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e Adaptively shifting between the component-wise and characteristic-wise methods.

e Numerical results almost coincide with those of the characteristic-wise method.
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e The computational cost is significantly reduced.
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Abstract

Due to its excellent shock-capturing capability and high resolution, the WENO scheme fam-
ily has been widely used in varieties of compressive flow simulation. However, for problems
containing strong shocks and contact discontinuities, such.as the Lax shock tube problem, the
WENO scheme still produces numerical oscillationss.To, avoid such numerical oscillations,
the characteristic-wise construction method sheuld be applied. Compared to component-
wise reconstruction, characteristic-wise reconstruction leads to much higher computational
cost and thus is not suitable for large scalé'simulation such as direct numerical simulation of
turbulence. In this paper, an adaptive,characteristic-wise reconstruction WENO-Z scheme,
i.,e. the AdaWENO-Z schemeyis proposed to improve the computational efficiency of the
characteristic-wise reconstriiction method. By defining shared smoothness functions, shared
smoothness indicators.as wellias shared WENO weights are firstly introduced to reduce the
computational cost of the component-wise reconstruction procedure and to define a global
switch function“eapable of detecting discontinuity. According to the given switch function,
the new scheme performs characteristic-wise reconstruction near discontinuities and switches
to compaonent-wise reconstruction for smooth regions. Several one dimensional and two di-
mensionalnumerical tests are performed to validate and evaluate the AdaWENO-Z scheme.
Numerical results show that AdaWENO-Z maintains essentially non-oscillatory flow field
near discontinuities as with the characteristic-wise reconstruction method. Besieds, com-
pared to the component-wise reconstruction method, AdaWENO-Z is about 20% to 40%

faster which indicates its excellent efficiency.



Keywords: WENO scheme, characteristic-wise reconstruction, adaptive method, Euler
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1. Introduction

Numerical simulation of compressible flow levers engineering and scientific researches by
providing detailed and high-quality flow field information. For high-resolution‘and accurate
simulation of compressible flow, numerical methods being applied shall be able to capture
all important features, e.g. turbulence and shock waves, in the flow field.

The family of weighted essentially non-oscillatory (WENO inite difference schemes [1, 2]
has been widely used in compressible flow simulations dtie to its high resolution of small
structures and good shock-capturing capability. Withinithe general framework of smooth-
ness indicators and non-linear weights proposed by*“Jiang and Shu [2], many efforts have
been made to improve the accuracy and efficieney. of the WENO scheme. Henrick et al.
[3] improved the accuracy of the WENO scheme ‘at critical points by suggesting a mapping
function. Borges et al. [4] proposed thes\WENO-Z scheme which calculates the non-linear
weights with a high order smoothness‘indicator. The WENO-Z scheme achieves lower dis-
sipation and higher resolution”than the classical WENO scheme of Jiang and Shu and has
lower computational cost than theimapping function method of Henrick et al.. The accuracy
of the WENO-Z scheme was further improved in [5, 6] as well as by Yamaleev and Carpenter
[7, 8] and Fan et al. [9]. Eu et al.[10] proposed a family of high-order targeted ENO schemes
which combinés thevidea of both the ENO scheme and the WENO scheme. While most
methods mainly focus on the improvement of the accuracy of WENO schemes at smooth
regions. ‘Shen/and Zha [11] showed that at transitional points, which connect smooth re-
gion and discontinuity, the accuracy of fifth order WENO schemes is second order and a

multi-step weighting method [12, 13] was developed to improve the accuracy. Except for
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these improvements for the fifth order WENO scheme, higher order WENO schemes (higher
than fifth order) were also developed [14, 15, 16]. For the reconstruction of point values, the
Central WENO (CWENO) schemes are proposed in [17] and extended in [18, 19]. Different
from WENO, CWENO reconstructs polynomials defined in the whole cell instead of values
at given points.

In spite of their excellent performances for scalar problems, WENO schemes stilliproduce
numerical oscillations for problems like the Lax shock tube problem of thedgas ‘dynamic Euler
equations. To get rid of such oscillations, the characteristic-wise s#econstriiction method
[20, 2, 21] should be applied. Compared to the component-wiSe recomstruction method,
the characteristic-wise reconstruction method results in much higher computational cost.
Therefore, for efficiency consideration, in practical large scale simulations, the component-
wise reconstruction method is always preferred, e.g.4[22]jthat some numerical oscillations
are tolerable. However, such compromise may reduce the reliability of the simulation result
that numerical oscillations disturb the flow field and-may change the whole flow structure.
To prevent numerical oscillations and avoid the use of characteristic-wise reconstruction,
He et al. [23] analyzed the WENO weights and proposed a new method to calculate the
final smoothness indicators. This.method reduces but is not free of numerical oscillations.
Hu et al.[24] proposed a discéntinuity” detector to combine characteristic-wise WENO with
low dissipation linear scheme théat several free parameters were introduced. Puppo [25]
proposed an adaptive.method to combine the component-wise reconstruction method and
the characteristicswise reconstruction method and showed good performance and efficiency.

In this paper, we focus on developing a characteric-wise reconstruction WENO scheme
which is /more efficient for large scale simulation of compressible flow. Shared smoothness
indicatorstand WENO weights are firstly introduced to reduce the computational cost of
the component-wise reconstruction procedure. Based on the WENO-Z non-linear weights
calculated from the shared smoothness indicators, a global switch function is then introduced
to detect discontinuity. Utilizing the given switch function, a new scheme is proposed that
it performs the characteristic-wise reconstruction near discontinuities and switches to the

component-wise reconstruction for smooth regions. This paper is organized as following. In
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Section 2, the WENO scheme and its component-wise and characteristic-wise reconstruction
implementations are introduced. In section 3, a new adaptive method is developed based on
the analysis of the two implementations. In section 4, several numerical tests are presented
to illustrate the performance and efficiency of the new method. Concluding remarks are

given in Section 5.

2. Solving the gas dynamic Euler equations with WENO

2.1. The gas dynamic Euler equations
The one dimensional Euler equations of inviscid ideal gas is given by:
oU  OF
=9 1
ot + Ox (1)

in which U and F are the conserved variable and the cenvéctive flux vectors:

p pu
U= |pu| . B= [ pu+p |, (2)
E uw(E + p)

where p is the density, u is the velocity, and £ = % + % pu? is the total energy with v = 1.4.

For the convective flux vectopF! ,its Jacobian matrix A is defined as:

OF(U) oU

o Ao ()
where A is written as:
0 1 0
A=RAL=| 2342 B=7u y-1 (4)

where ¢'= /vp/p is the sound speed. Here, A is the eigen matrix of A:

u—+c



and L and R are the left and right eigen vectors:

bl REeR FE-E TS
e e s e ©
LI FE-s waEtasl T
1 1 1
R=forpnl=| u—c w  ute |4 7)
§+ycj1_uc % %+f—i+uc

To introduce correct upwinding, the flux vector F is generally splitted into two parts:

F=F*t4+F- (8)
where . R
dF+ T
— >0, qu < 0.
dU dU

In this paper, the Lax-Friedrichs splitting method [2] is used:

— 1 — —
For the Euler equations, «; is taken as:
&; = a = max(|u;| + ¢;) (10)

for simplicity and robustness as being discussed in [2, 23].

2.2. The WENQO scheme
To ingroducesthe finite difference WENO scheme, let us consider the semi-discrete form
of eq.(1) omsedqually spaced grid, i.e. Az = x;41 — 2;:

ov; _ OF, 1 3
o = on © A= Fiop) -

where F;H J2 = F":rl ot P_’;jrl /9 is the numerical flux at cell interface. Each component of the

—

numerical fluxes F;fH /9 and ]3;1 Jor 1-€. K fi%, is then reconstructed by the WENO scheme.

For simplicity, k£ and =+ in the superscript are dropped in the following parts of this paper.
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The numerical flux component fl 41 can be obtained by high order schemes. The fifth

order upstream-biased scheme is written as:

n 2 13 47 27 3
il = —fio— —fion+ —fit+ ——=Jiv1 — == Ji+o, 12
i+1 60f 2 60f 1+ 60f + 60f+1 60f+2 (12)

—

where f; = f(U;) is the point value of the flux component. Eq.(12) is a convex gombination
of three third order schemes on three substencils So = (z;_2, i1, 7;), S1 =A% _1, %1, Ti11),
and Sy = (24, Tit1, Tit2):

1 7 11

fo.s = sfice— ZJic1 + — 4 13
Joit1/2 3f 2 6f 1+6f (13)
. 1 5 1

Jrivie = _Efi—l + gfz‘ + gfz‘+17 (14)
R 1 5 1

foivi2 = gfz + 6fi+1 - 6f'i+2- (15)

with linear weights cg = 0.1, ¢; = 0.6 , and c; = 03 réspectively. By substituting the linear

weights with the WENO weights, we have the fifth,order WENO scheme:
WENOS5 : fi+1/2 = (A}Ofo’i+1/2 + Wlfl,i+l/2 + W2f2,i+1/2- (16)

The WENO weights w;, are given(by:

= 17
Wk Z o ) ( )
where «, are the non-linear weights:
& k={0,1,2},p=1,2 (18)
A = 77—~ = ) P = Ly 4, .
F (e + B)P b

in which € is a small number to avoid dividing by zero. In this paper, € is taken to be

1 x 10=%,. The smoothness indicators 3; are:

Bo = %(sz —2fi1 + f1)2 + %l(fzz —4fiq + Bfi)27 (19)
B = %(fi—l —2fi+fi+1)2+i(f¢—1 — fir)®, (20)
Ba = %(fi —2fii1 + fire)® + %1(3]’1' — Afii1 + fira) (21)
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As shown by Henrick et al. [3], for the fifth order WENO scheme of Jiang and Shu [2],
the non-linear weights (18) do not satisfy the necessary and sufficient conditions for fifth
order convergence. A mapping function was introduced to improve the accuracy of the final
weights (the WENO-M scheme). In [4], Borges et al. introduced a parameter 75 = |5y — 2|

to calculate the non-linear weights as:

ay = ¢y, (1+(ﬁk7—i8)q> k=1{0,1,2},g=1,2,... (22)

This new scheme (the WENO-Z scheme) is less computational expensive than the WENO-M
scheme. Optimal definitions of different orders of accuracy for 7 /an be found in [6]. In this
paper, the fifth order WENO-Z scheme is used as the base WENO#scheme.

There are two ways to calculate the numerical fluxes of the Euler equations with WENO
schemes, namely, the component-wise reconstruction’methed/and the characteristic-wise re-
construction method. The former method reconstructs the numerical flux vector component-
by-component while the latter method performs the reconstruction in the characteristic
space. In the following two subsections(2.3\and 2.4), details of these two methods will be

presented.

2.3. Component-wise reconstraiction

By implementing the WENOuréconstruction for the numerical flux vector F' component-

by-component, the restlted numerical flux at cell interface can be written as:
0 fCP
i+1/2 2
;CP A CPZCP
Fiip=11 Sff/g = Zwk LR (23)
2 fCP k=0
i+1/2

in which
0, CP
W
cP
Wy = Lw'? (24)

2, ,CP



and

0fk,i+1/2
flgﬁ-l/QZ 1fk,i+1/2 , k=0,1,2. (25)
2fk,i+1/2

The WENO weights in Eq.(24) are calculated according to the corresponding flux gomponent

at each stencil:
kaCP = kacp(sfwrkfz, o fiw), k=0,1,2, 5 =0,1,% (26)

where s is the component index and k is the stencil index. The right-superscript 'CP’ stands
for component-wise reconstruction.

It can be observed that the component-wise reconstriction method is easy to be im-
plemented that only one single WENO reconstruction subroutine is needed in one’s code.
However, numerical oscillations may present in selutiens. obtained by the component-wise
reconstruction method. In the following parts, the component-wise method will be referred

to as the CP method.

2.4. Characteristic-wise reconstruction

Compared to the CP method;sthe characteristic-wise method produces less numerical
oscillations. To perform regonstruction in the characteristic space, the flux vector F should
firstly be projected onto‘theileft eigenvector of its Jacobian (4) on cell interface ;;1/2. The
left eigenvectors on.cellinterface are obtained from Roe-averaged [26] primitive variables:

VPl + \/Dix1 Uit (27)
VPi T \/Pit1

U

= pihi + \/pivihisa
h— (28)
VPi T/ Pix1




The averaged left eigenvector matrix is therefore written as:

1 y=l@® , la _~y-la _ 11 =11
o Tz Taz 2 2 2¢ 2 2
T.. — 7| = y—1 @2 (v—1u ~y—1
L1+1/2_ 11 - 1-— 5= = — = (31)
1 y-le?  la _y—la 4 11 y-11
2 4 22 2¢ 2 22 2¢ 2 22

The WENO reconstruction is performed component-by-component to the projéected variable

~

01f)k,i+1/2
~ C A 3 £C
Wi ?+1/2 1wk,i+1/2 = Li+1/2fk,z‘lj-1/27 k=0,172 (32)
ka,i+1/2
CH » CH
z+1/2 = ZW Wieit1/2 (33)

Different from the CP method, the WENO welghts are computed according to the projected

variables on each stencil:

w,gH = 1w’§H ( 34)

O = P - L), k=012, 5=0,1,2 (3)

After the WENO reconstruction of the projected variables, the obtained values need to be
transformed back/to)the physical space by projecting onto the averaged right eigenvectors

on cell interface:
0 fCH

i+1/2
Fz+1/2 ! ﬁﬁ’ﬂ = R1;+1/2W+1/2 (36)
2 fCH
i+1/2

The averaged right eigenvectors are given by:

1 1 1

Rii1/2=[F0,T1,T2), = i—¢ i i+¢ (37)
17,2 52 _ 17,2 ’17,2 62 —
T g uc 5 Gt tuc



The whole process of the characteristic-wise WENO reconstruction can be summarized into
one formula:
0 fCH
i+1/2 2
FCH ; o CHY fCP
=" 55/2 = Z Rit1/2wy, Li+1/2fk7i+1/27 (38)
2 fCH k=0
i+1/2
where the superscript 'CH’ stands for characteristic-wise reconstruction. In‘thewfollowing
parts, the characteristic-wise method will be referred to as the CH method.
Compared to the CP method, the CH method requires several matrix constructions and

projections resulting in much higher computational cost. Although-the,computational cost

of the CH method is high, it produces less numerical oscillations.

3. The new scheme

On one hand, in spite of its high computational eost, the merit of the CH method is that
it leads to less spurious oscillations. On the other hand, the advantage of the CP method is
its computational efficiency regardless of the mumerical oscillations it brings. To get rid of
their drawbacks and utilize their advantages, the two methods can be combined in a dynamic
way. In this section, the two methods will be analyzed to show where their differences and
similarities lie. A new adaptive method that combines these two method will be introduced

according to our analysis’

3.1. Comparison of the‘two reconstruction methods

Eq.(38) caut be written in a more compact form by considering:

O™ = Rigjowy "Ligrya. (39)

Substituting Eq.(39) into Eq.(38), we have:

0 fCH
i+1/2 2
CH _ |10 | _ ~CHPCP
Fi+1/2 - i+1/2 | Wk fk7i+1/2 (40)
2 fCH k=0
i+1/2
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Comparing Eq.(23) and Eq.(40), one immediately finds that the difference between the CP
method and the CH method lies in their WENO weight matrices: @ and w{”.

For smooth region, the WENO weights approximate the linear weights. Therefore, the
WENO weight matrix wS? of the CP method becomes:

Wi x ¢, (41)
where I is an identity matrix. For the CH method, its weight matrix &f#“reads:
O ~ Riv1 /2611412 = cxRig1/210i41 )2, (42)
Considering that
Ri+1/2 = I_J;ll/z, (43)
we have:
Wit~ el ~ @f . (44)

Eq.(44) reveals that for smooth flow the numetieal fluxes obtained by the two methods are

approximately equal:

CP _ R CHYT
Wy ~ Ri+1/2wk Li+1/2

(45)
ﬁz’if/Z ~ Fﬁlf/Q
3.2. Puppo’s method
According to the analysis,above, the CP method and the CH method give approximately
equal results in smooth.region. As the CH method results in less numerical oscillations, it
is preferred in ,diseontinuous region. Although the CP method produces oscillations in
some discontinuous regions, it is more computational efficient than the CH method. A
straightforward strategy to combine the advantages of these two methods is to use the CP
method,in smooth region and to use the CH method in discontinuous region.
In [25], an adaptive projection method was proposed to select between component-wise

reconstructed and characteristic-wise reconstructed variables. The switch being applied is a

smoothness indicator that measures the smoothness of the whole stencil:

2

BT =" B (46)
1=
12 "



in which ;; is the global smoothness indicator of the substencil Sf = (Tip1—2, Tit1—1, Tiyy) Of

the five-point stencil S; = (x;_2, Ti_1, T, Tiy1, Tit2):

Il & 1
B, m;wb B (47)

Here, m is the number of components, ||"f||> is the L? norm of the rth compénent of the

reconstruction candidate F (the splitted fluxes F* in our implementation) «

1/2
1" fll2 = (D"ﬂ-ﬁh) (48)

all @

where h is the grid size, " f; is the r-th component of F’i, and "By ; 1sthe smoothness indicator
given by (19)-(21) of " f; at stencil S!. To avoid division by zero/||" f||2 is set to be 1 when
it is smaller than 1 x 1071,

The switch criterion is then given by:

CP

7 — i

In the following part of this paper; this method will be referred to as the TOT method.

3.83. Adaptive WENO-Z method

The TOT method is faster than the CH method. However, TOT requires the com-
putation of the smoothness indicators for each flux component that it still needs more
computational time than the CP method[25].

The calculation of the smoothness indicators occupies most of the computational time of
the WENO scheme according to [2] as well as our experiences. To reduce the computational
cost of'the component-wise reconstruction, instead of computing the smoothness indicators
for each vector component, we propose to use the following variable to compute a set of

smoothness indicators 5;‘[@ for all components:

G* = p+ (pu® + p+ apu), (50)

13



where the 4 sign denotes G and smoothness indicators for the positive and the negative
fluxes and « is given by Eq.(10). We refer to G* as the shared smoothness functions and
51:;(: as the shared smoothness indicators.

The non-linear weights ozkjfa and WENO weights wki’G are then obtained from ﬁ,::G ac-
cording to (22) and (17) respectively. We call aiG the shared non-linear weéights and
w,fG the shared WENO weights. By computing the shared smoothness indicaters ﬁ,fG
based on G*, the number of smoothness indicators needed to be calculated 1§ reduced to 6
(3 smoothness indicatorsx2 splitted fluxes) from 18 (3 smoothness indicatorsX3 components x
2 splitted fluxes) for the one dimensional Euler equations. The number of non-linear weights
and WENO weights needed to be computed is also reduced accordingly.

To shift from the component-wise reconstruction to the characteristic-wise reconstruc-
tion, a switch function capable of detecting discontinuities,isrequired. The switch function
employed in this paper is:

1

It varies from 1 to 0 rapidly and smoothly,with increasing x. Fig.1 illustrates  with different

values of parameters. Detailed analysis of this function can be found in [27].

14



14 0

(x,z=1) 4

- = 0(x,z=2) |

12 | < s - 0(x,z=3) |
—-=0(x,z=4) |

Here, we take:

and get

(52)

where afG are,the shared non-linear weights for the positive and the negative splitted fluxes
respectively given by Eq.(22). Taking the properties of the non-linear weights oz,fG into

consideration (see [4, 6, 27| for more details), we have:
> e ~1 (53)
k

for smooth region and
D afe>1 (54)
k

15



for discontinuous region. This property leads to

1, smooth,
0, discontinuous.

Taking advantage of Eq.(55), we propose the following adaptive approach:

i, FC® 0> 6,
Fi+1/2: ﬁ;rH/ (56)
Fi+1/27 0 < b

where 6, is a threshold which can be simply taken to be:
0o =0(1,2) =0.5. (57)

Bearing in mind that the 6 function can be interpreted as_how/ much we can believe the
function being measured is smooth, it is not hard 4o understand the choice of 6y, made
above.

The final adaptive characteristic-wise WENO-Zyscheme (referred to as AdaWENO-Z)
algorithm is given in Algorithm 1. We refer toithé component-wise part of AdaWENO-Z as
SWENO-Z(Shared-weight WENO-Z) for eonvenience. It is worth of noting that the shared
WENO weights w,:f?G are only used by the SWENO-Z part. For the characteristic-wise part,
the calculation method of the WENO weights is not changed.

4. Numerical tests

In this sectiony, several numerical tests including one dimensional and two dimensional
problems are/considered to validate and evaluate the performance of the new method. Nu-
merical results are compared between CP, CH, TOT, and AdaWENO-Z. The WENO-Z
non-linear weights are used for all of the methods to make the results comparable.

The third order TVD Runge-Kutta method [28] is used for time advancing:

u® ="+ AtL(u"), (58)
1 1
e - Zun I 1u(l) i ZAtL(u(l)), (59)
wil _ Lo 2 @, 2 @
u = 3u + Su + 3AtL(u ) (60)



Algorithm 1 The AdaWENO-Z algorithm

1: Calculate G5 for the positive and the negative splited fluxes F”f respectively according

to Eq.(50);

2: for Each stencil S; = (i — 2,1 —1,7,i+ 1,1+ 2),i=1ton do
3: Calculate ﬁ,ifm according to Eq.(19)-(22) for the positive and the negative splitted
fluxes ﬁf based on the calculated G ;

4: Calculate wki’Gﬂ. and 6F according to Eq.(17) and Eq.(52).

5. for Each stencil S; = (i —2,i —1,4,i+1,i+2),i=1ton do
6:  if 65 > 0.5 then

. s £+ _ 2 + s p+CP —
T i+1/2 — > k=0 Wi Jkiv1/2 S = 0,1,2
8: else

_ sit s pECH

Unless specified, the time step At is given by:

At =@ £ (61)

max (|u;| + ;)

for one dimensional cases and

At At, ; Ax Ay

_ o2l AN AL, = 62
At + At, max(|u; ;| +a;;)" Y max(|vi ;] + ag) (62)
,J 2¥)

At

for two dimensional cases, where o is the Courant-Friedrichs-Lewy number.

For the TOT<methed; considering that the CWENO framework is different from that
of the finite differencé WENO, we implement the criterion (49) as the switch between the
characteristic-wisé and the component-wise WENO-Z schemes instead of the CWENO coun-
terparts. Hence, the computational results of TOT in the following part of the paper may be
different from those in [25]. Except the switch criterion calculation processes, the remaining
code for TOT and AdaWENO-Z are the same in our implementation.

To better demonstrate the performance of AdaWENO-Z, we also tested SWENO-Z, i.e.
the component-wise part of AdaWENO-Z, for the Sod problem, the Lax problem and the

Shu-Osher problem.
17



The data in the following sections were obtained from running our code compiled by the

GCC-gfortran compiler with the ’-O2’ flag enabled on an Intel Core i7 8700K 3.7GHz CPU.

4.1. One dimensional cases

4.1.1. 1D Density perturbation advection
To measure the orders of accuracy of different schemes, the smooth density perturbation

advection problem is considered. The initial condition of this problem is given by:

p(x,0) =14 0.2sin(rz), u(z,0)=1, p(z,0) =L (63)
The exact solution is:

p(x,t) =1+ 02sin(m(x —t)), u(z,t)= 1 \p(z,t) = 1. (64)

The computational domain is [0,2]. Solutions aresintegrated to ¢ = 2.0. To rule out the
effect of the time integration method on the orderef accuracy, the time step is set to be
At = 0.05Az°/3.

The L, errors:

L= (65)

\/ZZ((pZ . pi,avaot)g + (uz - ui,emact>2 + (pz - pi,ezact)Q)
N

and orders of accuracy of/different methods at ¢ = 2.0 are shown in Tab.1. It can be observed
that the Lo errors and orders of accuracy of the tested methods are all the same for this
smooth problem“as essentially these methods are the same method for smooth solution.
The CPU time of each method is shown in Tab.2. The CH method requires about 1.5 times
more CPU time than the CP method. TOT is faster than the CH method, however, as it
requires extra effort to compute the global weights along with computing all the smoothness
indicators of each flux component, it is slower than the CP method. AdaWENO-Z is the

fastest method as only one third of the smoothness indicators are needed to be computed.

18



Table 1: The Ls errors and orders of accuracy of different methods at ¢ = 2.0 for problem (63).

N CP CH TOT AdaWENO-Z
Lo order Lo order Lo order Lo order
8 9.17E-03 - 9.17E-03 - 9.17E-03 - 9.17E-03 -

16  3.07E-04 4.90 3.07E-04 490 3.07E-04 490 3.07TE-04 4.90
32  9.81E-06 497 981E-06 4.97 981E-06 4.97 9.81E-06 £ 4.97
64 3.11E-07 498 3.11E-07 498 3.11E-07 4.98 3.11E-07, 4.98
128 9.76E-09 499 9.76E-09 4.99 9.76E-09 499 9.76E-09 4.99
256 3.04E-10 5.00 3.04E-10 5.00 3.04E-10 5.00 /3.04E-10 5.00

Table 2: The total CPU time (s) of different“metheds/for problem (63).

N CPp CH TOT AdaWENO-Z

8  9.385E-03 1.256E-02  1.104E-02 8.259E-03
16  4.804E-02 7.083E-02 /5.607E-02 3.779E-02

32 0.324 0.488 0.376 0.241
64 2.409 3.638 2.790 1.722
128 18.471 28.088 21.355 13.120
256 144.67 219.973 166.724 101.069

4.1.2. The Sodsproblem

The initial condition of the Sod problem is given by:

(1,0,1) <0

(p,u,p) =
(0.125,0,0.1) >0

The final solution time is ¢ = 0.14. The CFL number is set to be 0.1.
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Figure 2: Distributions of density and indicators where the characteristic-wise reconstruction is applied for

the Sod problem at t=0.14.
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Table 3: The total CPU time (s) of different methods for problem (66)

N CP CH TOT SWENO-Z AdaWENO-Z

200 0.108 0.161 0.124 7.152E-02 8.782E-02

400 0.421 0.634 0.484 0.283 0.315
600 0.937 1.453 1.079 0.631 0.686
800 1.660 2.632 1.906 1.114 1.200
20 I I I 1 I I I
- —O— TOT N=200 ]
| — o - TOTN=400 .
— =g~ - = TOT N=600
- —.O-+= TOT N=800 s
| ———— AdaWENO-Z N=200 |
— = = AdaWENO-Z N=400
15 |~ — - —- = AdaWENO-Z N=600 -

----- = AdaWENO-Z N=800

Percentage (%)
o

Figure 3: Percentage of grids treated by CH vs time of TOT and AdaWENO-Z for the Sod problem.

Density distributions of each method with different grid numbers are shown in Fig.2. The
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reference result is calculated by the CH method with N = 8000. From the zoom-in figures,
it can be seen that the CP method produces obvious spurious oscillations near the contact
wave. TOT also shows slightly oscillatory results. AdaWENO-Z shows similar results with
those of the CH method that no obvious oscillations can be observed. Markers indicating
where characteristic-wise reconstruction is applied are also illustrated. AdaWENO-Z shifts
to the characteristic-wise reconstruction near the expansion wave, the contact=waveyand the
shock wave. TOT does not mark any grid to be treated with CH at ¢ = 04l4. Ratios of grids
that are treated by CH for TOT and AdaWENO-Z at different time are shown in Fig.3. It
reveals that TOT treats a small portion of the grids by CH only at the beginning of the
computation. Due to higher resolution of discontinuities at/Smaller-grid size, AdaWENO-
Z handles less grids with CH as the grid number increases. . The CPU time of different
methods are given in Tab.3. TOT is more efficient than CH, but is slower than CP. Although
performing characteristic-wise reconstruction at more grids, AdaWENO-Z is faster than
TOT as the former spends less time on computingthe smoothness indicators.

The results and CPU time of SWENO-Z reveal that, when the characteristic-wise part
is cut off, AdaWENO-Z leads to faster but.umore oscillatory results compared to the original
one. Nevertheless, the SWENO-Z results are less oscillatory than those of the CP method.

4.1.3. The Lax problem

The initial conditiomof the-Lax problem is given by:

(0.445,0.698,3.528) x < 0
(p,u,p) = (67)
(0.5,0,0.571) x>0

Solutions are integrated to ¢t = 0.13. The CFL number is set to be 0.1.
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Figure 4: Distributions of density and indicators where the characteristic-wise reconstruction is applied for

the Lax problem at t=0.13.
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Table 4: The total CPU time (s) of different methods for problem (67).

N CP CH TOT SWENO-Z AdaWENO-Z

200 0.213 0.324 0.252 0.146 0.183
400 0.836 1.272 0.975 0.565 0.653
600 1.868 2.908 2.170 1.263 1.410
800 3.315 5.288 3.832 2.236 2.448
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Figure 5: Percentage of grids treated by CH vs time of TOT and AdaWENO-Z for the Lax problem.

Solutions at ¢t = 0.13 with different grid sizes are illustrated in Fig.4. The reference
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result is computed by the CH method with N = 8000. Similar to the sod problem results,
both of the CP method and the TOT method result in spurious oscillations near the contact
wave. The solutions of the CH method and AdaWENO-Z almost overlap each other. The
indicators shown in Fig.4 imply that, at ¢ = 0.13, TOT treats the grids near the shock
wave with CH while AdaWENO-Z performs characteristic-wise reconstruction at grids in
the vicinity of both the contact wave and the shock wave. The percentage.of grids solved
by the CH part of TOT and AdaWENO-Z at different time are given in Fig.5. Although
more grids are marked, AdaWENO-Z is still about 25% faster than CP and 35% faster than
TOT according to the CPU time given in Tab.4.

As with being observed from the Sod problem, without the adaptive characteristic-wise

reconstruction part, although faster, SWENO-Z results to more mumerical oscillations than

AdaWENO-Z.

4.1.4. Shu-Osher problem

The initial condition of the Shu-Osher preblem is given by:
(p,u,p) = (750 s) (68)
(1 + fsinbz,0,1) 2> —4

Solutions are integrated to ¢ =.1.8.The CFL number is set to be 0.1.
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Table 5: The total CPU time (s) of different methods for problem (68)

N CP CH TOT SWENO-Z AdaWENO-Z

200 0.294 0.447 0.350 0.200 0.249
400 1.179 1.785 1.364 0.793 0.943
600 2.656 4.117 3.055 1.791 1.966
800 4.703 7.470 5.409 3.142 3.420
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Figure 7: Percentage of grids treated by CH vs time of TOT and AdaWENO-Z for the Shu-Osher problem.

The CH method is used to give the reference result with grid number N = 8000. Solutions
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of different methods at ¢ = 1.8 are shown in Fig.6. When the grid number N is 200, the
CP method is unable to resolve the short waves while the other three methods give better
resolutions. The short waves are well resolved when the grid number is more than 200 for
these fifth order schemes. However, the CP method leads to overshoot of the post-shock
waves as the grid size decreases. The CH method, the TOT method, and AdaWENO-Z show
almost coinciding solutions. The indicators drawn in Fig.6 reveal that the<T'OThwmethod
discerns the main shock wave and shifts to the characteristic-wise reconstruction at t = 1.8.
AdaWENO-Z marks grids near not only the main shock wave but also those” weaker shock
waves behind the short-wave region to be treated with CH. Tab.5 shows the CPU time
of different methods. AdaWENO-Z is more efficient than the other’ three methods. The
SWENO-Z results implies that although no characteristic-wise.reconstruction is performed,

sharing the WENO weights among each component reduce the overshoot.

4.2. Two dimensional cases

4.2.1. 2D Density perturbation advection

The initial condition of this problemis given by:
p(x,y,0) =1+ 0.2sin(rx); Sau(zryy,0) =1, v(z,y,0) =0, p(x,y,0)=1. (69)
It is a simple extension ofdEq.(68)40 two dimensional. The exact solution is:
plx,y,t) =1+ 02sin(n(x — 1)), u(x,y,t) =1, v(z,y,t) =0, p(z,y,t) = 1. (70)

The computational domain is [0,2] x [0,2]. Solution is integrated to ¢ = 2.0. To rule out
the effect of'the time integration method on the order of accuracy, the time step is set to be
At = 0.05h°/3 avhere h = Az = Ay.

The/Ly errors:

(71)

L _ ZZ((p'L - pi,ezact>2 + (uz - ui,ezact)2 + (Ui - U'i,ezact>2 + (pl - pi,eazact)Q)
? N, N,

and orders of accuracy of different methods at t = 2.0 are shown in Tab.6. As with the one

dimensional results, for smooth problem, the four tested methods obtain approximately the
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same Ly error and order of accuracy. The total CPU time of different methods are given in

Tab.7. AdaWENO-Z requires the least CPU time among all the methods.

Table 6: The Lo errors and orders of accuracy of different methods at ¢ = 2.0 for problem (69).

CP CH TOT AdaWENOQ<Z
(Nz, Ny)
Lo order Lo order Lo order Lo order
(32,32) 1.11E-05 - 1.11E-05 - 1.11E-05 - 1.11E=05 -

(64,64) 3.48E-07 4.99 3.47TE-07 4.99 3.47E-07 499 34TE-04 ) 4.99
(128,128) 1.09E-08 5.00 1.08E-08 5.00 1.08E-08 5.00-1.08E-08 5.00
(256,256) 3.39E-10 5.00 3.39E-10 5.00 3.39E-10 ,5.00 3.39E-10 5.00

Table 7: The total CPU time (s) of differentsmethods for problem (69).

(N.,N,)  CP CH TOT AdaWENO-Z
(32,32) 0.72 1.02 0.78 0.40
(64,64) 8.63 1242 956 4.12

(128,128) 107.87 | 156.56  117.63 51.34

(256,256)7 1368.26° 1999.39 1487.42 667.04

4.2.2. Double Mach-reflection

The double.mach reflection test is a mimic of the planar shock reflection in the air from
wedges. It is'a widely used benchmark to test the ability of shock capturing and the small
scale structure/resolution of a certain scheme. In the present simulation, the computation
domaijnuis, taken as [0,4] x [0,1]. The lower boundary is set to be a reflecting wall starting

from z)= At t = 0, a right-moving 60° inclined Mach 10 shock is positioned at (%, 0).

D=

The upper boundary is set to describe the exact motion of the Mach 10 shock. The left
boundary at x = 0 is assigned with post-shock values. Zero gradient outflow condition is

set at * = 4. Readers may refer to [29, 30] for detailed descriptions of the double Mach
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1

510" The reference result is

reflection problem. An uniform grid is used with Az = Ay =

given by the CH method with Az = Ay = 4.

(a) Component-wise reconstruction

(b)yCharacteristic-wise reconstruction
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(d) Present

(e) ‘Reference

Figure 8: Density contours of the doublesMach reflection problem at t=0.2, ranging from p = 2.1379 to 24
with 90 equally separated levels
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Figure 9: Density contours of the up-rolling region at t=0.2
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discontinuities.

(b) Present

Figure 10: Grids treated with the characteristic-wise reconstruction at«t=0.2

Table 8: The total CPU time for the double Mach refleetion problem

Method CPUntime(s)

CPp 10921.189
CH 16646.573
TOT 12107.236

AdaWENO-Z 5858.64

Fig.8 shows the density contours of different methods at t = 0.2. All methods capture

reflected shock thanjythose of the other three. Density contours of the up-rolling region of
different methods are,shown in Fig.9. The CP method result shows obvious oscillations near
the tripleswavesinteraction point while the CH method, the TOT method, and the present
method give similar and clean structures. Compared to TOT, AdaWENO-Z resolves the
K-H iunstability structures better. The CPU time of different methods are given in Tab.8,
AdaWENO-Z is about 3 times faster than the CH method and is about 40% faster than
the CP method. Although marking more grids to be treated with CH as shown in Fig.10,
AdaWENO-Z is more efficient than TOT due to the performance gain brought by the new

shared smoothness indicators.

38
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4.2.3. Shock/shear layer interaction

The shock wave impingement problem is designed to measure the resolution of schemes
when shock waves interact with vortices [31]. A Mach 0.6 shear layer evolves and impacts on
an oblique shock. The vortices produced by the shear layer instability pass, firstly, through
the oblique shock and then a second shock reflected from the slip wall at the lower'boundary.

The computation domain is [0,200] x [—20,20]. At = = 0, the inlet condition-is speeified as:

u = 2.5+ 0.5tanh(2y). (72)

For the upper stream (y > 0), p = 1.6374, p = 0.3327 and [for lower stream (y < 0),
p = 0.3626, p = 0.3327. Post shock condition (p,u,v,p) = (2.4401,2.9709, —0.1367,0.4754)
is set at the upper boundary, and slip wall condition(is applied at the lower boundary.
Besides, fluctuations are added to the vertical velocity‘component at the inlet:

2

v = Z arcos(2rkt | T4 éx)exp(—y* /b) (73)
k=1
b=10,a; = 45=0.05, ¢, = 0, ¢ = 7/2 (74)

in which 7" = A\/u, is the periody A = 30 is the wavelength, u. = 2.68 is the convective
velocity. To illustrate the perfermance of each method, the two dimensional Euler equations
instead of the Navier-Stekes equations are solved. A equally spaced grid with grid number
(Ng, Ny) = (500,100)is used. The reference result is calculated on a refined gird with
(N, Ny) = (20007400) by the CH method.
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(e) Reference

Figure 11: Density contours of the shock/shear layer interaction problem atyt=120

Figure 12: Grids treated with the characteristic-wise reconstruction of AdaWENO-Z at t=120

Table 9: The total CPUtime for the shock/shear layer interaction problem

Method CPU time(s)

CP 2742.574
CH 3949.063
TOT 2968.359

AdaWENO-Z 1757.452

Deusity contours are shown in Fig.11 at t = 120. It can be observed that the CH method,
the TOT method, and AdaWENO-Z obtain similar results which are very comparable to
the reference result, while the self-similar structures of the downstream vortices are twisted
in the CP method result. While the TOT method does not treat any grid with CH for this

problem, the grids treated by CH of the AdaWENO-Z result at ¢ = 120 are shown in Fig.12.
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It indicates that the switch method of AdaWENO-Z is able to resolve both strong and weak

discontinuities.

5. Conclusion

In this paper, we present an adaptive characteristic-wise reconstruction WENO scheme
(AdaWENO-Z) for the gas dynamic Euler equations. By defining shared smoothness func-
tions, shared smoothness indicators are introduced to reduce the computational cost of the
component-wise reconstruction procedure and to develop a globaldswitch function. The
switch function is based on the WENO-Z non-linear weights ¢alculated from the shared
smoothness indicators and is capable of detecting discontihuities™ With the help of the
switch function, the new method performs the component-wisezeconstruction in smooth re-
gion and shifts to the characteristic-wise reconstruction.near.discontinuities. Numerical tests
show that AdaWENO-Z achieves high efficiency without producing obvious numerical oscil-
lations. AdaWENO-Z is about 2 to 3 times faster than the CH method and about 20% to
40% faster than the CP method. With good\performance and high efficiency, AdaWENO-Z

is suitable for large scale compressible flowssimulation.
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