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Highlights

• An integrated numerical methodology is developed and validated for
reacting flow

• The unsteady shock wave/boundary-layer interaction is clearly cap-
tured and analyzed

• As Mach number increases, the vortex breaks up and chemical nonequi-
librium arises

• The contribution of real gas effects is shown to be significant at Mach
number 3.15
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Abstract

The shock wave/boundary-layer interaction of chemically reacting flow in a
shock tube is studied using a high-order point-implicit solver. The solver em-
ploys a high-resolution weighted essentially non-oscillatory (WENO) scheme
to capture the complex shock structures, together with a point-implicit method
to overcome the stiffness of the chemical production term in the multicom-
ponent Navier-Stokes equations. The numerical code is carefully validated
with three benchmark tests, which demonstrates the robustness and good
performance of the combined numerical methods. The unsteady interaction
process between the shock wave and boundary layer in a two-dimensional
shock tube is clearly captured with detailed flow patterns in the simulation.
Simulation results show that regular vortex arrangements appear in the flow
field for the case of Mach number 2.37, while for the case of Mach num-
ber 3.15, the vortex structures break up and chemical nonequilibrium effects
become apparent. The influence of real gas effects on shock wave/boundary-
layer interaction is further identified on the temperature field and triple point
trajectory.

Keywords: shock wave/boundary-layer interactions, real gas effects,
chemical nonequilibrium, high-order scheme
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1. Introduction

The shock tube is an important facility for the study of high temperature
gas reactions and many others [1]. The region behind the reflected shock
wave near the end wall provides theoretically uniform, stationary and high
enthalpy gas which is ideally suited for the investigation of chemical kinetics
in reactive gas mixtures. However, in a real shock tube the non-uniformities
are inevitable introduced into the flow due to many factors, such as non-ideal
rapture of the diaphragm, interface instability, and shock wave/boundary-
layer interactions (SBLIs). The SBLIs can change flow properties signifi-
cantly in the shock tube, leading to the so called “driver gas contamination”
problem [2], which has attracted intensive studies [3, 4, 5, 6, 7, 8]. In recent
years, SBLIs receive continuous attention [9, 10, 11, 12, 13], because they
are not only fundamental in fluid dynamics that deserve further investiga-
tions, but also critical to a number of applications such as design in transonic
airfoils, supersonic/hypersonic inlets, scramjet combustor and so on.

When an incident shock wave reflects at the end wall of a shock tube and
interacts with the boundary layer, the following process is complex and un-
steady. Investigation on this problem was pioneered by Mark [3] in 1958 who
proposed a theoretical model to analyze the interaction between the reflected
shock wave and boundary layer, or in other words, the shock bifurcation pro-
cess. Mark’s model was later improved and extended by many researchers
[4, 5]. The theoretical model is able to predict very basic bifurcation char-
acteristics, such as the shock angle of the bifurcated foot and velocity of the
reflected shock. However, it cannot reveal the detailed flow information due
to the complexity of the problem.

Numerical approaches were then applied to study the problem in 1990s.
Weber et al. [6] performed an early numerical study of two dimensional vis-
cous flow in a shock tube using a Flux-Corrected Transport (FCT) algorithm.
They investigated the effects of Mach number and wall temperature on the
shock bifurcation process, and found that increasing the Mach number of
the incident shock leads to stronger reflected SBLIs, which cause multiple,
weak shocks to appear beneath the λ-shock structure. However, the FCT
algorithm they used only retains the second order accuracy thus the fine
vortex was not depicted. In 2003, Sjogreen and Yee [14] employed several
high-order schemes and found that extreme grid refinement was required to
resolve detailed flow structures. With the rapid growth of the computational
capability, Daru and Tenaud [15] later showed the converged results for the
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Reynolds number up to 1000. The high resolution flow field presented in
Daru and Tenaud’s work indicated a very complex unsteady interaction tak-
ing place between the reflected shock wave and the incident boundary layer.
They concluded that calculation of such a complex flow requires numerical
schemes which are both robust and accurate.

While the aforementioned numerical studies are focused on the viscous
flow without chemical reactions, the simulation of chemically reactive flow
is much more challenging. Chemical reactions not only increase the number
of equations to be solved but also make the equation system “stiff” due to
the chemical source terms. To simply the problem, Chen et al. [10] assumed
chemical equilibrium for the numerical study of high-speed flow in an air-
He shock tube, and adopted curve-fitting approximation for equilibrium air.
The driver gas contamination and the development of SBLIs are presented
with high quality flow visualization. They found that the real gas effects
have significant influence on the temperature behind the reflected shock.
Recently, Ferrer et al. [16] developed a Navier-Stokes solver for reactive flow
by employing a 3-order Runge-Kutta time integration scheme and a 7-order
WENO scheme. The solver employed the EGLIB library [17, 18] to evaluate
the transport properties for gas mixture, and showed a good performance
in dealing with chemical nonequilibrium flows. There are also numerical
investigations of the reflected SBLIs problem using high-order schemes (e.g.
Ref. [11]). However, sufficient grid convergence proof and detailed analysis
with respect to the real gas effects are barely seen in the relevant studies.

Our primary objective is to investigate the real gas effects on the complex
shock wave and boundary layer interactions for air flow in a shock tube. For
this purpose, we firstly develop a Navier-Stokes solver with parallel capability.
The solver uses a fifth-order WENO scheme to calculate the inviscid fluxes, a
sixth-order central difference scheme to evaluate the viscous flux, and a point-
implicit method to conduct time integration. Some preliminary results have
been reported in a conference paper [19]. In the present study, the solver is
further validated using several typical test cases. Then, it is applied to study
a two-dimensional shock tube flow with real gas effects, which means that the
vibrational excitation and chemical reactions are taken into account [20, 21].
After careful grid study, the detailed SBLIs process and the influence of real
gas effects are analyzed and discussed.
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2. Numerical procedures

2.1. Governing equations

The Navier-Stokes equations that govern compressible multicomponent
flows are written in dimensionless form as

∂ρs
∂t

+
∂ρsuj
∂xj

= − 1

RerSc

∂Jj,s
∂xj

+ ω̇s, (1)

∂ρui
∂t

+
∂ρuiuj
∂xj

= − 1

γrM2
r

∂p

∂xi
+

1

Rer

∂τij
∂xj

, (2)

∂ρet
∂t

+
∂(ρet + p)uj

∂xj
=
∂uiτij
∂xj

+
1

(γr − 1)RerPrM2
r

∂qj
∂xj

, (3)

where ρ and et are the density and total energy per unit mass, respectively.
ui is the velocity component in i direction. Ys = ρs/ρ is the species mass
fraction of the sth species (s=1,2,...,ns), and ω̇s is the chemical source term.
τij is the Newtonian shear stress tensor. qj and Jj,s are the j-component heat
flux and species diffusive flux, respectively.

The parameters are non-dimensionlized using the denotation system in
[22]. Namely, the subscript r denotes a reference value, an asterisk rep-
resents dimensional variables, and a dimensionless parameter is defined as
the ratio of dimensional variable to its reference value, e.g. p = p∗/p∗r. In
particular, the Reynolds number Rer = ρ∗ru

∗
rL

∗
r/µ

∗
r and the Mach number

Mr = u∗r/
√
γrR∗

rT
∗
r . Other parameters, like ω̇s, τij, qj and Jj,s will be speci-

fied later.
The Schmidt number and Prandtl number are treated as constants with

Sc = 0.5, Pr = 0.73. The assumption of a constant Pr is well satisfied for
most hot air flows as stated in [23]. Many authors assume a constant Lewis
number for study of combustion (e.g., [24, 25]), which is equivalent to set a
constant Schmidt number Sc.

For multicomponent, chemically reacting gas flows where intermolecular
forces are neglected, the equation of state for perfect gas still holds [26]

p = ρRT, (4)

where R = R∗/R∗
r is the dimensionless gas constant of the mixture, which

depends on the composition of the gas mixture. As for perfect gas R=1, and
p = ρT .
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The total energy per unit mass is given by

e∗t =
1

2
u∗2i +

ns∑

s=1

Ys(h
∗
s −R∗

sT
∗), (5)

where R∗
s is the gas constant of species s. The enthalpy of species s can

be expressed as a polynomial form of the temperature h∗s = hs(T
∗), and

the corresponding coefficients are evaluated using NASA Glenn’s library of
thermodynamic data published in [27]. When the temperature is to be de-
termined from the total energy, the Newton-Raphson method is employed
for the iteration. It should be mentioned that the data for species proper-
ties take the vibrational excitation into account by assuming local thermal
equilibrium. Thus, only chemical nonequilibrium is considered in the present
study.

The transport properties of gas mixture are rather complex if the kinetic
theory is strictly followed [17]. Ern and Giovangigli [17, 18] developed itera-
tive methods to obtain an approximate solution of the transport coefficients.
Ferrer et al. [16] found that the results achieved with a detailed transport de-
scription are actually very close to those obtained using the simplified trans-
port expressions of Ern and Giovangigli (ignores the bulk viscosity as well as
Soret and Dufour effects). Therefore, the simplified approach of transport
coefficient evaluation is adopted in this paper in order to reduce the com-
putational cost. The shear stress tensor is given in terms of the dynamic
viscosity µ as

τij = µ

(
∂uj
∂xi

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
, (6)

where the mixture viscosity is estimated using Wilke’s formula [28], and the
viscosities of individual species are obtained from standard kinetic theory
[26].

The dimensionless diffusive flux of species s in j direction is calculated
based on Fick’s law

Jj,s = −ρDs
∂Ys
∂xj

, (7)

whereDs is the effective binary diffusion coefficient for each species. From the
above expression a diffusion velocity Vj,s = −(Ds/Ys)∇Ys can be deduced.
To ensure that the sum of diffusion fluxes is zero, Ds is replaced by a single
binary coefficient D. As the Schmidt number is assumed constant Sc =
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µ∗
r/(ρ

∗
rD

∗
r) = µ∗/(ρ∗D∗), we have

D =
µ

ρ
. (8)

The heat flux is expressed as

qj = λ
∂T

∂xj
+

ns∑

s=1

Jj,shs, (9)

where the heat conduction coefficient λ is obtained using the constant Prandtl
number assumption: Pr = µ∗

rc
∗
p,r/λ

∗
r = µ∗c∗p/λ

∗. Thus, the dimensionless
heat conduction coefficient is

λ = µcp, (10)

where cp = cvγ/γr (for perfect gas cp=1, then λ = µ).
To evaluate the chemical reaction source, the general finite rate reaction

equation is written as

N∑

s=1

v
′
s,rXs �

N∑

s=1

v”s,rXs, (r = 1, 2, . . . , nr) (11)

where “nr” is the number of reactions and the chemical source term is

ω̇∗
s = M∗

s

nr∑

ir=1

(v”s,r − v
′
s,r)

[
k∗f,ir

N∏

s=1

(
ρ∗s
M∗

s

)v
′
s,r − k∗b,ir

N∏

s=1

(
ρ∗s
M∗

s

)v
”
s,r

]
. (12)

The classical Arrhenius law k∗ = A∗(T ∗)αexp(−Θ∗/T ∗) is used to model
the forward reaction rate coefficient k∗f,ir, and the Θ∗ is the activation en-
ergy of chemical reaction. The backward reaction rate coefficient, k∗b,ir, is
calculated either using an Arrhenius form, or via the equilibrium constant
k∗b,ir = k∗f,ir/K

∗
eq, depending on the specific kinetic model. Two chemical

kinetic models are used in the present simulation of nonequilibrium dissocia-
tion of air, one is Dunn and Kang’s model[29], the other is Park’s model[30].
The chemical source term is non-dimensionalized by

ω̇s =
ω̇∗
s

ρ∗ru
∗
r/L

∗
r

. (13)
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2.2. Space discretization
The kernel of the present solver is based on a finite difference scheme with

the inviscid fluxes being approximated by the fifth-order WENO scheme of
Jiang and Shu [31]. The basic formulations are briefly described below.

Firstly, the approximation of inviscid fluxes is conducted on a five points
stencil

∂f

∂ξ

∣∣∣∣
i

=
fi+ 1

2
− fi− 1

2

4ξ ,

fi+ 1
2

= ω̂0P0 + ω̂1P1 + ω̂2P2,

(14)

where P0, P1 and P2 are the sub-stencils that contains three grid points. ω̂m
is the normalized weight coefficient and ωm is expressed as

ωm =
brm

(ε+ ISm)p
. (15)

The parameter ε is a small value to avoid a total value of zero in the de-
nominator. In the present study, ε = 10−13 is used for all the simulations.
brm are the optimal weight coefficients that give fifth order approximation of
smooth functions. ISm are the smoothness indicators and p = 2 is chosen
for all computations.

The reconstructed flux can be written in the the form of a central and
upwind part [32],

fi+ 1
2

=
1

12
[−fi−1 + 7fi + 7fi+1 − fi+2]

︸ ︷︷ ︸
central

− ϕN(4fi− 3
2
,4fi− 1

2
,4fi+ 1

2
,4fi+ 3

2
)

︸ ︷︷ ︸
upwind

,

(16)

with the weight operator

ϕN(a, b, c, d) =
1

3
ω0(a− 2b+ c) +

1

6
(ω2 −

1

2
)(b− 2c+ d). (17)

Together with the Lax-Friedrichs Flux-Vector Splitting scheme, the fifth-
order WENO numerical flux is finally expressed as

F̂i+ 1
2

=
1

12
[−Fi−1 + 7Fi + 7Fi+1 − Fi+2]

+
m∑

s=1

[−ϕN(4F s+
i− 3

2

,4F s+
i− 1

2

,4F s+
i+ 1

2

,4F s+
i+ 3

2

)

+ϕN(4F s−
i+ 5

2

,4F s−
i+ 3

2

,4F s−
i+ 1

2

,4F s−
i− 1

2

]Rs,i+ 1
2
,

(18)
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with

4F s±
i+ 1

2

= Ls,i+ 1
2
4F±

i+ 1
2

, (s = 1, 2, . . . ,m)

4F±
i+ 1

2

= F±
i+1 − F±

i ,

F±
i =

1

2
(Fi ± λmaxUi),

(19)

where m is the number of components in the solution vector U . The λmaxi

is the maximum eigenvalue on the stencil cells. In the calculation of left
and right eigenvectors Ls,i+ 1

2
and Rs,i+ 1

2
, the flow variables (ρ, u, p, ...) are

averaged between cell i and i + 1. The detailed expression of eigenvectors
are listed in Appendix A.

The viscous fluxes are discretized by means of a sixth-order accurate cen-
tral scheme, which is sufficient to maintain the overall high-order properties
of the numerical scheme.

2.3. The point-implicit method

In order to incorporate the advantages of implicit integration with respect
to the source term of chemical reaction into an explicit method, it is common
to treat the source term in a point-implicit manner [33, 34]. Take the one-
dimensional case as example, the governing equation is expressed as follows
[34]

∂U

∂t
+
∂F

∂x
= θSn+1 + (1− θ)Sn, (20)

where θ is a introduced variable that changes between 0 to 1. In view of the
above expression, we can write the conventional three stage Runge-Kutta
integration as

UA = Un +4t
[
−∂F(Un)

∂x
+ θSA + (1− θ)Sn

]
,

UB =
3

4
Un +

1

4
UA +

1

4
4t
[
−∂F(UA)

∂x
+ θSB + (1− θ)SA

]
,

Un+1 =
1

3
Un +

2

3
UB +

2

3
4t
[
−∂F(UB)

∂x
+ θSn+1 + (1− θ)SB

]
.

(21)

in which the SA, SB and Sn+1 are approximated for each increment of U
using first order Taylor expansion, i.e., SB ≈ SA + ∂S

∂U
(UB −UA). Thus, the
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above equation can be rewritten as
[
I− θ4t ∂S

∂U

]
(UA −Un) = 4t

[
−∂F(Un)

∂x
+ Sn

]
,

[
I− 1

4
θ4t ∂S

∂U

]
(UB −UA) =

3

4
(Un −UA) +

1

4
4t
[
−∂F(UA)

∂x
+ SA

]
,

[
I− 2

3
θ4t ∂S

∂U

]
(Un+1 −UB) =

1

3
(Un −UB) +

2

3
4t
[
−∂F(UB)

∂x
+ SB

]
.

(22)

where I is the unit matrix. Therefore, the problem is transformed into
solving the classical matrix equation

AX = B, (23)

at each Runge-Kutta step. Here X represents 4U, A represents the coeffi-
cient matrix, and B represents the right-hand side terms. Gaussian elimi-
nation with pivoting algorithm is employed to solve the equation. It should
be noted that if θ equals to 0, then the system reduce to the explicit Runge-
Kutta integration. In the present study, θ is set to 1, which corresponds
to the so called point-implicit method. The source term Jacobi matrix of
∂S/∂U that is involved in the procedure is listed in Appendix B.

3. Benchmark tests

Based on the above described numerical procedure, a CFD code named
SCARF was first developed by the present authors during the collaborative
research in the Shock Wave Laboratory (SWL) of RWTH Aachen University.
The subroutine for the WENO scheme is adopted from a WENO5 code that
has been used for the study of non-reacting flows in SWL [32, 35]. In this sec-
tion, three typical benchmark tests were chosen to evaluate the performance
of the code. The details are described in the following sub-sections.

3.1. Propagation of an acoustic wave

The first test case considered is an acoustic wave travelling across a pe-
riodic domain of length Lx1 = 5 mm in a pure oxidizer mixture, which was
previously studied by Vicquelin et al. [24] and re-examined recently by Ferrer
et al. [16]. The aim is to verify the performance of the WENO scheme cou-
pled with multicomponent diffusive terms. The composition of the oxidizer
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mixture can be found in [24] or [16], while the initial conditions are given by

u1 = 0.01exp

(
−(x1 − x1,0)2

d2

)
,

P = 1 + γ0u1, ρ = 1 + u1,

(24)

where d = 0.1, x1,0 = 0.5, both non-dimensionlized by Lx1 . The initial spe-
cific heat ratio γ0 is obtained by the sound speed a∗0. The reference parameters
are: ρ∗0 = 0.24 kg/m3, a∗0 =734.6 m/s and P ∗

0 = 1 atm. The computational
domain is discretized with 200 grid points and periodic conditions are applied
at the boundaries. The CFL number is set to 0.5. The evolution of pressure
and temperature at x∗1 = 0 are plotted in Fig. 1.

Time (ms)

T
*

(K
)

0.01 0.02 0.03 0.04

1371

1372

1373

1374

1375
Line: Present result
Symbol: Viequelin et al.

(a) Temperature

Time (ms)

P
*

(k
P

a)

0 0.01 0.02 0.03 0.04

101.5

102

102.5

Line: Present result
Symbol: Viequelin et al.

(b) Pressure

Figure 1: Propagation of an acoustic wave. Time evolution of (a) temperature, (b) pres-
sure.

In Fig. 1 we compare the results with those obtained by Vicquelin et
al.[24] (The data are found in Ref. [16]). The results of Vicquelin et al.
adopted here is based on the “simplified transport expressions” which is
consistent with the present numerical method. From the comparison, it is
found that the agreement is excellent. However, if the so called “detailed
transport” method is used, the dissipation process maybe a little bit enhanced
as reported in [16].

3.2. Validation of chemical modelling

The second test case focuses on the verification of the chemical production
term. For this purpose, a direct way is to ignore the convective terms and
to consider the pure chemical production with time. Then, the governing
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equations reduce to a set of ordinary differential equations (ODE). The ODE
can be solved by the Selected Asymptotic Integration Method (SAIM) as
described by Weber [7].

In the first test problem, air is instantaneously heated to a temperature
of 4000 K at 1.0 atm pressure. The air mixture is considered to be composed
of the following five species: O2, O, N2, N and NO, and is assumed to be
in isothermal condition. The Dunn and Kang [29] reaction mechanism is
adopted for the modelling of the reactions. The time histories of the mole
fractions, XO2 and XO, obtained by Weber [7] and the present solver are
plotted in Fig. 2(a).

(a) Mole fraction

Time (ms)

T
*

(K
)

0.01 0.02 0.03 0.04

1371

1372

1373

1374

1375
Line: Present result
Symbol: Viequelin et al.

(b) Temperature

Figure 2: Chemical modelling validation. Time evolution of (a) mole fraction of XO2 and
XO, (b) temperature variation with time.

The same initial conditions of T = 4000 K and p = 1.0 atm are used
in the second case, but the energy absorbed and released by the reactions
is taken into account, i.e., the air mixture is assumed to be in an adiabatic
box. Therefore, the temperature will drop rapidly due to the dissociation
reactions of oxygen and nitrogen. The temperature variation with time of
the second problem is presented in Fig. 2(b).

For both cases, a good agreement is observed between the cited reference
and the present numerical results, which confirms the correct implementation
of the chemical reacting model of the solver. At the same time, the point-
implicit scheme shows the advantage in using large time steps. For this,
consider the second test problem as an example, Fig. 3 shows that the
point-implicit scheme gives identical results as the time step increases from
dt = 1.0 × 10−7 s to dt = 1.0 × 10−6 s, while the explicit scheme can not
longer get the correct results.
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Time (ms)

X
O

2

0 0.1 0.2 0.3 0.4
0

0.1

0.2
Explcit, dt=1.e-7
Explcit, dt=1.e-6
Implcit, dt=1.e-7
Implcit, dt=1.e-6

Figure 3: Comparison between point-implicit and explicit methods when time step dt
increases to 1.0× 10−6 s.

3.3. Viscous shock tube test case

The two dimensional SBLIs of a perfect gas, which were studied previously
by Daru and Tenaud [15], is used as the last test case for the purpose of
assessing complex flow simulations. Figure 4 shows the density field at the
dimensionless time t =1, and Fig. 5 is the density distribution along the
horizontal line crossing the separation bubble located at y = 0.05. The results
for RK3-WENO5 (three stage Runge-Kutta together with fifth-order WENO
scheme) on the finest grid (4000 × 2000) are lacking in Daru and Tenaud’s
paper due to prohibitively large computational time. Here we completed this
simulation. The results demonstrate that the present solver is able to capture
complex vortex structures and the grid converged solution is the same as that
predicted by Daru and Tenaud.

Figure 4: Density contours of present result.
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Figure 5: Comparison of density distribution along the line y=0.05.

4. Numerical simulation of the shock tube problem

4.1. Computation parameters

As main purpose of the present study, the unsteady viscous shock tube
problem is studied using the developed solver. A similar two dimensional
shock tube problem as designed by Daru et al. [15] is considered here. The
computational domain consists of a two-dimensional region of 1 m length in
x-direction, and 0.25 m height in y-direction. A nonreflecting boundary con-
dition is given at the upper boundary, while no-slip adiabatic wall condition
is prescribed for the other three sides. The wall is simply assumed as non-
catalytic, i.e., no surface reactions take place. The diaphragm is located at
the middle of the tube, and the initial states are listed in Table 1. Note that
the incident shock Mach numbers are calculated by the simple shock wave
theory [1], and the Reynolds numbers are estimated by the flow properties
behind the incident shock.

As for the calorically perfect gas flow case, the above parameters are
sufficient to define the shock tube problem. However, if real gas effects are
involved, the related reference values must be specified in order to calculate
the thermal and chemical properties of the flow. The reference pressure,
temperature, length and velocity for the present study are set to pref = 0.1
Kpa, Tref = 800 K, Lref = 1 m, and uref = 567 m/s. The particular low
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Table 1: Initial conditions for shock tube flow

Case P1 P4 T1 T4 Re(cm−1) Ma Gas Model
1 1.2 120 1 1 420 2.37 Real gas
2 1.2 1200 1 1 520 3.15 Real gas
3 1.2 120 1 1 420 2.37 Calorically perfect gas
4 1.2 1200 1 1 520 3.15 Calorically perfect gas

pressure ensures a low Reynolds number, thus a good grid independence can
be obtained.

The test and driver gas is standard air with 23.3% oxygen and 76.7%
nitrogen in mass fraction, initially in chemical equilibrium. According to the
thermo-chemical properties of air [26], for the present initial conditions the
dissociation of nitrogen can be neglected. Thus, only oxygen dissociation-
recombination reactions are considered in the simulation, namely,

O2 +M 
 2O +M,

where the third body M represents the three species O2, O and N2. The
chemistry data of Park [30] is adopted to describe the chemical reactions of
the air mixture.

In order to measure the dissociation level of the oxygen in the test gas,
the concept of degree of dissociation is introduced here, which is defined as
the fraction of dissociated atomic oxygen to the total amount of oxygen in
the air mixture

α =
ρO

ρO + ρO2

.

The denominator (ρO +ρO2) is actually a constant that is equal to the initial
mass fraction of oxygen.

Some basic physical features of the shock tube flow as well as the influence
of real gas effects are illustrated in Fig. 6. After the diaphragm rupture,
a shock wave is generated which moves forward, followed by the contact
surface. When the shock wave reaches the end-wall, it reflects and travels in
the opposite direction. After shock reflection, the flow behind the reflected
shock wave attain the condition of the so called “region 5” of the shock tube
problem. For calorically perfect gas flow without viscosity, the corresponding
parameter can be predicted by the simple shock tube theory [1], as shown by
the two solid lines in the upper x− t diagram of Fig. 6. However, for a real
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shock tube, a boundary layer develops at the wall. The reflected shock wave
interacts with the developed boundary layer, causing a interaction between
shock wave and boundary layer. At the same time, high temperatures may
lead to the dissociation of the test gas. In this case, there are no strict
analytical solutions to describe the process. Numerical methods have to be
employed to study the problem.

Figure 6: Comparison between numerical simulation (calorically perfect gas and real gas)
and simple shock tube theory, t = 0.352 ms. (Case 1)

From Fig. 6, it is found that the calculated contact surface and shock
front position for the calorically perfect gas model agree to the theory, except
near the bottom wall, where a boundary layer develops. The dimensionless
temperature behind the shock wave (denoted by T2) is about 2.02, which is
also in agreement with the theoretical value. However, for the real gas flow,
the temperature T2 decreases to about 1.82. Besides the differences of T2,
the contact surface is a little closer to the shock front for the real shock tube.
This is because the density ratio across the shock front is larger when real
gas effects are taken into consideration. The increased density in the flow
region behind the shock shorten the distance between the shock wave and
the contact surface.

4.2. Grid convergence study

After the shock wave reflection at the end wall, the flow pattern becomes
quite complex. The previous study made by Sjogreen and Yee [14] has shown
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that the existence of fine scale structures significantly increases the difficulty
of reaching grid convergence. The simulation of viscous reacting flows is
much more challenging than for non-reacting flows. Actually, strict grid
independence proofs of chemically reacting flows are very rare in literature.

In the present study, test case 1 in Table 1 is chosen for the grid indepen-
dence study and four grid sizes of 1000 × 250, 2000 × 500, 3000 × 750 and
4000× 1000 cells are used. The CFL number is set to 0.2 for all cases. The
grid is then split in x-direction for the parallelization. All the simulations are
carried out on the “Yuan” cluster of the supercomputing center of Chinese
Academy of Sciences. The calculations are ended till a dimensionless time is
reached of t = 0.57, corresponding to the physical time t= 1 ms. The flow
properties are presented in dimensionless form unless specified otherwise.

(a) (b)

(c) (d)

Figure 7: Grid study: density field at t = 1 ms, (a) 1000 × 250 grid points, (b) 2000 ×
500 grid points, (c) 3000 × 750 grid points, (d) 4000 × 1000 grid points.

The comparison of the density field at t = 1 ms for the four grids is
presented in Fig. 7. Comparing the four pictures, it is found that the density
fields obtained by the four grids are basically the same. To further examine
the grid independence properties, we also plot the density and the degree of
dissociation along a horizontal line at y = 0.05, which crosses the center of the
separation bubble. This can serve as a good verification of convergence. The
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Figure 8: Grid study: distribution of density (a) and degree of dissociation (b) along the
line y = 0.05, t = 1 ms.

density plot indicates that the grid independent solutions are obtained for
the grid 3000× 750. Figure 8(b) further confirms this conclusion. Therefore,
the grid with 3000× 750 points is adopted for the present study.

5. Results and discussions

5.1. The SBLIs of air dissociating flow in a shock tube

A schematic picture of SBLIs is given in Fig. 9, which is firstly proposed
by Mark [3] and widely accepted by the later studies. It is generally ex-
plained that the boundary layer does not have sufficient energy to penetrate
the reflected shock region and begins to stagnate. At the same time, the
attendant compression waves interact with the reflected shock near the wall
that cause a lambda-shock structure to form [3, 7].

Fig. 10 gives the numerical temperature contours at various instants
of time, which show the development of SBLIs. At time t=0.49 ms, the
reflected shock wave is about 0.05 away from the end wall and is undergoing
the shock/contact surface interaction. A main shock bifurcation is just visible
at the bottom of the reflected shock wave, forming an early “λ” shape like
shock structure. The separation bubble is seen connected to the area behind
the reflected shock wave in temperature contours, which implies that it is
filled with hot gas of region 5. The results indicate that the boundary layer
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Figure 9: Schematic of shock wave and boundary layer interaction.

separates when the reverse flow injects into the incident flow. It does not
stagnate to form the separation bubble, but rather goes over the bubble and
enters the corner region of the shock tube. Therefore, the assumption used
in Mark’s [3] theory that the static pressure pf in the region AODEB(see
Fig.9) equals to the stagnation pressure in the boundary layer is not very
accurate. Though this assumption is modified by a empirical relationship in
Davies and Wilson’s [4] model, the numerical results in present study show
that the pressure distribution in this region is actually far from uniform. An
appropriate averaged pressure within the separation bubble may improve the
theoretical model, which is beyond the current scope.

As the flow develops, the λ-shock pattern becomes mature at time t=0.63
ms. The leading foot of the λ-shock extends into the boundary layer, and
weak Mach waves are reflecting between reflected shock wave and contact
surface. For the gases pass through the leading and tail foot of the λ-shock,
these suffers less momentum loss than the gases decelerated by the main
reflected shock. This part of high speed flow rolls up at the corner and
penetrates into the bubble from the right side like a cold jet (Fig. 10(b)).
The bubble starts to cool down due to the heat conduction to the cold gases
around. At t=0.83 ms, a secondary bifurcation takes place at the tail foot of
the λ-shock. Fig. 10(c) further tells us that the cold gases already impinged
on the bottom wall and cut the bubble’s connection to the hot gases. Thus,
the average temperature of the separation bubble now is significantly lower
than its original value.

Finally, at t=1.0 ms, the bubble extends up to the position of x=0.68,
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(a) (b)

(c) (d)

Figure 10: Computed temperature field of case 1 at time: (a) t=0.49 ms, (b) t=0.63 ms,
(c) t=0.83 ms, (d) t=1.0 ms. (21 contour levels between 0.6 and 3.2)

forming a very complicated vortex structures. The secondary bifurcation
on the tail foot of the λ-shock grows in size and shows the tendency to
further multiple bifurcations. The typical Kelvin-Helmholtz instabilities are
also observed along the slip line originating at the triple point. Temperature
contours at t=1.0 ms give a more impressive image that the whole bottom
part of region 5 is invaded by the cold gas, causing the so called “driver gas
contamination” problem.

From Fig. 10(a) to (d), it is known that a very high temperature T5 is
established near the end wall. The associated chemical dissociations in this
region as well as their effects on the SBLIs are of the interest. Fig. 11 presents
the variation of the degree of dissociation for time t=0.49 ms until 1.0 ms.
Since the degree of dissociation varies by several orders of magnitude, the log-
arithmic level labels are used in the picture. As expected, oxygen molecule
dissociates in the high temperature area and the atomic oxygen concentra-
tion is built up. In Fig. 11(a), the oxygen atoms are found in the separation
bubble under the foot of the λ-shock. This confirms the conclusion that the
appeared bubble mostly consists of the gases coming from region 5. Com-
paring Fig. 11 and Fig. 10, it is found that the atomic oxygen mass fraction
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(a) (b)

(c) (d)

Figure 11: Computed oxygen dissociation degree for case 1 at time: (a) t=0.49 ms, (b)
t=0.63 ms, (c) t=0.83 ms, (d) t=1.0 ms.

behind the reflected shock wave is mainly dependent on the temperature dis-
tribution. The similarities between the atomic oxygen mass fraction contours
and temperature contours also suggest that the chemical reactions of oxygen
for the condition of case 1 are actually close to the equilibrium state. This is
because the majority part of the flow in region 5 is uniform and almost sta-
tionary, which allows the chemical reactions to have sufficient time to attain
equilibrium. Thus, numerical simulations with chemical equilibrium model
under this circumstance would not bring a significant error.

5.2. Analysis of real gas effects on SBLIs

In this section, the influence of real gas effects on SBLIs is further ana-
lyzed. When the incident shock wave is stronger, the pattern of SBLIs will
exhibit some differences. The Mach number influence is studied first by com-
paring cases 1 and 2, as shown in Fig. 12. A general observation shows that
the region near the bottom wall is a strong vorticity source due to the shear
effects within the boundary layer. At about x=0.68, where the left foot of
the λ-shock starts, the vortex flow divides as two parts of opposite direc-
tions, and then develops into the two largest vortical structures inside the
separation bubble. At the right corner, pairing vortex filaments are created
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and extend along the slip line. The vortex filaments end at locations where
shock wave bifurcation occurs.

(a) (b)

Figure 12: Contours of computed vorticity field at t=1.0 ms: (a) Ma=2.37, (b) Ma=3.15.
(21 contour levels between −200 and 200)

It is found that there are very regular patterns of vortices inside the
separation bubble at Ma=2.37. However, as Mach number increases to 3.15,
significant changes occur in the vortices field, i.e., the major pairing vortex
breaks up quickly after a short distance from the head of the bifurcated shock
and more complicate vortices are observed at the corner region.

Fig. 13 presents the temperature and degree of dissociation for case 2
at the dimensionless time of 1 ms. For Mach number of 3.15, the incident
flow has a higher kinetic energy, and a much higher temperature is reached
near the end wall after reflection. The corresponding degree of dissociation
is significantly increased with a maximum value of about 75%, which means
the majority part of the oxygen molecules are dissociated. Comparing Fig.
13(a) and (b), there are considerable differences between the pattern of tem-
perature and degree of dissociation contours. These differences imply that
chemical nonequilibrium effects start to play an important role for the flow
of Ma=3.15.

In order to investigate the differences resulting by real gas effects of vi-
brational excitation and nonequilibrium dissociation, simulations with con-
ventional calorically perfect gas model are also carried out, which are listed
as case 3 and 4 in Table 1. Fig. 14 compares the temperature field of cases
2 and 4, where the upper half part is the result for air dissociating flow and
the bottom part shows the result for calorically perfect gas.

Similar to what has been observed in Fig. 6, the temperature behind
the reflected shock for the real gas flow is significantly lower than that of
the calorically perfect gas flow. Since the pressure is insensitive to real gas
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(a) (b)

Figure 13: Computed results of case 2 at t= 1 ms. (a) temperature, (b) degree of dissoci-
ation.

(a) t= 0.44 ms (b) t= 0.63 ms

Figure 14: Comparison between real gas and calorically perfect gas model.

effects [26], the real gas flow yields a higher density after the reflected shock
wave, thus its contact surface is closer to the end wall.

As mentioned above, within simulation time(t < 1 ms), a large part of
the bubble is actually composed of the reverse jet that carrying hot gas
from region 5 of the shock tube flow. As the bubble moves upstream, the
temperature of the bubble starts cooling down. But at a certain location,
the temperature can remains very high compared to the surrounding gas. In
Fig. 14(a), there is a high temperature spot at the head of the separation
bubble, but it only lasts a short moment. At t = 0.63 ms, as displayed in Fig.
14(b), the temperature in the separation bubble is much lower than in region
5. Though the high temperature spot is not sustainable, the temperature
within the separation bubble is still worth for paying attention since it may
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become a potential ignition spot if a combustible gas is presented in the shock
tube.
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Figure 15: Triple point position A(XA, YA) versus time.

The white dashed lines in Fig. 14 divide the flow into the main stream
area and the disturbed region at the triple point A(XA, YA). To make a close
scrutiny about the variation of the triple point trajectory, Fig. 15 shows the
time evolution of the triple point position. The dash-dotted line and the solid
line denote the results obtained by the calorically perfect gas and real gas
model, respectively. The slope of the lines represents the x- and y-velocity
of the triple point. It is found that the results of cases 1 and 3 are very close
to each other, indicating that the triple point position is barely affected by
real gas effects at Ma=2.37. As Mach number increases to 3.15, it is clear
that case 2 has a higher XA-value and a lower YA-value compared to case
4. The higher XA-value means the λ-shock in real gas flow moves slower,
which can be attributed to the considerable energy consumption by the air
dissociation reactions and thus the shock wave becomes less energetic. In
contrast, the lower YA-value indicates that the disturbed region is smaller
in real gas flow. This phenomenon is expected since the density within the
λ-shock will increase when the real gas effects are involved.

In addition, Fig. 15(b) shows that the YA-value for Ma=3.15 (cases 2 and
4) is much larger than that of Ma=2.37 (cases 1 and 3), which suggests that
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the size of the disturbed region will significantly increase as Mach number
increases. For the cases 1 and 3 in Fig. 15(a) , the triple point shows little
changes in x-direction for times less than about 0.63 ms. The formed λ-
shock seems to stop moving to the left while only increasing its size in the
y-direction, which implies that the leading shock angle increases significantly
at this stage. The time period corresponding to the shock/contact-surface
interaction as displayed in Fig. 10 (a) to (b), and this interaction causes the
reflected shock to stop for a very short moment.

6. Concluding remarks

A high-order point-implicit solver has been developed for the multicompo-
nent chemically reacting flows, and is applied to study the shock wave/boundary-
layer interactions (SBLIs) of an air dissociating flow in a shock tube. For a
low shock Mach number case of 2.37, regular vortex arrangements are ob-
served in the flow field and the gas flow is close to chemical equilibrium.
When Mach number increases to 3.15, the vortex structures break up, lead-
ing to very complicated flow pattern, and the air dissociation reactions are
far from equilibrium. By comparing the triple point trajectory of SBLIs, it
is found that the λ-shock in real gas flow moves slower and has a smaller
disturbed region than in the perfect gas flow. The study demonstrates the
solver’s ability in the simulation of complex chemical reacting flow and also
sheds some lights on the interaction process between shock wave and bound-
ary layer in a shock tube.

To further study the related phenomena of SBLIs, such as transition to
turbulence, corner effects etc., the complete three-dimensional simulation is
needed. Though it is possible, the computational cost is prohibitive for the
present study. However, it is quite interesting and promising to conduct these
simulations in the near future.
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Appendix A. Eigenvectors for multispecies flow

In present study, the Jacobi matrices are derived as

A =
∂F

∂U
=




u(δij − Yi) Yi 0 0
βj − u2 −βu+ 2u −βv β
−uv v u 0

βju− uh −βu2 + h −βuv βu+ u


 ,

B =
∂G

∂U
=




v(δij − Yi) 0 Yi 0
−uv v u 0
βj − v2 −βu −βv + 2v β
βjv − vh −βuv −βv2 + h βv + v


 ,

where h is the dimensionless total enthalpy of the gas mixture

h = et +
1

γrM2
r

p

ρ
.

And β, βj are pressure partial derivatives, which will be specified later. δij
is Kronecker-Delta. The eigenvalues are

λF1 = λF2 = ... = λFN+1 = u, λFN+2 = u+ c, λFN+3 = u− c,

λG1 = λG2 = ... = λGN+1 = v, λGN+2 = v + c, λGN+3 = v − c,

where the dimensionless frozen sound of speed is defined as

c =

√
1

γrM2
r

(1 + β)
p

ρ
.

The right eigenvectors are solved from the algebraic equations ARi = λiRi

and the left eigenvectors are obtained by solving the algebraic equations
RL = I (or LR = I). The final expressions are

RF =




δij/c
2 0 Ys/2c

2 Ys/2c
2

u/c2 0 (u+ c)/2c2 (u− c)/2c2
v/c2 1 v/2c2 v/2c2

[β(u2 + v2)− βj]/βc2 v (h+ uc)/2c2 (h− uc)/2c2


 ,
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LF =




c2δij − Yiβj βuYi βvYi −βYi
−v 0 1 0

βj − uc c− βu −βv β
βj + uc −c− βu −βv β


 ,

RG =




δij/c
2 0 Yi/2c

2 Yi/2c
2

u/c2 1 u/2c2 u/2c2

v/c2 0 (v + c)/2c2 (v − c)/2c2
[β(u2 + v2)− βj]/βc2 u (h+ vc)/2c2 (h− vc)/2c2


 ,

LG =




c2δij − Yiβj βuYi βvYi −βYi
−u 1 0 0

βj − vc c− βu −βv β
βj + vc −c− βu −βv β


 .

It should be mentioned that the geometric coefficients are also involved in
the eigenvectors if transformed coordinates are used. The expressions of the
β, βj are briefly derived as follow.

Firstly, the derivative of the total energy can be written as

d(ρet) = d

[
ρ
u2 + v2

2
+ ρe

]
= ud(ρu)− 1

2
u2

N∑

j=1

dρj + vd(ρv)

− 1

2
v2

N∑

j=1

dρj + ρcvdT +
N∑

j=1

ejdρj.

(A.1)

Solving the temperature from the above expression, gives

dT =
1

ρcv

[
d(ρet)− ud(ρu)− vd(ρv) +

N∑

j=1

u2 + v2

2
− βej

]
. (A.2)

The pressure for a multispecies flow is a function of temperature and
species density, p = p(T, ρ1, . . . , ρN). Therefore, the pressure derivative is

dp = ρRdT + T
N∑

j=1

Rsdρj. (A.3)
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Then, substitute dT into dp, we get the pressure derivative with respect to
conserved variables

dp = βd(ρet)− βud(ρu)− βvd(ρv)

+
N∑

j=1

(β
u2 + v2

2
− βes + TRs)dρj.

(A.4)

where β = R/cv, and for perfect gas β = γ − 1. The expressions for the
pressure partial derivatives in eigenvectors are

β =
∂p

∂(ρet)
=
R

cv
, βj =

∂p

∂j
= β

u2 + v2

2
− βej + TRj. (A.5)

The other pressure partial derivatives are

∂p

∂(ρu)
= −βu, ∂p

∂(ρv)
= −βv. (A.6)

Appendix B. Source term Jacobian

For the implicit treatment of the chemical source term, the evaluation of
the Jacobian ∂S/∂U is required for each grid point. Substitution of ω̇i into
∂S/∂U yields

∂ω̇i
∂Uj

= Mi

nr∑

r=1

{
(v”i,r − v

′
i,r) · (qf,r − qb,r)

}
,

where

qf,r = kf,r

[(
αf,r
T

+
Ef,r
T 2

)
∂T

∂Uj
+
v

′
j,r

ρj

]
N∏

s=1

(
ρs
Ms

)v
′
s,r ,

qb,r = kb,r

[(
αb,r
T

+
Eb,r
T 2

)
∂T

∂Uj
+
v”j,r
ρj

]
N∏

s=1

(
ρs
Ms

)v
”
s,r ,

Thus, the calculation of the source term Jacobian is reduced to solve the
temperature derivatives with conservative variables, which are

∂T

∂ρu
= − u

ρcv
,

∂T

∂ρv
= − v

ρcv
,

∂T

∂ρE
=

1

ρcv
,

∂T

∂ρj
=

1

ρcv

(
u2 + v2

2
− βej

)
.
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