending beam. Schematic illustrations of a beam 

subject to three-point bending in (a) undeformed and (b) buckling configurations. Schematic 

illustrations of (c) the symmetric conditions at Z=0 and (d) the mechanical constraints at 

2Z L .  (e) Curves of dimensionless critical buckling load vs. h/b for three-point-bending 

beams obtained by various methods. 
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Figure 7. Buckling analysis of a pure-bending beam. (a) Schematic illustrations of a beam 

subject to pure bending in (a) undeformed and (b) buckling configurations. (c) Curves of 

dimensionless critical buckling load vs. h/b for pure-bending beams obtained by various methods. 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

42 
 

 

Figure 8. Analysis of Euler buckling. (a) Schematic illustrations of Euler buckling. (b) Curve 

of the buckling load difference   new classic classicP P P

 

vs. the length-to-thickness ratio  . 
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Figure A1. Experimental samples and equipments. (a) Interconnect without surface treatment. 

(b) Eikonogen. (c) Interconnect sprayed with eikonogen. (d) Sample clamped on the homemade 

tensile platform. (e) Coordinate measuring system. (f) Laser light applied onto the sample 

surface. (g) Commercial software for 3D surface reconstruction. 

 

Movie 1. Buckling process for serpentine interconnects with thicknesses of 0.3 mm and 0.5 

mm, respectively. (One scale of the ruler on the platform denotes 0.5mm) 
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Appendix 

A. Fabrication of the serpentine interconnects 

The serpentine interconnect is a curvilinear structure consisting of circular arc and straight 

portions with rectangular cross section of b×h, as shown in Fig. 2b.  For convenience of the 

experimental operation, the serpentine interconnects are scaled up compared to those of 

stretchable electronics, but without losing the nature of the problem.  The width b keeps as 1mm 

for all samples, while the thicknesses h are 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm and 0.6mm, 

respectively. The interconnects are made of 301 stainless steel with the Young‟s modulus 200 

GPa.  Two large patches with holes are designed on the ends of the serpentine interconnects for 

convenience of clamping on the homemade tensile platform (Fig. A1a).  The laser cutting 

technique is used to cut the stainless steel foil into the designed structures. 

B. Experimental test of the lateral buckling of serpentine interconnects 

The noncontact optical method is used to record the deformation of serpentine interconnects 

during the stretching process.  The key operations are listed as below. 

1) Sample preparation. To avoid the reflect light from serpentine interconnects (Fig. A1a), the 

eikonogen (DPT-5, Shanghai Xinmeida Flaw Detection Material Co, LTD, Fig. A1b) is used 

to spray the samples, as shown in Fig. A1c. 

2) Sample clamping and stretch. The sample is clamped on the homemade tensile platform (Fig. 

A1d), of which the two sliders can move in the opposite directions.  During the 

measurement, the interconnect is quasi-statically stretched.  

3) Record of point cloud data. The coordinate measurement system (Infinite SC 2.4m, Hexagon, 

Sweden) with accuracy of 0.025 mm is adopted (Fig. A1e).  The laser light is applied onto 
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the sample surface to acquire the point cloud data (Fig. A1f).  The sampling interval is 0.05 

mm, and the number of obtained points is about 150000. 

4) Reconstruction of the deformed sample surface. The point cloud data are imported into a 

commercial software for 3D surface reconstruction (Geomagic Studio 10), as depicted in Fig. 

A1g.  The maximum warping displacement, the applied displacement of stretch 
appliedU  and 

their relation are all obtained. 

C. Conventional numerical method for critical buckling 

The finite element method for critical buckling in commercial program package ABAQUS 

(Dassault-Systèmes, 2010) is based on the conventional buckling theory (CBT), with 

consideration of the prebuckling stress/force but without considering prebuckling deformation.  

The numerical solver for critical buckling loads and buckling modes of structures is 

general/linear perturbation in ABAQUS CAE/input file.  It is also called the solver for linear 

buckling.  It results in a linear eigenvalue problem in mathematics. For the serpentine 

interconnect, the clamped boundary condition is applied to the left end and stretch is applied to 

the right end, while the other degrees of freedom are constrained.  As an example, Figs. 4a and 

4b show the original regime of the serpentine interconnect and its buckling mode for h/b=0.6. 

 


