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Abstract 

This paper assesses the accuracy and reliability of the Theory of Critical Distances (TCD) and the 

Strain Energy Density (SED) approach in estimating the lifetime of plain and notched specimens 

subjected to cyclic loading. To validate the two approaches for plain and notched components 

under uniaxial and multiaxial fatigue loading, a large bulk of experimental data taken from the 

literature were re-analyzed, with the state variables, i.e. the stress distributions and the strain energy 

density, being calculated via Finite Element (FE) approach. The results obtained demonstrate that 

both the TCD and the SED approach can provide highly accurate fatigue life estimation. In addition, 

the two adopted approaches require few computational efforts and experimental data to be 

implemented and used for fatigue design in situations of practical interest. 

 

Keywords: Theory of Critical Distances, Strain Energy Density, Modified Wöhler Curve, Uniaxial 
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Nomenclature 

k, kτ negative inverse slope of the 

Wöhler curve 

E elastic modulus 

Kth threshold value of the stress 

intensity factor 

Δσp,el,  elastic peak stress ranges at the notch 

tip under tension loadings 

Kt stress concentration factor 
nom  nominal stress ranges tied to tension 

loadings, 

KIC plane strain material toughness σ0 plain fatigue limit 

t net,axialK
,

t net,torsionalK  

theoretical stress concentration 

factors under tension and torsion 

loadings 

σeff effective stress calculated according 

to the TCD 

∆K1A, ∆K3A reference values at high cycle 

fatigue of the notch stress 

intensity factor range under 

Mode I and III loading 

σ1 maximum principal stress 



  

 

2 

K1, K2, K3 the values of mode I, mode II 

and mode III NSIF 

σu ultimate tensile stress 

L material characteristic length σA amplitude of the nominal gross stress 

at NA cycles 

LM material characteristic length 

determined in the medium-cycle 

fatigue regime 

g,a  amplitude of the nominal gross stress 

N0 number of cycles to failure 

defining the position of the knee 

point 

σ1,a
 

amplitude of the maximum principal 

stress 

Nf number of cycles to failure 
n,m

 
mean stress perpendicular to the 

critical plane 

NA reference number of cycles to 

failure in the high-cycle fatigue 

regime 

n,a  amplitude of the stress perpendicular 

to the critical plane 

Nf ,e estimated number of cycles to 

failure 
A,p  fatigue strength of the smooth 

sample at NA cycles 

I1, I2 the first and second invariants of 

the stress tensor 
ij  stress state components 

R0 radius of the control volume 
0  fully reversed uniaxial fatigue limit 

R load ratio σA,n nominal stress of notch sample at NA 

cycles 

R1, R3 the radius of the control volume 

under Mode I and Mode III 

loading 

∆σA nominal stress range of the 

unnotched material 

r, θ polar coordinates Δτp,el  elastic peak stress ranges at the notch 

tip under torsion loadings 

m mean stress sensitivity index 
nom  nominal stress ranges tied to torsion 

loadings, 
plain

0W  
strain density energy from the 

plain sample 

λ1, λ2, λ3 Williams’ eigenvalues 

notch

W  
strain energy density value 

averaged over the control 

volume from the notch sample 

e1, e2, e3   shape functions for sharp V-notches 

Wc critical energy value 2α opening angle of notch  

Welement,i energy contributions for all the 

finite element 

υ Poisson’s ratio 

W  averaged value of the SED over 

a control volume 

cw weighting parameter 

0  fully reversed torsional fatigue 

limit 

V control volume 

τa maximum shear stress amplitude  Tσ, TW stress-based and strain energy-based 

scatter index 

τA,Ref amplitude of the reference shear 

stress at NA cycles to failure 

a, b, α , β constants used in the MWCM 

approach 

ρeff effective value of the critical 
ij  Kronecker delta 
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plane stress ratio 

ρlim limit value of ρeff TCD Theory of Critical Distances 

EN error of fatigue life calculation SED, Strain Energy Density, 
e

ij  elastic strain state components MWCM Modified Wöhler Curve Method 

 

1 Introduction 

The fatigue problem of mechanical components has been studied intensively to safely assess 

structures subjected to different and complex loading conditions. Accurate fatigue damage 

prediction of structural components is still a big challenge due to a number of variables, including 

geometrical discontinuities, non-zero superimposed static stresses and the degree of multiaxiality 

of the stress fields that can change locally near the stress risers. There are numerous methods to 

predict fatigue life of structural components under different stress conditions [1-4]. However, a 

universal criterion for plain and notched specimens under uniaxial and multiaxial loading 

conditions has not yet been agreed by the international scientific community. 

In the present study, the accuracy in performing fatigue assessment of the TCD [5-10] and the 

SED approach [11-18] has been checked systematically against a large number of experimental 

results taken from the literature. 

The elastic maximum stress at the notch tip can be successfully used only to assess the fatigue 

strength of blunt notches. When notches become sharp, the assessment based on the maximum 

value of the stress evaluated at the notch tip are invariably too conservative. Many different 

strategies have been employed to evaluate the detrimental effect on the material fatigue strength of 

blunt and sharp notches. Based on the critical distance concept, Neuber [19] and Peterson [20] were 

able to estimate the high-cycle fatigue strength of mechanical components experiencing stress 

concentration. Tanaka [21], Lazzarin et al. [22] and Taylor [23] proposed a closed form relationship 

between the critical distance and El Haddad’s length parameter [24]. Both the TCD and SED 

approach assume that engineering materials obey a linear-elastic constitutive law and the 

linear-elastic stress fields of interest can be easily evaluated by using simple linear-elastic FE 

solutions that are able to capture with high accuracy the stress filed in the vicinity of the stress 

concentrator being investigated. By employing the TCD, the fatigue behavior of notched 

components can be predicted from such stress fields by using two material parameters: 

characteristic length L and the plain material fatigue limit. The idea of a microstructural support is 

due to Neuber [19]. Afterwards, Susmel and Taylor reviewed most of the findings in the use of the 
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TCD to assess the fatigue strength of notched mechanical components [25-27]. They were able to 

validate the accuracy of the TCD when applied to the fatigue assessment of specimens weakened 

by notches under cyclic variable loading conditions. Recently, in conjunction with the TCD, the 

Modified Wöhler Curve Method (MWCM) was successful employed in predicting the finite 

lifetime of notched components subjected to complex loadings [7, 8, 28-30]. The proposed fatigue 

life estimation technique is based on the assumption that the linear elastic stress state can be used to 

estimate the fatigue damage, at least when the fatigue phenomenon is governed by the initiation 

phase and the propagation phase is limited. In addition, the MWCM directly considers the degree 

of multiaxiality of the stress field in a process zone placed in the proximity of the notch tip. At the 

same time, the degree of multiaxiality of the stress field damaging the fatigue process zone is 

directly accounted for the MWCM, which is a critical plane approach sensitive to the presence of 

both non-zero mean stresses and non-proportional loadings. 

Some methodologies making use of the energy density have also been used to assess the 

fracture and fatigue behavior of materials exhibiting both ductile and brittle behavior. Different 

SED-based approaches were proposed and applied to static and fatigue loading conditions [31-38]. 

Dealing with the strain energy density concept, Sih proposed a criterion based on the strain energy 

density factor S, which is a point method criterion and determine the direction of crack propagation 

by imposing a minimum condition on S [32, 39-41]. A more general formulation, based on a fatigue 

master curve evaluated from the sum of the positive elastic and plastic strain energy densities of 

representative cyclic hysteresis loops, was suggested by Ellyin et al. In some uniaxial and 

multiaxial cyclic fatigue results, the SED-based approaches can accurately assess the fatigue 

behavior of components [42-45]. Lazzarin et al. firstly introduced the concept of mean strain 

energy density, which is evaluated over a control volume surrounding the notch tip [11, 46-48]. The 

method derived from the elementary structural volume concept previously proposed by Neuber 

[19]. The control radius of the volume is a material property: in the case of static loading, it 

depends on the ultimate tensile strength, the fracture toughness and Poisson’s ratio; in the case of 

high cycle fatigue loading, it also depends on the unnotched specimen’s fatigue limit and the 

threshold stress intensity factor range. The main advantage of the averaged SED over the local 

stress-based criteria is the mesh independency and insensitive to the mesh refinement. For this 

reason, a method to rapidly estimate the averaged SED at the tip of cracks under in-plane mixed 

mode loading has been recently proposed. It is based on the peak stresses evaluated from finite 
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element (FE) analyses, according to the peak stress method [49-51]. The averaged SED has been 

found to be one of the most powerful tools to assess the static and fatigue behaviour of notched and 

unnotched components in structural engineering [40, 41, 52-58]. 

In this paper, the aim is to investigate the accuracy of TCD and SED methods in estimating 

fatigue life of plain and notched specimens under uniaxial and multiaxial loading. Firstly, the 

framework of TCD and SED methods for notched components under uniaxial fatigue loading are 

described. A large number of experimental data relevant to blunt and sharp notched specimens have 

been employed herein for the validation purpose. In the second part of the work, the analytical 

frames of the same criteria for multiaxial fatigue loading are introduced. Validations are given by 

comparing the predictions with a large number of experimental data from different materials and 

involving samples under different loading conditions. Finally, conclusions are drawn. 

2 Fatigue assessment of notched components under uniaxial fatigue loading 

2.1 Fatigue lifetime estimation of notched components using TCD 

Peterson [20] proposed the point method (PM) which considers as a critical parameter the 

effective stress measured at a given distance from the tip from the stress raiser. On parallel tracks, 

the line method (LM) was formalized by Neuber [19]. The LM method is based on the idea that the 

effective stress is averaged over a line. These methods have been successfully formalized by taking 

into account the LEFM concepts [21-23].  

The material characteristic length L can be evaluated as follows as: 

2

th

0

1 K
L

 

 
  

 
                            (1) 

where Kth is the threshold value of the stress intensity factor and σ0 is the plain fatigue limit of 

material (both determined at the same load ratio, R, applied to the specimens). As briefly 

mentioned above, the TCD can be formalized in different ways, by considering different integration 

domains (point, line, area or volume method) for the effective stress σeff evaluation. Under the 

mode I loading conditions, the PM postulates that the effective stress is equal to the principal stress 

measured at a distance from the notch tip equal to L/2. The critical condition is reached when 

σeff=σ0 as explicitly reported below: 

eff 1 00,
2

L
r   

 
    

 
                     (2) 
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In Eq. (2) σ1 is the maximum principal stress, θ and r are the polar coordinates. The value of σ1 

should be evaluated along a line drawn starting from the hotspot (the point experiencing the 

maximum peak stress) in a direction normal to the maximum principal stress. Usually, this 

direction is normal to the surface of the notched components. Under mode I loading conditions, the 

notch bisector represents the line of stress evaluation. 

Instead of determining σeff at a given distance from the notch tip, the LM can be evaluated by 

averaging the value of 1 along the notch bisector over a distance equal to 2L at the fatigue limit 

condition of the notched component: 

 
2

eff 1 0
0

1
θ=0, =

2

L

r dr
L

                       (3) 

For the area and volume method, the range of the effective stress can be calculated by 

averaging the principal stress over a semicircular area of radius equals to L (area method) or in a 

hemisphere centered at the notch tip with the radius equal to 1.54L (volume method) [59]. 

As an extension to the finite fatigue lifetime, Susmel and Taylor proposed to apply the TCD in 

medium-cycle fatigue regime by considering the critical distance, L, as material property but also 

as a function of the number of cycles to failure. The following expression has been proposed in Ref 

[25]: 

 M f f

BL N A N                           (4) 

In Eq. (4) A and B are material constants to be determined by running appropriate experiments, 

which require some simple static tests to determine the ultimate tensile stress σu and plane strain 

material toughness KIC and some standard fatigue tests aimed to determine the plain fatigue limit σ0 

and the threshold value of the stress intensity factor Kth. Unfortunately, the stress based approach is 

not adequate at describing the behavior of engineering materials in the low-cycle fatigue regime, 

resulting in an approximate calculation of the reference number of cycles to failure in the low-cycle 

fatigue regime. Besides, it is very difficult to coherently define the reference number of cycles to 

failure in the high-cycle fatigue regime corresponding to the knee point due to the fact that, for a 

given material, the position of the knee point can change by changing the geometry of the tested 

samples. So it is not adequate to determine constants A and B by using the above strategy. 

In order to overcome the just mentioned problem, an alternative proposed by Susmel and 

Taylor [25] was adopted. This proposal is based on two calibration σ-N fatigue curves: one 

obtained by testing plain specimens and the second one obtained by testing notched specimens. In 
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particular, by using the PM, the values of σ1,a can be determined at any given number of cycles Nf 

by the Wöhler equation (see Fig. 1): 

1,aA A f

kk N N                           (5) 

In Eq. (5) NA is reference number of cycles to failure in the high-cycle fatigue regime and σA is the 

amplitude of the nominal gross stress at NA cycles. The linear elastic stress field distribution in the 

proximity of the notch tip can be determined by FE method. The mapped mesh in the vicinity of 

the stress raiser’s apex is gradually refined until convergence occurred. Then, the linear elastic 

stress field distribution σ1(r) can be fitted accurately with an exponential decay function 

(coefficient of determination: R
2
 > 0.99) through a post processing of the simulated data. For the 

calculated values, it is easy to determine the distance LM(Nf)/2 from the fitting function. 

 1,a 1 f( )/2L N                                                    (6) 

An identical procedure can be used to evaluate the distance 2LM (Nf ) with the LM: 

   
M f2 2 ( )

1,a 1 1
0 0

M f

1 1
=0, =0,

2 2 ( )

L L N

r dr r dr
L L N

            (7) 

By calculating the critical distance value for all the numbers of cycles, constants A and B in 

Eq. (4) can be determined by employing a fitting procedure. 

In order to better clarify the recursive procedure which can be used to assess the number of 

cycles to failure Nf ,e by using the TCD, consider a notched specimen subjected to a given value of 

the nominal stress σg,a. The distribution of the linear elastic stress field can be determined by using 

a FE model. Then by simply substituting the equation M e,f= BL A N  into Eq. (6), it is possible to 

write: 

 
e,f1 1 e,f 1 1,a( )/2 /2Br L N A N                                       (8) 

Subsequently, by substituting the value of 
1 e,fσ ( )/2L N   into the Eq. (5), the equation just 

containing the number of cycles to failure Nf ,e can be obtained: 

e,f

A A A
e,f A A A

1,a 1 e,f 1
σ ( )/2 σ /2

k

B

kk

N N N N
L N A N

  



 
            

  
   

   
   

        (9) 

Through Newton’s method, the value of Nf,e can be determined directly from Eq. (9) which 

provides a general solution. If Eq. (9) does not have a real root, an approximate value obtained by 

minimizing the error can be obtained. The same procedure can be used for applying the LM with 
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the only difference that in Eq. (9) the integral form is still present as shown below: 

 
e,f

e,f 2

1
0

e,f

=0
1

σ dr
2

B

k

A
A A N

B

N N

r
A N




 
 
 
 

   






             (10) 

The relationship between LM and Nf can be obtained by testing plain and V-notched specimens. 

The main advantage of this approach is its accuracy in determining L and the possibility to be 

easily applied to engineering applications. For different geometrical features, under the hypothesis 

of linear elasticity and at high-cycle regime, the use of notches as sharp as possible is always 

recommended to generate the fatigue curve needed to determine the main constants A and B. 

The two calibration σ-N fatigue curves can be used to assess the fatigue life of other notched 

specimens made of the same material and tested at the same load ratio. The procedure mainly 

consists in defining the LM versus Nf relationship based on the use of two calibration curves and 

consequently finding the linear elastic stress field distribution along the distance under at a given 

nominal stress σg,a by FE method. Finally, the estimation is based on PM or LM by substituting the 

linear elastic stress field distribution into Eq. (9) or Eq. (10). Such the method is also summarized 

by the flow-chart sketched in Fig. 2. 

2.2 Estimate fatigue lifetime of notched components using SED 

The local SED approach has been extensively used in the last years to deal with high cycle 

fatigue of notched components and welded joints. The local SED states that failure occurs when the 

mean value of the strain energy density averaged over a control volume surrounding the notch tip is 

equal to a critical energy value Wc. Under plane strain or plane stress conditions, the control 

volume becomes a circle, a circular sector or a crescent shape as depicted in Fig. 3, where the 

radius of the control volume R0 does not depend on the notch geometry. Under the hypothesis of 

plane strain, all the stress and strain components in the highly stressed region are related to mode I 

and II notch stress intensity factors (NSIFs). The expressions for the NSIFs can be defined 

according to the following expressions: 

 11

1
0

2 lim ( , 0)
r

K r r


  





                       (11) 

21

2
0

2 lim ( , 0)r
r

K r r


  





                          (12) 

Thus, the strain energy in a well defined area surrounding the notch tip as shown in Fig. 3 can 
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be evaluated as follows: 

1 2

2 2

1 2
1 22(1 ) 2(1 )

0 0

wc K K
W e e

E R R  

  
     

 
                       (13) 

In Eq. (13) λ1 and λ2 are Williams’ eigenvalues, ∆K1 and ∆K2 represent the values of mode I and 

mode II NSIF ranges, and R0 represents the radius of the control volume. e1 and e2 are shape 

functions which depend on the notch angle 2α and the Poisson’s ratio υ. In order to consider the 

influence of the nominal load ratio R, the weighting parameter cw has to be adopted in agreement 

with the following expression [54, 60]: 

2

2

2

2

1
for - 0

(1 )

( ) 1 for 0

1
for 0 1

(1 )

w

R
R

R

c R R

R
R

R

 
  




 



  



                       (14) 

Under uniaxial loading (i.e.,mode I loading) the mode II contribution vanishes, Eq. (13) can 

be simplified as follow: 

1

2

1 1

2(1 )

0

w

e K
W c

E R 

 
   

 
                             (15) 

 

It is worth of mentioning that the application of the SED criterion and the reliability of its 

results are strictly related to the proper determination of fatigue parameters, i.e. the critical value of 

deformation energy and the radius of the control volume. The control radius R0, can be easily 

estimated by means of the following expression: 

1

1

1-
1 1A

0

A

2e K
R





 
  
  

                      (16) 

where ∆K1A and ∆σA are the reference values at high cycle fatigue of the notch stress intensity 

factor range of the severely notched material and the nominal stress range of the unnotched 

material, respectively. As soon as the notch stress intensity factor ∆K1A is known, the control radius 

can be evaluated. Due to the lack of data of the critical stress intensity factors for different 

materials an alternative procedure is suggested here to evaluate R0. 

An alternative approach for the evaluation of R0 is proposed here. By referring to the fatigue 

strength of plain and notched samples at NA cycles, which is the reference value of number of 
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cycles to failure in the high-cycle fatigue regime, the value of R0 can be obtained by equating the 

strain energy density of the unnotched sample to the averaged strain energy density over the sector 

of radius R0 surrounding the tip of the notch as shown in Eq. (17): 

2
notchA,p

0

plain

0 ( )
2

W W R
E


                      (17) 

A,p  is the fatigue strength of the smooth sample at NA cycles and E is the elastic modulus of the 

material. Fig. 4 shows the procedure for the evaluation of the control radius R0 of the critical 

volume by using linear elastic FEA. By varying the control radius R around the notch tip in the 

FE model under a nominal stress σA,n, the corresponding values of the strain energy density value

notch

W averaged over the control volume can be easily evaluated. It is then possible to fit 

notch

( )W R  as a function of the control radius R obtaining a fitting equation. The control radius 

R0 can be calculated by equating 
notch

( )W R  to the strain density energy from the plain samples, 

plain

0W . Due to the lack of experiments providing the critical values of the stress intensity factors, 

the control radius can be easily evaluated with the procedure explained above. 

The local SED can also be easily and directly calculated from the post-processing of the 

FEA by summing the energy contributions Welement,i for all the finite element within the control 

volume V: 

element,V i

w

W
W c

V




                            
(18) 

The parameter cw of Eq. (18) takes into account the load ratio R when the nominal stress 

amplitude is applied to the FE model to obtain the local SED value [60]. As previously 

mentioned it is important to remember that refined mesh are not necessary to determine the 

values of the SED, because this parameter can be determined via the nodal displacements, 

without involving their derivatives [61]. This means that the mean value of the local SED is 

substantially independent of the mesh size. The value of the SED in the control volume can be 

accurately determined through FEA using regular coarse meshes. 

It should be mentioned that the assumption of the SED as a damage parameter allows to 

summarize a lot of fatigue data obtained for notched specimens in a reasonable scatter band. 

Generally, it is important to understand the fatigue behavior of notched components and to assess 

with a reasonable accuracy the fatigue strength without performing a large number of experiments. 
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Therefore, in order to predict the fatigue life of components having different geometrical features, 

the SED W versus the fatigue life Nf relationship is calculated by considering the notched 

samples as sharp as possible following the same approach developed for the TCD and described 

above. In complete analogy with the process employed for the TCD by applying in the FE model a 

value of nominal stress, the averaged SED, W , can be evaluated from the post-processing of the 

FE results by employing Eq. (18). W  versus the number of cycles to failure Nf can be expressed 

as follows: 

f

DNW C                                  (19) 

In Eq. (19) C and D are material constants. Keeping constant the material and the nominal load 

ratio, the fatigue life can be assessed by using Eq. (19) for any geometrical configuration of the 

notch. The flow-chart summarizing the procedure used to estimate fatigue lifetime is shown in 

Fig.5. 

2.3 TCD Method validation by experimental data 

In order to validate the accuracy of the TCD in predicting the fatigue life of notched 

components, some data sets taken from the literature have been re-analyzed in the present 

investigation. The selected series of data under uniaxial loading are listed in Table 1. For the 

selected series the nominal load ratio varies from -1 up to 0.5. It is worth mentioning that the 

constants A and B in Eq.(4) have been determined by considering the fatigue curve corresponding 

to unnotched material and that from very sharp notches (i.e. the highest value of the stress 

concentration factor).  

The accuracy of the TCD approach in predicting the number of cycles to failure as a function 

of different geometrical configuration is summarized by the diagrams reported in Fig. 6. Point and 

line methods have been applied here to summarize the data. In Fig. 6 the experimental number of 

cycles to failure, Nf, are plotted against the estimated number of cycles to failure, Nf,e. The scatter 

bands have been calculated by considering the fatigue data from plain specimens and from the 

sharpest notched configuration available for each set of data. A probability of survival, PS, equal to 

5% and 95%, has been considered. The results summarized in Fig. 6 confirm that the TCD method 

is successful in predicting the uniaxial fatigue behavior of different materials. All the data, in fact, 

fall within the scatter band of the parent material with the only exception of the samples 
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characterized by a lower value of the stress concentration factor. When the stress concentration 

factor (Kt) decreases, the final fatigue assessment tend to be too conservative. On the other hand the  

prediction of the data characterized by a higher value of Kt always fall within the scatter band, 

showing a high accuracy in the final assessment of the fatigue life. In general, the overall best 

accuracy is achieved by applying the LM, whereas the application of the PM results in slightly 

conservative predictions.  

2.4 SED Method validation by experimental data 

The synthesis of the same original experimental data in terms of averaged SED has been 

performed in the present section of the paper. All the main parameters necessary to apply the SED 

approach are summarized in Table 2. The relationship linking the local SED with Nf, the 

stress-based scatter index Tσ, the strain energy-based scatter index Tw referred to a probability of 

survival in the range of 10%-90% and the control radius R0 are summarized in Table 2 for each 

material. It can be noted that the value of TW becomes equal to the value of Tσ when reconverted to 

an equivalent local stress range (
WT T  ). 

The SED accuracy in the fatigue prediction has been validated in Fig. 7. The results reported 

in Fig. 7 confirm that the SED method is able to predict with good accuracy the fatigue data from 

different materials and geometries with all the data falling within the scatter band of the parent 

material with the only exception of the notched specimens characterized by a low value of the 

stress concentration factor. 

In order to precise comparison of the calculation results obtained with the discussed methods, 

the methods prediction error can be defined according to the following relationship [65, 66]: 

 f
10

f,e

logN

N
E

N

 
   

 

                           (20) 

The probability density function of errors of fatigue life determination is shown in Fig. 8, 

which shows the similar distribution as shown in Figs. 6 and 7. From the figure it appears that the 

errors are slightly displaced towards the safe area for the results calculated by the TCD, but the 

errors by the SED are sometimes unsafe and other times safe without a clear regularity. 

3 Fatigue assessment of unnotched and notched components under multiaxial fatigue 

loading 
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3.1 The MWCM in fatigue assessment 

Several multiaxial fatigue criteria have been formalized and validated in order to make 

reliable and accurate fatigue predictions of components subjected to complex multiaxial loading 

paths. Among these different criteria, the Critical Plane Method based criteria have been found very 

effective [67-70]. In particular the Modified Wöhler Curve Method (MWCM) has been 

successfully applied not only to unnotched specimens but also to notched components subjected to 

different multiaxial loading conditions [71-73]. 

The MWCM postulates that the fatigue damage mainly depends on the maximum shear stress 

amplitude τa, the mean value σn,m and the amplitude of the normal stress σn,a measured on the 

critical plane [71, 73, 74]. The effective value of the critical plane stress ratio, ρeff, can be defined 

as follows: 

n,m n,a

eff

a

m 





                             (21) 

In Eq. (21) m is the mean stress sensitivity index, which is a material constant ranging between 0 

and 1. It gives a measure of the material sensitivity to nonzero mean stresses perpendicular to the 

critical planes. In particular, m takes on the following value:  

n,aa 0 a

n,m 0 0 a

2
2

m
  

   

 

 

 
    

                   (22) 

where a

, n,m 

 and n,a 
are the critical plane stress components determined under a load ratio, R, 

larger than -1, where the relevant stress components relative to the critical plane. 0  and 0  are 

fully reversed uniaxial fatigue limit and fully reversed torsional fatigue limit, respectively. In 

general, when the mean stress sensitivity index m is not available, the material can be assumed to 

be fully sensitive to the presence of non-zero mean stresses perpendicular to the critical planes (i.e., 

m=1), increasing the degree of conservatism of the estimates [30]. 

A large amount of experimental data have shown that the fatigue lifetime can be estimated 

through the degree of multiaxiality of the stress field damaging the fatigue process zone in terms of 

ρeff [30, 72]. According to the modified Wöhler diagrams, the negative inverse slope, kτ(ρeff) versus 

ρeff and the reference shear stress amplitude, τA,Ref(ρeff) versus ρeff relationships are obtained by 

running appropriate experiments as shown in Fig. 9. The calibration functions are defined as 

follow: 
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eff eff( )k a b                             (23) 

A,Ref eff eff( )                            (24) 

where a, b, α and β are fatigue constants to be determined experimentally. The accuracy of 

constants can be increased by considering a large number of fatigue curves for the calibration. 

Fig. 9 summarizes the use of the MWCM method to estimate the fatigue lifetime of 

components. In more detail, from the stress state at point O, the maximum shear stress amplitude, 

τa, and the effective critical plane stress ratio, ρeff, can be determined by taking full advantage of the 

Maximum Variance Methods [75-78]. The Maximum Variance Method assumes that the fatigue 

damage is proportional to the variance of the load history that is damaging, at the assumed critical 

point, the component being assessed. Subsequently, according to the calculated value of ρeff, the 

modified Wöhler curve corresponding to the degree of multiaxiality of the considered stress field 

acting on the fatigue process zone can be estimated directly from Eqs (23) and (24). In general, 

when the degree of multiaxiality of the stress field relative to the fatigue process zone is evaluated 

in terms of ρeff, the constants of functions kτ(ρeff) and τA,Ref(ρeff) have to be determined by using the 

fully reversed uniaxial and torsional fatigue curves. Finally, fatigue lifetime of plain components 

under the investigated loading condition can be predicted by using the following equation: 

eff( )

A,Ref eff

f,e 0

a

( )
k

N N

 
 



 
  

 
                     (25) 

In the light of the good accuracy shown by the TCD when employed to predict fatigue lifetime 

of notched components, the extension of MWCM has been also proposed to be applied in terms of 

the TCD to predict the fatigue lifetime of notched components. It is worth noting that among the 

different formalizations of the TCD, PM has been used to estimate high-cycles fatigue strength 

because the stress state at one single point is much easier to be handled under complex multiaxial 

load histories. As postulated by the TCD, the critical distance value to be used to calculate an 

effective equivalent stress is a material dependent property whose value increases with decreasing 

the number of cycles to failure as shown in Eq. (4). 

To estimate the fatigue life, the employed methodology is described in Fig. 10. In more detail, 

initially the linear-elastic stress distribution along the focus path r has to be calculated by using 

either analytical or numerical methods. The values of the effective value of the critical plane stress 

ratio, ρeff(r), the maximum shear stress amplitude, τa(r), the amplitude of the stress perpendicular to 
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the critical plane, σn,a(r) and the mean stress perpendicular to the critical plane, σn,m(r), are 

calculated at the critical plane identified along the focus path, as shown in Fig. 10. At any distance 

r from the notch tip, and according to the calculated values of τa and ρeff, the corresponding 

modified Wöhler curve can be estimated by using the kτ vs. ρeff and τA,Ref vs. ρeff relationships 

previously calibrated through the parent material fatigue properties. The corresponding number of 

cycles to failure, Nf can be calculated directly at any point belonging to the focus path. 

Subsequently, for any value of r, the critical distance LM is calculated according to Eq. (4). Finally, 

the component to be assessed is assumed to fail at the number of cycles to failure, Nf,e, when the 

distance r is equal to the critical distance LM/2, that is: 

 f,eM 0 0
2 2

BA NL
r r


                       (26) 

3.2 Multiaxial fatigue assessment by means of SED 

Ellyin et al. suggested that fatigue life of unnotched components can be made by considering 

both the plastic energy and the positive elastic energy [40, 41]. This assumption is based on the 

experimental evidence that, in the high-cycle fatigue regime fatigue damage mainly depends on the 

contribution of elastic energy due to the plastic energy is in general negligible [79].  

The elastic strain increment is related to the stress increment through the generalized Hooke’s 

law: 

1
d de

ij ij kk ij
E E

 
   


                          (27) 

In Eq. (27) υ is the Poission ratio, E the Young modulus and ij  the Kronecker delta. 
ij  is equal 

to 1 when i=j and it is equal to 0 otherwise, and a repeated index implies summation over its range, 

11 22 33kk      , in this case i, j=1, 2, 3.  

The elastic SED can be calculated as, 

e

ij ijW d                                (28) 

For an isotropic linear elastic material, by substituting Eq. (27) into Eq. (28) and integrating 

the following expression can be obtained:  

21 1 2
( )

2 6
ij ij kkW S S

E E

 


 
                    (29) 

The first term on the right hand side of the equation is the deviatoric strain energy density, while 
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the second term is related to the strain energy linked to the volume change. The following 

expressions can then be written: 

2

2 1 2

1
3

3
J I I                               (30) 

In Eq. (30) 1 xx yy zzI       and    2 2 2

2 xx yy yy zz xx zz xy yz zxI               
 
are the first 

and second invariants of the stress tensor, respectively. 

By using the above relationships, it is straightforward to obtain 
eW for plain specimens 

under multiaxial fatigue loading: 

 
2 2

nom nom1
2

W
E E

 


 
                           (31) 

With the aim to unify in a single diagram the fatigue data related to different values of the 

nominal load ratio R, it is also necessary to consider a weighting factor in the the previous 

expression. For unnotched specimens under different loading modes, substituting from Eq. (14) 

into Eq. (31), the expressions become: 

 
2 2

nom nom1
2

e WW c
E E

 


  
    

 
                      (32) 

As shown in the first part of the paper, the SED as a damage parameter allows all the fatigue 

data obtained from plain specimens with different loading modes to be summarized in a narrow 

scatterband. W  versus the fatigue life Nf can be expressed as follows, in analogy with the 

Wöhler curve representation: 

f

BNW A                                  (33) 

In Eq. (33) A and B are material constants. As soon as the curve W -Nf is drawn, Eq. (33) is very 

convenient to determine the different values of W  as a function of the fatigue life Nf. 

The extension to notched components is more complicated due to the effects of the stress 

concentration and stress gradients in the proximity of the notch tip. The notch stress field is 

dependent on the notch shape and its dimensional features. For structural components subjected to 

multiaxial loading conditions in presence of V-notches with a small root radius mode I and mode 

III NSIFs, K1 and K3, can quantify the stress field in the vicinity of the notch tip [53]. The averaged 

strain energy calculation is based on the local stress and strain state in a control volume embracing 

the notch tip. These parameters are evaluated from linear elastic FE analyses taking into 
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consideration a sharp V-notch with tip radius equal to 0 (see Fig. 11). In particular, with reference 

to the coordinate system shown in Fig. 11, the mode I and mode III NSIFs can be defined by means 

of the following expressions [80-82]: 

 11

1
0

2 lim , 0
r

K r r


  





                      (34) 

 31

3
0

2 lim , 0r
r

K r r


  





                      (35) 

The eigenvalues λ1 and λ3 depend on the notch opening angle 2α. On the other hand, in 

conditions of linear elastic hypothesis, the NSIFs can be linked to the nominal stress components 

according to the following expressions [60, 81]: 

11

1 1 nomK k d
 

                                 (36) 

31

3 3 nomK k d
 

                                 (37) 

where d is the notch depth, while k1 and k3 are non-dimensional factors derived from FE analyses, 

which simply take into account the shape of the component, in analogy with the representation of 

linear elastic fracture mechanics. In the case of V-notched specimens subjected to mode I+III under 

linear elasticity hypothesis, the SED averaged over a control volume, which embraces the notch tip, 

can be expressed by means of the following equation [83]: 

31

22

31
1 3 2(1 )2(1 )

1 3

1 KK
W e e

E R R
 

 
     

 

                   (38) 

In Eq. (38) ΔK1 and ΔK3 represent the values of Mode I and Mode III NSIF ranges, while R1 and R3 

are the radius of the control volume under Mode I and Mode III. The functions e1 and e3 are two 

parameters related to the V-notch geometry. These parameters are directly linked to the integrals of 

the angular functions over the control volume of tip and can be determined once the V-notch 

opening angle is known [46, 54]. 

The calculation of NSIFS requires a refined mesh in the proximity of the notch tip where the 

stress field is singular. On the other hand, the SED averaged over a control volume can be 

accurately obtained by means of relatively coarse meshes as explained in previous works [14]. By 

considering independently Mode I and Mode III loading, the control radii R1 and R3 can be 

estimated. They can be estimated by considering the high-cycle fatigue strengths derived from 

unnotched specimens and the values of ΔK1A and ΔK3A referred to a number of cycles NA, 

belonging to the high-cycle fatigue regime: 
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



 
  
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                             (39) 
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3
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A
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e K
R



 

 
     

                           (40) 

In order to unify in a common diagram the fatigue results by adopting different nominal load 

ratio R, the weighting parameter cw has to be taken into account. Therefore, the final expression 

becomes as follow: 

31

22

w 31
w 1 3 2(1 )2(1 )

1 3

SED=
c KK

c W e e
E R R

 

 
     

 

            (41) 

When blunt notches are considered, the application of NSIFs is not longer valid. In this case, 

the averaged SED can be linked to the elastic peak stress at the notch tip. The total strain energy 

density, calculated at the notch tip, can be expressed as [52, 53]: 

2 2w
P,el p,el2(1 )

2

c
W

E
                          (42) 

In Eq. (42) E and υ are the Young modulus and the Poisson ratio, and Δσp,el and Δτp,el are the elastic 

peak stress ranges at the notch tip. Eq. (42) can be also rewritten in terms of the theoretical stress 

concentration factors: 

2 2 2 2w
t net,axial net t net,torsional net2(1 )

2

c
W K K

E
                 (43) 

As previously made in the paper W  can be related to Nf by means of the following 

expression: 

f

DW CN                                 (44) 

where C and D are material constants. The fatigue life can be assessed by using Eq. (44) for 

notched components under multiaxial loading. 

3.3 MWCM method validation by using unnotched components 

The systematic validation of the proposed method was performed by using a large number of 

experimental data taken from the literature. A synthesis is provided in Table. 3 where the constants 

of the two fatigue master curves used to calibrate the method were reported together with the fully 

reversed fatigue limits σA and τA, the ultimate strength σu and reference number of cycles to failure 

NA. 
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In order to get a good understanding of the statistical distribution by using the MWCM, Fig. 

12 shows the correlation of experimental fatigue life Nf versus estimated fatigue life Nf,e for all the 

materials re-analyzed in the present work. In these diagrams, both multiaxial fatigue data and 

calibration data are plotted together. Calibration data include the uniaxial, bending and torsional 

data used to calibrate by means of Eqs (23) and (24) the MWCM criterion. In the diagrams, the 

continuous straight lines define the uniaxial or bending scatter bands, while the dashed lines define 

the torsional scatter bands. As mentioned above, all scatter bands were calculated under the 

hypothesis of a log-normal distribution of the number of cycles to failure, with a confidence level 

equal to 95%. 

Fig. 12 shows that all data from multiaxial specimens mainly fall within the widest scatter 

band related either to uniaxial or to torsional loadings. This simply means that the MWCM allows a 

sound multiaxial fatigue life prediction characterized by a statistical scatter index close to those 

exhibited by the two master curves used to calibrate the method. The intrinsic dispersion of the two 

calibration curves obviously influences the degree of accuracy of the predictions under multiaxial 

fatigue conditions. More precise predictions can only be obtained by reducing the dispersion of 

data belonging to the master curves keeping into consideration additional parameters. 

In the majority of the cases the effect of the mean value of the torsional stress can be 

disregarded, but this does not hold true, for example, in the case of 18G2A steel specimens as 

shown in Fig. 12. This material is very sensitive to the mean value of the torsional component and 

this causes non-conservative fatigue lifetime predictions when the load ratio R is larger than -1. 

Conservative predictions in the fatigue life have been observed for low carbon steel. This over 

conservative estimations can be explained considering that this material tends to have non 

negligible plastic deformation also in the high cycle fatigue regime. 

3.4 SED validation under multiaxial loading 

The synthesis of the original experimental data in terms of the SED method according to Eq. 

(32) has been evaluated. All the data for a suitable application of the criterion are listed in Table 4. 

The scatter index values are close to those previously suggested by Haibach. The SED accuracy in 

the case of multiaxial loading conditions is well visible in Fig. 13, which reported the experimental 

number of cycles to failure, Nf, versus the estimated number of cycles to failure, Nf,e. In particular, 

the continuous straight lines define the uniaxial scatter bands, while the dashed lines define the 
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torsional scatter bands, by post-processing the experimental data generated by testing plain 

specimens under both uniaxial and torsional fully-reversed loading. The probability density 

function of calculation errors, shown in Fig. 14, proves the accuracy of predicting results obtained 

from the two models. The obtained results calculated by the SED are mostly in the same proportion 

at the safe and dangerous sides. 

The diagrams in Fig. 13 make it evident that the systematic adoption of Eq. (32) resulted in 

estimating fatigue life mainly falling within the parent material torsional scatter band for the 

majority of the considered materials. These diagrams clearly show that the SED is an accurate 

method for a wide variety of multiaxial loading configurations. The SED method summarises all 

the experiment data under different loading condition together to get the SED W  versus the 

fatigue life Nf relationship through a least squares linear regression. Its main advantage is that the 

best fitting line is the line with minimum error from all the points, which could correct the error 

efficiently. Therefore, in order to predict the fatigue life of plain specimens, the SED W  versus 

the fatigue life Nf relationship is calculated accurately by a large number of fatigue experimental 

data. 

The only effect on this in the prediction is that the SED is not able to take into account the 

effect of non proportional loading that for many materials is negligible. So this is not a drawback in 

many cases. In addition, as a scalar quantity within a volume, the SED method cannot consider the 

preferential orientation of crack path. The assumption might be acceptable from an engineering 

point of view only considering the crack initiation life, and not the whole fatigue life of the 

component, which is also a limitation of the TCD.  

3.5 MWCM validation using notched components 

In order to investigate the accuracy of the MWCM applied in conjunction with the PM, some 

multiaxial fatigue data results taken from the literature. According to the procedure briefly 

explained above, the two fatigue curves generated by testing, under full-reversed uniaxial fatigue 

loading, the plain specimens and the notched samples, respectively, have been used to calculate 

constants A and B in the LM versus Nf relationship. The constants a, b, α and β as well as ρlim have 

been determined through the uniaxial and torsional fully reversed plain fatigue curves. The mean 

stress sensitivity index, m, has been estimated by using a uniaxial limit generated under a load ratio, 

R, larger than -1. The values of the constants needed to calibrate both the MWCM and the the LM 
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versus Nf relationship are summarized in Table 5. 

The Nf versus Nf,e diagrams reported in Fig. 15 are able to prove that the MWCM method is 

successful in estimating the lifetime of notched components under multiaxial loading. In particular, 

these results confirm that MWCM is capable of making the estimates located mainly within the 

widest plain scatter band between the two used to calibrate. Fig. 15 also clearly proves that 

MWCM in terms of PM can be highly accurate in predicting fatigue life, correctly taking into 

account not only the presence of various stress concentration factors derived from notches but also 

the damaging effect of stress gradients due to the nominal loading. Moreover, it has to be said that, 

strictly speaking, the constants of the LM versus Nf relationship under torsion is different from these 

values determined under uniaxial fatigue loading. The critical distance value under torsion is larger 

than the corresponding value determined under uniaxial fatigue loading [84]. By reanalyzing large 

amount of experimental data, the results strongly support the validity of the idea that the LM versus 

Nf relationship generated under uniaxial fatigue loading can be assumed to be independent of the 

complexity of the assessed stress field. But for some materials, like Ti6Al4V and 39NiCrMo3 in 

Fig. 15, the predicting results show that the pure torsional data fall outside the widest parent 

material scatter band and tend to conservative lifetime prediction, with loss of accuracy. It is 

important to highlight that under pure torsional loading there are a large plastic zone ahead of the 

notch tip for V-notch Ti6Al4V and 39NiCrMo3 specimens [56, 57]. Therefore, the predicting 

fatigue life under pure torsion loading would be conservative if the LM versus Nf relationship 

generated under uniaxial fatigue loading was used to calculate the fatigue life. 

3.6 The SED method validation by using notched components 

The multiaxial fatigue behavior of materials under different loading conditions has been 

investigated to analyze the influence of load ratio and load phase angle on the fatigue life of 

specimens weakened by notches with different root radius. Synthesis of the experimental results 

taken from the literature is shown in Table 6 together with the main parameters necessary for the 

application of the SED approach. It is observed that the scatter index Tσ and TW are quite narrow, 

with a probability of survival of 10-90%. In terms of equivalent stress range (by simply making the 

square root of scatter index TW), the scatter index results are nearly equal to the Haibach scatter 

band Tσ. Under linear elastic hypothesis, the contribution ascribable to the stress component ∆σ has 

been averaged over a control radius R1, while the ascribable to the stress component ∆τ has been 
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averaged over a control radius R3. The later radius definition is strongly influenced by extrinsic 

mechanism summarized by the term crack tip shielding (plasticity, rough contact surface and 

corrosion debris). In the present investigation, as dealing with high notch sensitivity of notched 

specimens, plasticity and shielding effects are very limited and play only a second role on the 

fatigue crack initiation and propagation. Therefore, a single control radius can also be used to 

obtain satisfied results without considering the loading modes [52]. For large radius of blunt V and 

U notched specimens, “the point criterion” based on the SED method at the notch tip is adopted to 

calculate the data. 

Finally, Fig. 16 reports the experimental number of cycles to failure, Nf, versus the estimated 

number of cycles to failure, Nf,e . It is important to highlight that in such diagrams not only the 

experimental data but also the scatter bands of the calibration fatigue curves plotted, including the 

torsional scatter bands and the uniaxial scatter bands of parent materials. These scatter bands refer 

to a probability of survival, PS, equal to 5 and 95%, respectively. These results confirm that the 

method is giving fatigue predictions mainly falling within the uniaxial scatter band or the torsional 

scatter band, which can also be proved by the course of the probability density function as shown 

in Fig. 17. When the errors are calculated for the MWCM, the results are not located around the 

mean error equal to zero. Compared with the MWCM, the obtained results by SED are nearly in 

the same proportion at the safe and dangerous sides. Although the re-analysis of the experimental 

data in terms of the SED range at the notch tip allows most of the uniaxial and multiaxial data 

referred to notched specimens to be summarized in the fatigue scatter band, there are still some 

data falling outside the largest scatter bands. A possible explanation might involve the different 

influence that tensile and torsion loads have on the local yielding in the highly stressed regions [56]. 

It is extensive plasticity provoked by torsion loading with nonlinear effects and by interference 

phenomena between the crack surfaces. Moreover, the proposed procedure shows that the SED 

approaches need large amount of fatigue data to obtain high accuracy and reliability of predicting 

fatigue life, which might be complex and high cost from an engineering point of view. 

4 Conclusions 

(1) The TCD approach can successfully assess the fatigue life of notched components 

subjected to uniaxial loading, and it held true independently of the geometrical feature weakening 

the tested specimens. The TCD approach in the line method has been found to be more accurate 

than the point method in assessing the fatigue lifetime of notched specimens. 
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(2) The SED approach has been also found to be an accurate design methodology under 

uniaxial loading, with exception to U notches with low stress concentration factors. The approach 

is very sensitive to the critical radius value, which defines the control area. The critical radius can 

be easily estimated using the appropriate equation depending on the fatigue strength of plain 

specimens and the notch stress intensity factor at a specific reference number of cycles. 

(3) The MWCM itself and its combination with the point method has been found to be highly 

accurate in estimating the multiaxial fatigue lifetime of plain and notched components. The method 

can be easily implemented to assess the lifetime of real structures by means of a simple linear 

elastic FEA. Under torsional loading, the mean stress has obvious effect on the accuracy of 

predicted fatigue life. For some materials, due to the presence of a large plastic zone surrounding 

the crack tip, the application of TCD constants obtained from uniaxial loading to torsional loading 

can yield to inaccurate results. This is due to the different stress filed distribution in these two 

loading cases and their different effects on the plastic zone. 

(4) The SED has highly accuracy in assessing the fatigue lifetime of plain and notched 

components under multiaxial loading. Using the averaged SED, the reanalysis of the data on 

different volumes allows to summarise the main body of the results in a single, narrow scatter band 

relative to the fatigue results of parent materials generated under torsional or uniaxial loading. 
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Table 1 Synthesis of the experimental results of notched specimens under uniaxial 

loading calculated by TCD. 

Material R L versus Nf relationship Specimen geometry Load type 

Ti6Al4V[85] 0 
PM: L(Nf)=0.058Nf

0.08709
 

LM: L(Nf)=0.047Nf
0.0922

 

V-notched 

cylindrical bars 
Tension 

2024-T3[86] 0.5 
PM: L(Nf)=5.72Nf

-0.28605
 

LM: L(Nf)=7.72Nf
-0.34163

 

U and V-notched 

plates 

Tension-comp

ression 

FeP04[87] 0 
PM: L(Nf)=70.76Nf

-0.32783
 

LM: L(Nf)=45.50Nf
-0.30299

 

U and V-notched 

plates 
Tension 

SAE 1010CR22[88] -1 
PM: L(Nf)=2.58Nf

-0.18345
 

LM: L(Nf)=13.82Nf
-0.32164

 

Plates with a central 

circular hole 

Tension-comp

ression 

SAE 1010HR[88] -1 
PM: L(Nf)=7.68Nf

-0.17794
 

LM: L(Nf)=20.42Nf
-0.26631

 

Plates with a central 

circular hole 

Tension-comp

ression 

SAE 1045[89] -1 
PM: L(Nf)=100.28Nf

-0.49868
 

LM: L(Nf)=176.02Nf
-0.56547

 

Plates with a central 

circular hole 

Tension-comp

ression 

2024-T351[89] -1 
PM: L(Nf)=0.26Nf

-0.10104
 

LM: L(Nf)=0.18Nf
-0.10095

 

Plates with a central 

circular hole 

Tension-comp

ression 

AISI 304L[90] -1 
PM: L(Nf)=128.64Nf

-0.35662
 

LM: L(Nf)=70.53Nf
-0.3258

 

Central circular 

hole, U and 

V-notched plates 

Tension-comp

ression 

AISI 416[53] -1 
PM: L(Nf)=642.94Nf

-0.624317
 

LM: L(Nf)=179.25Nf
-0.514785

 

V-notched 

cylindrical bars 

Tension-comp

ression 

A356-T6[91] -1 
PM: L(Nf)=1.78Nf

-0.07359
 

LM: L(Nf)=1.93Nf
-0.08838

 

U and V-notched 

cylindrical bars 

Tension-comp

ression 

AM50 

Magnesium[92] 
-1 

PM: L(Nf)=19.36Nf
-0.33804

 

LM: L(Nf)=56.62Nf
-0.47577

 

Plates with a central 

hole 

Tension-comp

ression 
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Table 2 Synthesis of the experimental results of notched specimens under uniaxial 

loading calculated by SED. 

Material W versus Nf relationship cw Tσ Tw R0(mm) 

Ti6Al4V[85] SED: W(Nf)=201.79Nf
-0.23175

 
1 Plain:1.29 

Notch:1.12 
1.24 0.0158 

2024-T3[86] SED: W(Nf)=149.94Nf
-0.46051

 
3 Plain:1 

Notch:1.63 
3.2 0.03 

FeP04[87] SED: W(Nf)=11.89Nf
-0.3794

 
1 Plain:1.08 

Notch:1.15 
1.33 0.44 

SAE 1010CR22[88] SED: W(Nf)=2.44Nf
-0.23423

 
0.5 Plain:1.10 

Notch:1.26 
1.6 0.16 

SAE 1010HR[88] SED: W(Nf)=2.90Nf
-0.31333

 0.5 
Plain:1.34 

Notch:1.12 
1.25 0.36 

SAE 1045[89] SED: W(Nf)=67.55Nf
-0.34875

 0.5 
Plain:1.24 

Notch:1.1 
1.24 0.139 

2024-T351[89] SED: W(Nf)=39.92Nf
-0.33783

 0.5 
Plain:1.78 

Notch:1.21 
1.48 0.21 

AISI 304L[90] SED: W(Nf)=5.80Nf
-0.3485

 0.5 
Plain:1.03 

Notch:1.17 
1.36 3.1 

AISI 416[53] SED: W(Nf)=300.67Nf
-0.49467

 0.5 
Plain:1.12 

Notch:1.47 
2.16 0.13 

A356-T6[91] SED: W(Nf)=7.12Nf
-0.3446

 0.5 
Plain:1.46 

Notch:1.82 
3.3 0.35 

AM50 

Magnesium[92] 
SED: W(Nf)=0.053Nf

-0.45299
 0.5 

Plain:1.22 

Notch:1.54 
2.3 0.09 
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Table 3 Parameters of the fatigue curves related to the plain specimens. 

Material σA τA σu m Load type NA(Cycles) 

18G2A[93] 282.6 186.5 535 1 Bending-torsion 2106 

39NiCrMo3[94] 346.9 285.3 995 1 Tension-torsion 1106 

SAE 1045[95] 195.8 115.8 621 
1 

Bending-torsion 2106 

2024-T3[96] 137.1 131.7 495 
1 

Tension-torsion 2106 

6082-T6[73] 133 76.8 343 
1 

Bending-torsion 2106 

Al 1070[97] 77.9 45.6 130 
1 

Tension-torsion 2106 

AlCu4Mg1[98] 164.6 97.3 545 
1 

Bending-torsion 2106 

Al-LY12CZ[99] 149.4 110.3 459 
1 

Tension-torsion 2106 

Inconel 718[100] 696.4 338.1 1850 
1 

Tension-torsion 2106 

Low-carbon steel[101] 225 145 500 1 Tension-torsion 1106 

SM45C[102] 258.6 209.4 731 1 Bending-torsion 2106 

S45C[103] 204.7 147.3 798 
1 

Tension-torsion 1106 

Ti6Al4V-as bulit[104] 107.4 146.4 1052 
1 

Tension-torsion 1106 

Ti6Al4V-wrough[104] 618.7 350 1045 
1 

Tension-torsion 1106 

Ti6Al4V-machined[104] 82.3 177 1052 
1 

Tension-torsion 1106 

Z12CNDV12-2[97] 413.3 296.3 880 1 Tension-torsion 2106 
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Table 4 Synthesis of the experimental results of plain specimens under multiaxial 

loading calculated by SED. 

Material 
W versus Nf 

relationship 

cw Tσ 

(10%-90%) 
Tw(10%-90%) 

18G2A[93] W(Nf)=6.1Nf
-0.19431

 

0.5(R=-1), 

0.6(R=-0.5), 

1(R=0) 

1.3 4.2 

39NiCrMo3[94] W(Nf)=18.56Nf
-0.22195

 0.5 1.26 1.58 

SAE 1045[95] W(Nf)=3.27Nf
-0.16616

 0.5 8.01 1.79 

2024-T3[96] W(Nf)=22.32Nf
-0.28854

 0.5 1.34 2.57 

6082-T6[73] W(Nf)=6.02Nf
-0.20016

 0.5 1.98 1.79 

Al 1070[97] W(Nf)=0.29Nf
-0.06938

 0.5 1.41 5.16 

AlCu4Mg1[98] W(Nf)=29.04Nf
-0.29571

 0.5 6.89 1.71 

Al-LY12CZ[99] W(Nf)=8.59Nf
-0.19874

 0.5 1.89 2.42 

Inconel 718[100] W(Nf)=44.30Nf
-0.27634

 0.5 1.57 2.31 

Low-carbon steel[101] W(Nf)=2.42Nf
-0.13289

 0.5 1.21 1.46 

SM45C[102] W(Nf)=5.01Nf
-0.16434

 0.5 1.58 1.23 

S45C[103] W(Nf)=9.93Nf
-0.28757

 0.5 2.13 4.56 

Ti6Al4V-as bulit[104] W(Nf)=409.29Nf
-0.5784

 0.5 3.44 5.04 

Ti6Al4V-wrough[104] W(Nf)=10.95Nf
-0.06631

 0.5 4.07 12.3 

Ti6Al4V-machined[104] W(Nf)=14.41Nf
-0.20008

 0.5 2.56 6.56 

Z12CNDV12-2[97] W(Nf)=24.09Nf
-0.26698

 0.5 1.83 2.38 
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Table 5 Values of the fatigue constants used to apply the MWCM in conjunction with 

the PM to the considered materials. 

Material B 
A 

(mm/cycles
B
 ) 

a b 
α 

(MPa) 

β 

(MPa) 
m ρlim 

NA 

(Cycles) 

Ti6Al4V[57] -0.1019 0.32785 -12.88 22.13 -144.22 400.6 1 1.389 1×10
6
 

C40 steel[52] -0.345 48.7 -1.2 17.5 -63.3 194.3 1 1.534 2×10
6
 

39NiCrMo3[56] -0.1065 1.5611 -2.31 9.52 -111.89 285.3 1 1.275 1×10
6
 

En3B[30] -0.565 118.9 1 18.7 -95.3 268.3 0.22 1.407 1×10
6
 

AISI416[53] -0.6243 642.942 6.3 21.2 -62.7 236.9 1 1.889 2×10
6
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Table 6 Synthesis of the experimental results of notched specimens under multiaxial 

loading calculated by SED. 

Material 
W versus 

Nf relationship 

Specimen 

geometry 
cw 

Tσ 

(10%-90%) 

TW 

(10%-90%

) 

R1 or R3 

(mm) 

Ti6Al4V[57] 
W(Nf)=60.12Nf

-0.21

978
 

V-notched 

cylindrical 

bars 

0.5(R=-1), 

1(R=0), 

3(R=0.5) 

1.322 2.2 
0.051,0.8

37 

C40 steel[52] 
W(Nf)=61.94Nf

-0.26

601
 

V-notched 

cylindrical 

bars, shaft 

0.5(R=-1), 

1(R=0) 
1.81 2.75 

Point 

criterion 

39NiCrMo3[

56] 

W(Nf)=22.93Nf
-0.24

755
 

V-notched 

cylindrical 

bars 

0.5(R=-1), 

1(R=0) 
1.53 2.24 

0.327,1.4

26 

En3B[30] 
W(Nf)=11.62Nf

-0.33

444
 

V-notched 

cylindrical 

bars 

0.5(R=-1), 

1(R=0) 
1.872 3.01 0.33,0.93 

En3B[30] 
W(Nf)=4.99Nf

-0.0992

6
 

V-notched 

cylindrical 

bars 

0.5(R=-1), 

1(R=0) 
1.998 4.22 

Point 

criterion 

AISI416[53] 
W(Nf)=7.33Nf

-0.2161

9
 

V-notched 

cylindrical 

bars 

0.5(R=-1), 

1(R=0) 
1.66 2.7 0.13,0.78 
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Figure 1 Calibration method of the critical distance using plain and notched fatigue 

curve. 
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Figure 2 Flow-chart summarizing the procedure used to estimate fatigue lifetime 

according to the TCD.



  

 

41 

 

 

 

 

 
 

Figure 3 Critical volume (area) for sharp V-notch (a), crack (b) and blunt V-notch (c) 

under mode I loading. Distance r0=ρ×(π−2α)/(2π−2α). 
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Figure 4 Calibration method of the control radius of the critical volume by using FEA.  
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Figure 5 Flow-chart summarizing the procedure used to estimate fatigue lifetime 

according to the SED.
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(i)                              (j) 

 

(k)                              (l) 

 

(m)                              (n) 
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(q)                              (r) 

 

(s)                              (t) 

 

(u)                              (v) 

Figure 6 PM and LM accuracy in predicting fatigue lifetime of notched specimens. 
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(a)                           (b) 

 

(c)                           (d) 
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(i)                           (j) 

 

(k)                           

 

Figure 7 SED accuracy in predicting fatigue lifetime of notched specimens. 
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 (a)                         (b) 

 

    (c)                          (d) 

 

(e)                         (f) 

 

(g)                         (h) 
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(i)                         (j) 

 

(k)       

 

 

Figure 8 Probability density function of errors of predicting fatigue lifetime according 

to TCD and SED. 
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Figure 9 Flow-chart summarizing the in-filed use of the MWCM method. 
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Figure 10 In-field use of the MWCM in terms of the PM to estimate fatigue lifetime 

of the notched components subjected to fatigue loading. 
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Figure 11 Polar coordination system for V-notches, with z normal to the plane; the 

stress component σθ is evaluated along the notch bisector line (θ=0) for mode I NSIF; 

the shear stress component τzθ is oriented as σθ. 
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     (a)                           (b) 

 

    (c)                           (d) 

 

  (e)                           (f) 

 

  (g)                           (h) 
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  (i)                           (j) 

 

  (k)                           (l) 

 

  (m)                           (n) 

 

  (o)                           (p) 

Figure 12 MWCM accuracy in predicting fatigue lifetime of plain specimens under 

multiaxial loading. 
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  (a)                           (b) 

 

  (c)                           (d) 
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  (i)                           (j) 

 

  (k)                           (l) 

 

  (m)                           (n) 

 
  (o)                           (p) 

Figure 13 SED accuracy in predicting fatigue lifetime of plain specimens under 

multiaxial loading. 
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  (a)                           (b) 

 

  (c)                           (d) 

 

  (e)                           (f) 

 

  (g)                           (h) 
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  (i)                           (j) 

 

  (k)                           (l) 

 

  (m)                           (n) 

 
  (o)                           (p) 

Figure 14 Probability density function of errors of predicting fatigue lifetime of plain 

specimens under multiaxial loading according to MWCM and SED. 
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(a) 

 

(b) 

 

(c) 
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(d)

 

(e) 

Figure 15 MWCM accuracy in predicting fatigue lifetime of notched specimens under 

multiaxial loading. 
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(a) 

 

(b) 

  

(c) 
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(d) 

 

(e) 

 

Figure 16 SED accuracy in predicting fatigue lifetime of notched specimens under 

multiaxial loading.  
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  (a)                           (b) 

 

  (c)                           (d) 

 

(e) 

Figure 17 Probability density function of errors of predicting fatigue lifetime of 

notched specimens under multiaxial loading according to MWCM and SED. 
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Highlights 

 

1) Local linear-elastic stresses allow notch fatigue to be assessed accurately. 

2) Material length parameters are successful in estimating uniaxial/multiaxial fatigue 

lifetime of notched metals. 

3) The MWCM/PM and the SED approach can be applied by post-processing linear-elastic 

FE results. 

 

 


