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We numerically investigate the passive flight of a flexible 3-flyer in a vertically
oscillating airflow with zero mean stream. The flexibility of the flyer is introduced
by a torsion spring installed at the hinged joint. We study the effects of spring
stiffness, density, resting angle and actuation efforts on the hovering performance.
The results suggest that the occurrence of resonance in flexible flyers can result
in significantly different performances in flexible and rigid flyers. It is found that
flexibility can have two opposing effects, reducing or increasing the actuation efforts
for hovering, depending on the range of driving frequency. This result is explained
by the modulation of relative motion between the flyer and the imposed background
flow due to the involvement of passive angular oscillation. The angular oscillation
patterns, the wake symmetry properties and the postural stability behaviours under
different driving conditions are also explored. Based on the findings of the present
study, the ideal parameter values for stable hovering are suggested. The results of
this study offer novel insight into the mechanism by which the flexibility of the flyer
affects the passive hovering performance.

Key words: flow–structure interactions, swimming/flying, vortex shedding

1. Introduction

Hovering is a distinct mode of locomotion in which a body subjected to gravity
stays aloft with little or no average movement relative to a fixed point in space
(Childress, Vandenberghe & Zhang 2006). Lift and stability are the two essential
elements for achieving hovering flight.

Flying animals and some man-made flying vehicles utilize actuated wing motions
to generate lift during hovering. Helicopters and rotary wing micro-air-vehicles
(MAVs) rely on constant rotation of the rotor blades for lift generation (Hassanalian
& Abdelkefi 2017). Insects, birds and ornithopters generate lift by the reciprocating
motion of flapping wings (Weis-Fogh 1973; Norberg 1975; Wang 2004). For these
flapping-powered flyers, the delayed stall via leading-edge vortices (LEVs) is the
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dominant aerodynamic mechanism responsible for lift generation (Ellington et al.
1996; Dickinson & Sane 1999; Ramamurti & Sandberg 2002; Sun & Tang 2002;
Sane 2003; Fry & Dickinson 2005; Wang 2005; Aono, Liang & Liu 2008).

Owing to the intrinsic instability of body orientation in the hovering flights of
insects and flapping-powered robotic flyers, feedback active control systems were
equipped for keeping the upright posture (Sun & Xiong 2005; Taylor & Krapp 2007;
Faruque & Humbert 2010; Ratti & Vachtsevanos 2010; Ristroph et al. 2010, 2013;
Ma et al. 2013). Recently, an alternative wing actuation strategy by mimicking the
swimming motion of a jellyfish was proposed by Ristroph & Childress (2014). They
built a man-made hovering machine that can maintain postural stability without active
controls. Subsequently, simplified two-dimensional computational models have been
developed to analyse the aerodynamics and flight dynamics of the jellyfish-like flyer
(Fang et al. 2017; Zhang et al. 2018).

In parallel with the investigations on active flyers, hovering problems were also
studied in the context of passive bodies without internal actuation. In the experiments
on a flexible paper-folded ‘bug’ (Childress et al. 2006) and a rigid hollow pyramid
(Weathers et al. 2010; Liu et al. 2012) that were placed in a vertically oscillating flow
with zero mean stream, some unexpected phenomena have been revealed. Although
the objects with concave-down configuration can be unstable in free falling, such
a configuration was found be stable in the passive hovering of paper-folded ‘bugs’
(Childress et al. 2006). Another counterintuitive finding was that the elevation of the
centre of mass of a hovering pyramid can actually increase its postural stability (Liu
et al. 2012). To elucidate the underlying physical principles that govern the hovering
of passive bodies, some two-dimensional computational studies on a rigid 3-shaped
model have been conducted (Huang, Nitsche & Kanso 2015, 2016; Shao et al. 2016).
The unsteady aerodynamic mechanisms responsible for lift generation, the actuation
efforts required for hovering, and also the postural stability after perturbations were
explored.

In some of the aforementioned active and passive hovering problems, flexibility
is an important intrinsic property of the flyer. During hovering flights, passive
deformation (or passive angular oscillation in the case of the 3-model with a
torsion spring) can be produced as a result of the combined effects of flexibility,
aerodynamic load and wing inertia. For active flyers, some previous results indicated
that the flexibility of the wing can enhance the lift generation and power efficiency
(Vanella et al. 2009; Yin & Luo 2010; Kang & Shyy 2013; Ristroph & Childress
2014). The influences of flexibility were also found to be essential in the hovering of
passive bodies. In the experiments on paper-folded ‘bugs’ (Childress et al. 2006), it
was observed that higher driving amplitudes of the background flow were required for
very stiff ones to hover (i.e. flexibility can reduce the aerodynamic efforts needed for
hovering). In the experiments on the passive hovering of hollow pyramids (Weathers
et al. 2010), comparisons were made between a rigid pyramid and a pyramid with
partially flexible sidewalls. It was found that the rigid pyramids can hover more
easily (in comparison with the flexible ones), if the actuation frequency exceeded
a certain value. We believe that the role of flexibility in passive hovering needs to
be investigated in depth so as to rationalize the contradictory findings reported in
these works. Furthermore, whether flexibility can reduce or increase the postural
stability in passive hovering is also largely unexplored, although it was conjectured
that flexibility has played a critical role in the stable hovering of paper-folded ‘bugs’
(Childress et al. 2006).

Motivated by the experimental works of Childress et al. (2006) and Weathers et al.
(2010), we consider a two-dimensional 3-model with an elastic torsion spring installed
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at the hinged joint. We numerically solve the coupled Navier–Stokes equations and
dynamic equations to explore the impacts of flexibility on the performance of passive
hovering flight. There are several reasons for adopting a two-dimensional model rather
than a three-dimensional one in the current study. First, the results obtained from the
two-dimensional model can still shed light on the aerodynamics of a passive body
driven by oscillating flow, although three-dimensional effects in the experiments are
excluded. Second, the high computational cost in three-dimensional (3-D) simulation
renders thorough parameter sweeps prohibitive. Third, we intend to make comparison
between the results of the present study and those of other two-dimensional (2-D)
systems (such as the pinned and rotatable 3-flyer studied by Huang et al. (2018)). In
table 1, we present a summary of the studies on the passive motion of an object driven
by an oscillating flow. It is seen that, although the two-dimensional 3-shaped model
was adopted previously in some numerical studies, the flexibility effect on passive
hovering performance has never been explored by using high-fidelity computational
fluid dynamics simulations.

The rest of the paper is organized as follows. In § 2, we present the computational
model and governing equations. The numerical methods and computational settings
are introduced in § 3. In § 4, we explore the influences of some control parameters
on passive flights, the actuation efforts required for hovering, the passive angular
oscillation patterns, and the wake symmetry and postural stability properties. The
main findings of the present study are summarized in § 5.

2. Problem description
2.1. Computational model

We consider a flexible 3-flyer in a vertically oscillating flow, as shown in figure 1.
The flyer consists of two rigid thin foils which are connected elastically at the
hinged joint via a torsion spring. The vertical velocity of the imposed background
flow is a sinusoidal function of time. The flyer is allowed to move freely in the
oscillatory background flow, while the two foils can also flap passively as a result of
the aerodynamic torques.

The (dimensional) vertical velocity of the background flow is prescribed as Uy(t∗)=
2πAf sin(2πf t∗), where A, f and t∗ are the oscillating amplitude, the oscillating
frequency and the (dimensional) time, respectively. Other control parameters of the
system include: the stiffness of the torsional spring (κ), the densities of the flyer and
the fluid (ρs and ρf ), the chord length and thickness of the two foils (L and δ), the
kinematic viscosity of the fluid (ν) and the gravitational acceleration (g). We select L,
1/f and ρf as the reference quantities for length, time and density to scale the system.
The dimensionless control parameters of the system (including those that arise as a
result of the scaling) are summarized in table 2.

The incompressible Navier–Stokes equations that govern the fluid motion can be
written in dimensionless form as

∂u
∂t
+ (u · ∇)u=−∇p′ +

1
Re
∇

2 u+ f , (2.1a)

∇ · u= 0, (2.1b)

where u is the fluid velocity vector, p′ is the modified pressure, which absorbs the
hydrostatic pressure due to the force of gravity, and f is the Eulerian forcing term,
which represents the effect of an immersed object on the flow.
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FIGURE 1. (Colour online) A schematic diagram of the computational model. Here L
is the chord length of the foils; α and α0 denote the opening angle and resting angle,
respectively; θ is the inclination angle of the centreline with respect to the y-axis; P1 and
P2 denote the centres of gravity of the two foils; g represents the acceleration due to
gravity; and A and f are the amplitude and frequency of the imposed oscillatory flow,
respectively.

Dimensionless parameters Definitions

Resting angle α0

Mass ratio β =
ρsδ

ρf L

Dimensionless stiffness γ =
κ

ρf L4f 2

Dimensionless amplitude of the oscillating flow Ā= 2π
A
L

Reynolds number Re=
L2f
ν

Froude number Fr= f
√

L
g

TABLE 2. Dimensionless parameters of the system.

The dimensionless dynamic equations that govern the motion of the flyer can be
written as

M q̈=Fi +Fk +Fg +Fa, (2.2)

where M is the mass matrix and q = [x, y, θ − α, θ + α]T is the generalized
displacement vector for the translational and rotational motions. Here x and y denote
the horizontal and vertical displacements of the apex, respectively; and (θ − α)

and (θ + α) are the inclination angles of the two foils with respect to the y-axis,
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respectively. The double dot represents the second derivative with respect to time.
The four vectors on the right-hand side of (2.2) are the inertial, elastic, gravitational
and aerodynamic forces (and torques), respectively. Since the density of the air is
much lower than that of the flyer and the volume occupied by the flyer is negligibly
small, the buoyancy force and torque are not included in (2.2).

The mass matrix M in (2.2) is given by

M =

 2β 0 βlc cos(θ − α) βlc cos(θ + α)
0 2β βlc sin(θ − α) βlc sin(θ + α)

βlc cos(θ − α) βlc sin(θ − α) J 0
βlc cos(θ + α) βlc sin(θ + α) 0 J

 , (2.3)

where lc is the (dimensionless) distance between the centre of gravity of each foil and
the apex, and J is the dimensionless moment of inertia of each foil with respect to
the apex. For a flyer with homogeneous density, lc = 1/2 and J = β/3.

The inertial, elastic and gravitational forces (and torques) are given by

Fi =

 βlc[sin(θ − α)(θ̇ − α̇)2 + sin(θ + α)(θ̇ + α̇)2]
−βlc[cos(θ − α)(θ̇ − α̇)2 + cos(θ + α)(θ̇ + α̇)2]

0
0

 , (2.4a)

Fk =

 0
0

γ (α − α0)
−γ (α − α0)

 , (2.4b)

Fg =


0

−2β/Fr2

−β(lc/Fr2) sin(θ − α)
−β(lc/Fr2) sin(θ + α)

 , (2.4c)

where dot represents the first derivative with respect to time and α0 is the resting
angle.

The aerodynamic forces (and torques) are given by

Fa = [Fa1, Fa2, Fa3, Fa4]
T
=



∑
i

[F(Xi) · i]1s∑
i

[F(Xi) · j]1s

L∑
i

[(Xi −Xa)×F(Xi) · k]1s

R∑
i

[(Xi −Xa)×F(Xi) · k]1s


, (2.5)

where Xi and Xa are the position vectors of the Lagrangian point and the apex,
respectively; i and j are the unit vectors along the x-axis and y-axis, respectively;
k is the unit vector that points outwards from the x–y plane; F is the Lagrangian
forcing term, which represents the interaction between the flyer and the surrounding
fluid; and 1s is the width of the Lagrangian grid. The symbols ‘L’ and ‘R’ above
the summation symbol denote the left and the right foils, respectively.
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The system of dynamic equations (2.2) is similar to the one used by Jo et al.
(2016), where the passive locomotion of a flexible 3-model in an oscillatory Stokes
flow was studied. There are only two differences between the two systems. First, the
gravitational force and torque are not included in Jo et al. (2016) since the model is
neutrally buoyant. Second, the expressions for the fluid force and torque are different.
In the case when linear displacements are not permitted, equation (2.2) degenerates
into the system of dynamic equations for describing the behaviours of a pinned and
rotatable flexible 3-flyer (Huang et al. 2018).

3. Numerical methods and computational settings
3.1. Flow and dynamics solvers

The Navier–Stokes equations are solved by using the direct-forcing immersed
boundary method based on the discrete streamfunction formulation (Wang & Zhang
2011). The flow solver is parallelized by using the message passing interface (MPI)
protocol (Wang, He & Zhang 2013). The finite difference method is used to discretize
the dynamic equations, and the explicit Eulerian scheme is used for the temporal
advancement. A loosely coupled scheme, in which the fluid equations and dynamic
equations are advanced sequentially, is used to conduct the flow–structure interaction
simulations.

The code used here has been validated thoroughly in previous studies by using a
variety of numerical examples, such as flows over stationary objects and objects with
prescribed motions (Wang & Zhang 2011; Wang et al. 2013), and the self-propelled
swimming of elastic filaments (Zhu, He & Zhang 2014a,b). In addition to the
examples mentioned above, another validation is also conducted by computing the
aerodynamic force and moment on a rigid 3-model fixed in an oscillating flow (Shao
et al. 2016). A good match between the results of these two works is shown in
appendix A.

3.2. Boundary and initial conditions
Since the streamfunction is used as the primary unknown in the flow solver, both the
streamfunction s and the tangential velocity need to be specified on the boundaries.
The computational domain is rectangular in shape and has a width of 2W. On the
left boundary, the streamfunction is set to zero (i.e. s(−W/L, y, t)= 0). On the right
boundary, the streamfunction is set to a sinusoidal function of time. This function
is obtained by converting the imposed volumetric flow rate between the left and
right boundaries (i.e. s(W/L, y, t) = −(2W/L)Ā sin(2πt)). On the top and bottom
boundaries, the inflow/outflow conditions are implemented by allowing the boundary
streamfunction to be treated as an unknown (Wang, Francis & Perot 2002). Moreover,
the normal derivative of the tangential velocity is set to zero on all four boundaries.
Since δ � L, the two links of the flyer are modelled as two flat plates that have
‘zero’ thickness nominally. In the two-dimensional simulation, the two flat plates are
represented by 101 Lagrangian points each and the non-slip boundary condition is
enforced on these points by using the direct-forcing immersed boundary technique
(Wang & Zhang 2011).

The initial velocities for both the fluid and the 3-flyer are set to zero. For the
investigations on the influences of some control parameters on passive flights, the
actuation efforts needed for hovering, the angular oscillation patterns and the wake
symmetry properties (§§ 4.2–4.5), both the initial inclination angle θ(0) and the initial
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rotational speed θ̇ (0) are set to zero. For the investigation on the postural stability
behaviours (§ 4.6), non-zero initial inclination angles are considered, i.e. θ(0) 6= 0,
while the condition θ̇ (0)= 0 is still kept. For all cases in the simulations, α(0)= α0
and α̇(0)= 0 are used as the initial conditions for the passive angular oscillation.

3.3. Domain size and mesh resolution
For the simulations with zero initial inclination angles (§§ 4.2–4.5), a rectangular
domain of [−6L, 6L] × [−12L, 12L] is used. For the study of the postural stability
behaviours (§ 4.6), an enlarged computational domain of [−10L, 10L] × [−16L, 16L]
is used to cope with possible large lateral displacements.

Multi-block Cartesian meshes with hanging nodes are employed in this work. The
meshes remain stationary throughout the simulation and the flyer is allowed to move
freely in the computational domain. The grid width ranges from 0.02L to 0.04L
in regions that are far away from the flyer. In the vicinity of the flyer, the grid
width is reduced to 0.01L for capturing the relevant flow structures. For the domain
size of [−6L, 6L] × [−12L, 12L], the refined grids are deployed in the subdomain
of [−2L, 2L] × [−8L, 8L]. For the domain size of [−10L, 10L] × [−16L, 16L], the
subdomain with refined grids is enlarged to [−8L, 8L] × [−8L, 8L]. For all simulation
cases, the time steps are chosen such that the maximum Courant–Friedrichs–Lewy
(CFL) number never exceeds 0.2.

To ensure that the aforementioned mesh resolution and domain size are suitable for
obtaining accurate solutions, mesh independence and domain independence tests have
been conducted. A report of the tests is presented in appendix B.

4. Results and discussion
4.1. Control parameters

The ranges of the dimensionless parameters used in the present study and some
previous studies are listed in table 3. The maximum Re number considered in the
current study is one or two orders of magnitude smaller, in comparison with those in
the experiments (Childress et al. 2006; Weathers et al. 2010; Liu et al. 2012). The
reason for reducing the Re number in the simulation is related to the computational
cost. Simulation at Re numbers comparable to those in the experiments requires much
higher mesh resolution. This may render thorough parameter sweeps prohibitive.

The dimensionless maximum oscillation amplitude in the simulation is reduced by
a factor of 3–4, in comparison with those in the experiments. The reason for reducing
the oscillation amplitude is very similar to that for reducing the Re number. Here
we are concerned with another Reynolds number, namely, the oscillating Reynolds
number, which is defined as Reo= 2πfAL/ν (in which the maximum oscillating speed
of the background flow is selected as the reference velocity). The oscillating Reynolds
number Reo is related to Re by Reo = Ā Re. The reduction of Ā results in lower Reo
and makes the simulation feasible.

The ranges for Re and Ā in the current study are selected such that the two
Reynolds numbers (Re and Reo) are comparable to those in Shao et al. (2016), since
the Navier–Stokes equations were also solved in their study. The ranges for other
parameters in the two studies are also close. The dimensionless stiffness is the only
exception. In Shao et al. (2016), the dimensionless stiffness can be regarded as
infinitely large since only rigid flyers were considered.

The Re-sensitivity tests in some previous studies on active flappers (e.g. Zhang et al.
2018) indicated that the flight performance may be insensitive to Re in the range of
102–103. However, caution should be taken if one attempts to apply the present results
to situations involving much larger Re.
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Study Dimensionless parameters
α0 β γ Ā Re Fr

Childress Unavailable 0.66–1.52 Unavailable 0.92–10.47 152–5077 0.39–3.83
et al. (2006)

Weathers ≈
7π

36
a 1.08–6.50 Unavailable 0.70–12.56 422–4104 0.51–2.03

et al. (2010)

Liu et al. ≈
5π

18
a 0.41–10.08 ∞ 0.38–9.37 188–23 442 0.41–4.61

(2012)
Huang et al.

π

36
−

π

4
4.0 ∞ 6.28 Inviscid 1.00–2.83

(2015)
Huang et al.

π

18
−

π

2
0.5–8 ∞ 0.63–50.24 Inviscid 0.35–8.94

(2016)

Shao et al.
π

24
−

35π

72
5.0 ∞ 1–10 20–200 1.99–19.88

(2016)
Jo et al.

π

4
0.5–10 10−1–104 6.28–188.40 0.01–0.20 Neutrally

(2016) buoyant
Huang et al.

π

12
−

π

4
0.11–3 2.5–250 0.63–6.28 Inviscid 0.39–1.22

(2018)
Present

π

12
−

π

2
0.1–20 10−4–104 0.2–3 20–600 0.82–24.49

TABLE 3. Summary of the dimensionless parameters used in the literature and in the
present work.

aThe resting angle of the 3-D pyramid model is estimated by using the cross-section
geometry.

4.2. Influences of spring stiffness, density and resting angle
In this section, the influences of some control parameters on the passive flights of
a flyer with concave-down configuration are systematically studied. Specifically, we
examine the influences of spring stiffness, density and resting angle, under a given
actuation condition (where the driving frequency and amplitude are fixed). In terms
of the dimensionless variables, the dimensionless stiffness γ , the mass ratio β and
the resting angle α0 are allowed to vary, while the dimensionless amplitude Ā, the
flapping Reynolds number Re and the Froude number Fr are fixed (Ā = 1.0, Re =
200, Fr = 8.165). The selection of these particular values is based on the following
considerations: (a) Re and Ā are reduced to some extent in comparison with the values
in the experiments (the reasons have been provided in § 4.1), and (b) Fr is tuned such
that the hovering state is achieved in the rigid flyer (γ = 104) with β=2.0 and α0=45◦.

The important metrics for evaluating the flyer’s performance in passive flight include
the averaged opening angle, the averaged vertical speed and the amplitudes of angular
and vertical oscillations. These four metrics are formally defined as

ᾱ =
1

nT

∫ T0+nT

T0

α(t) dt, (4.1)
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Ū =
1

nT

∫ T0+nT

T0

ẏa(t) dt, (4.2)

ᾱosc =
1
n

n−1∑
i=0

1
2
{max[α(ti)] −min[α(ti)]}

∣∣∣∣
T0+iT6ti6T0+(i+1)T

, (4.3)

Ūosc =
1
n

n−1∑
i=0

1
2
{max[ẏa(ti)] −min[ẏa(ti)]}

∣∣∣∣
T0+iT6ti6T0+(i+1)T

, (4.4)

where T0 is the starting time for the sampling, n and i are integers, T is the
dimensionless period of the imposed oscillatory flow (which equals unity) and ẏa(t)
is the instantaneous vertical speed of the apex.

The starting time T0 is chosen such that the influence of initial condition becomes
insignificant and the periodicity in the time histories is fully established (usually T0=

20 is considered to be sufficient). The integer n is chosen to be 5, for the cases
of mono-periodic and bi-periodic angular oscillations. For the cases of non-periodic
oscillation, the averaged values and amplitudes of oscillation are loosely defined by
setting n= 30. The locomotion states of the flyers can be classified as ‘ascending’ and
‘descending’, based on the sign of the averaged vertical speed. In addition, we also
used the term ‘approximate hovering state’ when the absolute value of the averaged
vertical speed is less than 0.05.

We first explore the influence of dimensionless stiffness. To this end, γ is allowed to
vary in a wide range of 10−4–104 (due to the variation of κ), while the mass ratio and
the resting angle are kept fixed (β = 2.0, α0 = 45◦). Figure 2(a) shows the averaged
vertical speed and the amplitude of vertical oscillation as a function of γ . It is seen
that the softest flyer tends to descend gently, while a rigid flyer is able to sustain
hovering approximately. A ‘pulse’ in the averaged vertical speed is observed at γ =30,
where the peak value of 0.9 is achieved. The amplitudes of vertical oscillation are
rather high at low stiffness (and take a value around 0.6 in the range of 10−4 < γ <

10−2). The amplitude of vertical oscillation then decreases with increasing stiffness
and reaches the minimal value of 0.05 at γ = 10. At γ = 30, where the ‘pulse’ in the
averaged speed is observed, a ‘pulse’ in the amplitude of vertical oscillation is also
found. The amplitude of vertical oscillation declines rapidly in the range of 30<γ <
100 and finally levels off and takes a value of 0.38 at extremely high stiffness.

Figure 2(b) shows the variations of averaged opening angle and amplitude of
angular oscillation with increasing γ . It is seen that the averaged opening angle
becomes much larger than the resting angle α0 in very soft flyers (the increment
can reach up to 40◦ at γ = 10−4). The increment decreases monotonically with
increasing γ in the range of 10−3 < γ < 15.0 and approaches zero at γ ≈ 15.0. The
averaged opening angle becomes slightly less than α0 in the range of 15.0<γ < 30.0.
At extremely high stiffness, the averaged opening angle approaches α0 again. The
angular oscillations are non-periodic in nature at extremely low stiffness (γ < 10−2),
and the amplitudes of angular oscillation are rather low (around 4◦ in the range
of 10−4 < γ < 10−2). The amplitude of angular oscillation further decreases in the
range of 10−2 < γ < 10−1 and reaches the (local) minimal value of 0.5◦ at γ = 10−1.
A ‘pulse’ in the amplitude of angular oscillation can be identified near γ = 20.0
(where a peak amplitude of 18◦ is reached). The amplitude of angular oscillation
then rapidly declines with increasing stiffness and becomes negligibly small at
extremely large stiffness (γ > 102).
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FIGURE 2. (Colour online) Influences of dimensionless stiffness on the performance
metrics: (a) averaged vertical speed and amplitude of vertical oscillation; and (b) averaged
pitching angle and amplitude of angular oscillation. The fixed control parameters are
β = 2.0, α0 = 45◦, Ā= 1.0, Re= 200 and Fr= 8.165. The inset in (a) is a zoom-in view.
Two insets in (b) show the shapes of the flyers at the maximum, averaged and minimum
opening angles, for γ = 10−3 and γ = 20.0, respectively. Another inset in (b) shows the
time history of the opening angle for γ = 10−3.

The emergence of a ‘pulse’ in the amplitude of angular oscillation is the
manifestation of resonant behaviours. The peak amplitude of angular oscillation
is reached at a particular stiffness where the natural frequency of the system matches
the driving frequency. Recall that the natural frequency of the real system may deviate
considerably from that of a simplified ‘dry’ system (i.e. a torsion spring system with
a pinned apex placed in vacuum). The effects of added mass and fluid-drag damping
tend to reduce the natural frequency of the real system (see appendix C for details).
By relating the information provided in figure 2(a,b), it is seen that the ranges of
stiffness corresponding to the ‘pulses’ of averaged vertical speed and amplitude of
angular oscillation are very close (although not exactly the same). This hints that
the resonant behaviour (i.e. the amplification of passive angular oscillation) can be
utilized to enhance the weight-supporting capability of flexible flyers. An in-depth
investigation into such association will be discussed in § 4.3.

The influence of density on the flyer’s behaviour is studied next. The mass ratio
β is allowed to vary in the range of 0.1–20 (due to the variation of ρs), while the
dimensionless stiffness and resting angle are kept fixed (γ = 17, α0 = 45◦). The
variations of the performance metrics with increasing β are shown in figure 3. From
figure 3(a), it is seen that the flyer can sustain hovering approximately at very low
mass ratio. A ‘pulse’ in the averaged vertical speed is observed near β = 2.0 (where
the peak speed of 1.05 is reached). The averaged vertical speed then decreases rapidly
with increasing β, and reaches the largest descending speed of −0.2 at β = 2.5. In
the range of 2.5 < β < 10.0, the averaged vertical speed first rises slightly and then
levels off with increasing β. The averaged vertical speed slightly declines if β is
further increased. The amplitudes of vertical oscillation appear to be quite high at low
mass ratio (the amplitude reaches 1.0 at β = 0.1). This is because the flyer tends to
follow the oscillatory background flow when its inertia is small. A steep ‘cliff’ in the
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FIGURE 3. (Colour online) Influences of mass ratio on the performance metrics:
(a) averaged vertical speed and amplitude of vertical oscillation; and (b) averaged pitching
angle and amplitude of angular oscillation. The inset in (a) is a zoom-in view. The fixed
control parameters are: α0 = 45◦, γ = 17.0, Ā= 1.0, Re= 200 and Fr= 8.165.

amplitude of vertical oscillation is observed near β = 2.0 (where the peak averaged
vertical speed is reached). In the range of 2.0 < β < 3.0, the amplitude of vertical
oscillation rapidly declines and reaches the (local) minimum value of 0.05 at β = 3.0.
The amplitude of vertical oscillation then slightly rises and levels off with increasing
mass ratio.

In the entire range of mass ratio considered, the averaged opening angle is always
very close to the resting angle (see figure 3b). The largest deviation never exceeds ±2◦.
The amplitude of angular oscillation is quite small at very low mass ratio. A ‘pulse’
in the amplitude of angular oscillation is also observed near β = 2.0, where a peak
amplitude of 17◦ is reached). The amplitude of angular oscillation then declines very
rapidly with increasing mass ratio and becomes extremely low at high mass ratio (β >
10.0).

The peaked shape in the curve of angular oscillation amplitude at a certain mass
ratio also hints at the occurrence of resonance. In this case, the natural frequency
of the system is tuned by the variation of mass ratio. The low-amplitude angular
oscillations at low and high mass ratios can be explained by the remoteness from
the resonant region. The concurrent appearance of the peaks in the averaged vertical
speed and the amplitude of angular oscillation again suggests the possible association
between the weight-supporting capability and the occurrence of resonance.

Similarly, the influence of resting angle is studied by allowing α0 to vary in
the range of 15◦–90◦, while keeping the other two dimensionless quantities fixed
(β = 2.0, γ = 17.0). The variations of the performance metrics with increasing α0 are
shown in figure 4. It is seen that, at very small resting angles, the flyers descend
at relatively high speed. Moreover, we also found that, at small resting angles, the
postural stability of the flyers with concave-down configuration cannot be preserved.
(The postural stability behaviours will be further discussed in § 4.6.) The flyer can
achieve the approximate hovering state at resting angles of 45◦ and 70◦. At the resting
angle of 90◦ (corresponding to the shape of a flat plate), the flyer descends gently.
It seems that 50◦ is the optimal resting angle in terms of the weight-supporting
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FIGURE 4. (Colour online) Influences of resting angle on the performance metrics:
(a) averaged vertical speed and amplitude of vertical oscillation; and (b) averaged pitching
angle and amplitude of angular oscillation. The fixed control parameters are: β = 2.0,
γ = 17.0, Ā= 1.0, Re= 200 and Fr= 8.165.

capability. At this resting angle, a peak averaged vertical speed of 0.62 is reached.
It appears that the averaged opening angle never deviates too much from the resting
angle (the differences are within ±2◦) with the variation of α0. It is also found
that the amplitudes of the vertical and the angular oscillations reach the maximum
values at nearly the same resting angle of 50◦. The peaked shape in the curve of
angular oscillation amplitude near a certain resting angle again hints at the occurrence
of resonance. In this case, the matching of the natural frequency with the driving
frequency is achieved by tuning the resting angle (the dependence of the natural
frequency on resting angle is discussed in appendix C).

4.3. Actuation efforts required for hovering
In this section, we enquire into the actuation efforts needed to sustain hovering. To
this end, we conduct simulations by varying the driving conditions (i.e. frequency and
amplitude) from case to case, while keeping other physical parameters fixed. We first
select a base frequency f ∗, and the dimensionless quantities based on f ∗ are prescribed
as γ ∗= 10, Re∗= 200 and Fr∗= 8.165. Other dimensionless variables that are fixed in
the simulations are α0= 45◦ and β = 2.0. The frequency ratio f̂ = f /f ∗ is then allowed
to vary in the range of 0.1–3.0 and the dimensionless quantities may vary accordingly.
To be more specific, γ = γ ∗ f̂−2, Fr = Fr∗ f̂ and Re = Re∗ f̂ . At the same time, the
dimensionless amplitude Ā is allowed to vary in the range of 0.3–3.0. To contrast the
actuation efforts needed for hovering in flexible and rigid flyers, simulations are also
conducted on a rigid flyer (by setting an extremely large value of 104 to γ , while
keeping other dimensionless variables the same as those for the flexible flyer).

In figure 5, the locomotion states are mapped onto the two-dimensional space of
( f̂ , Ā) and the ascending and descending states are marked with red and blue colours,
respectively. Clearly, the demarcation line that separates the region for the ascending
state from that for the descending state represents the actuation efforts required to
sustain hovering. Such a demarcation line is termed the ‘hovering curve’ hereafter. For
the convenience of comparison, the hovering curve for the rigid flyer is also plotted.
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FIGURE 5. (Colour online) The map of locomotion states, angular oscillation patterns
and wake symmetry properties in the two-dimensional space of ( f̂ , Ā), for a given
flexible flyer (α0 = 45◦, β = 2.0). Squares, triangles, circles and rhombuses denote
the quasi-non-oscillatory, mono-periodic, bi-periodic and non-periodic angular oscillations,
respectively. The symbols with red and blue colours represent the ascending and
descending states, respectively. The open and full symbols represent the symmetric and
asymmetric wakes, respectively. The black solid line and the grey dash-dotted line denote
the hovering curves which separate the ascending and descending regions, for the flexible
and the rigid flyer, respectively. The region painted with dark grey colour represents the
driving conditions under which the two foils of the flexible flyer collide with each other.
The smaller plot at the top right displays the hovering curve for the rigid flyer in the
extended ranges of frequency and amplitude. The star on the hovering curve denotes the
reference case with f̂ = 1.0 and Ā= 1.0.

From figure 5, it is seen that the shape of the hovering curve for the rigid flyer
is hyperbola-like. In the studies of Weathers et al. (2010) and Huang et al. (2016),
it was found that Ā scaled as f̂−2 and f̂−1, at the low- and high-frequency limits,
respectively. This implied that, for the rigid flyer to sustain hovering, the required flow
acceleration is a constant at low frequency, while the required flow speed is a constant
at high frequency. In this work, such power laws with very similar power exponents
are also found in the two frequency limits.

The hovering curve for the flexible flyer is of wavy shape. For the flexible flyer to
sustain hovering, the trough on this curve at (0.7,0.4) represents the minimal actuation
efforts required. The hovering curves for the flexible and the rigid flyers intersect at
(0.8, 1.2), where the efforts required by both flyers are equal. The adding of torsional
flexibility may lower (or raise) the efforts needed for hovering when the frequency
ratio is below (or above) a critical value of 0.8. Interestingly, the supportive (Childress
et al. 2006) and obstructive (Weathers et al. 2010) effects of flexibility on the passive
hovering of a flyer have already been observed experimentally. We conjecture that the
two opposing effects of flexibility on hovering efforts were observed in the parameter
ranges corresponding to the ‘trough’ and ‘ridge’ on the hovering curve, respectively.
However, since no sufficiently detailed information regarding the ranges of driving
frequency and bending rigidity in these experiments were available, this conjecture is
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FIGURE 6. (Colour online) The maps for the locomotion state, the pattern of angular
oscillation and the wake symmetry property in the two-dimensional space of ( f̂ , Ā), for
two other given flexible flyers: (a) β = 1.0, α0 = 45◦, and (b) β = 2.0, α0 = 60◦. The
symbols, colours and lines used here are the same as those for figure 5.

still contestable. From figure 5, it is also seen that the hovering curves for the flexible
and the rigid flyers behave similarly at the low- and high-frequency limits. This can
be explained by the fact that the amplitude of angular oscillation in the flexible flyer
becomes very low when the driving frequency is kept far away from the resonant
frequency.

Some additional simulations are also performed to study the influences of mass ratio
and resting angle on the hovering curve of the flexible flyer. The maps of locomotion
states for two other given flexible flyers (with a different mass ratio or a different
resting angle) are shown in figure 6. It is seen that similarities are shared by all
three maps, in terms of the wavy shape of the hovering curves, the distribution of the
regions with different angular oscillation pattern or different wake symmetry property.
The three hovering curves in the three maps shown in figures 5 and 6 are further
compared in figure 7. It is seen that the increase of resting angle tends to smooth
out the trough and ridge on the hovering curve. Moreover, the variation in mass ratio
or resting angle tends to shift the frequency ratio corresponding to the trough on the
hovering curve. This shift can be explained by the modulation of natural frequency
due to the variation of mass ratio or resting angle (since the trough on the hovering
curve is associated with the occurrence of resonance). The relation between hovering
efforts and resonance will be explained more precisely below.

Here an in-depth investigation is conducted to unveil the underlying mechanism
that governs the influence of flexibility on the weight-supporting capability. We argue
that the influence of flexibility pivots on the modulation of the relative velocity
between the flyer and the imposed oscillatory flow due to the involvement of passive
angular oscillation. The phase difference between the passive angular oscillation
and the background flow and the amplitude of angular oscillation are the two key
factors that determine the sign and magnitude of the velocity modulation. An angular
oscillation that is anti-phase with respect to the background flow tends to strengthen
the effective actuation, while an in-phase angular oscillation tends to attenuate the
effective actuation. The amplitude of angular oscillation acts as a proportionality
factor which magnifies (or reduces) the effect of phase difference.
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FIGURE 7. (Colour online) Comparison of the three hovering curves in the three maps
shown in figures 5 and 6.
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FIGURE 8. (Colour online) Variations of some important quantities associated with the
passive angular oscillation with increasing frequency ratio: (a) averaged opening angle and
amplitude of angular oscillation, and (b) phase difference between the angular oscillation
and the imposed oscillatory flow. The inset of (b) shows the time histories of the opening
angle at the frequency ratios of 0.68 and 0.8. The time history of the vertical position of a
fluid particle of the imposed background flow is also shown for reference (the oscillation
amplitude is adjusted ad hoc for better visual effect). The dimensionless amplitude Ā is
fixed to 1.0. Other control parameters for the given flexible flyer are the same as those
for figure 5. The stars in (a) and (b) denote the averaged opening angle and the phase
difference at f̂ = 1.0. The solid circles in (b) denote the phase differences at f̂ = 0.68 and
f̂ = 0.8.

We focus on the flexible flyer illustrated in figure 5, and examine the variations
of amplitude and phase of the angular oscillation with increasing frequency ratio,
for a fixed dimensionless amplitude of Ā = 1.0 (see figure 8). First of all, the
averaged opening angle is barely affected by flexibility (the largest deviation from
the resting angle never exceeds 4◦). Thus, the modification of the averaged opening
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angle is not likely to be the dominant mechanism by which flexibility affects the
weight-supporting capability. At low frequencies, the amplitude of angular oscillation
is very small and the influence of flexibility on the weight-supporting capability is
also insignificant. With the progressive increase of frequency, a narrow peak in the
amplitude of angular oscillation appears when the resonant frequency is approached.
Meanwhile, the phase difference between the passive angular oscillation and the
imposed flow also experiences a sharp change (from 180◦ to 0◦), when the resonant
frequency is crossed. Such a transition (from in-phase state to anti-phase state) in the
phase difference between the oscillation and the driving is one intrinsic feature of a
driven damped oscillatory system (Fitzpatrick 2013).

Some efforts are also spent here to further quantify the association of the
modulation of relative velocity and the increase (or reduction) in the weight-supporting
capability. We first introduce the relative vertical velocity between the flyer and the
prescribed oscillatory flow (by taking the passive angular oscillation into account),
i.e. UR(t)= α̇(t) sin[α(t)] − Ā sin(2πt). The modulation of relative motion is measured
by the difference in the root-mean-square (r.m.s.) values of UR, for the flexible

and the rigid flyers, i.e. 1Urms
R =

√
(1/nT)

∫ T0+nT
T0

U2
R dt − (

√
2/2)Ā. The averaged

vertical velocity Ū and the relative velocity UR are dimensionless velocities scaled by
fL. To facilitate a fair comparison among velocities at different driving frequencies,
the velocities are rescaled by using f ∗L. The relation between the rescaled and the
original variables can be expressed as φ̂ = φ( fL/f ∗L) = φ f̂ , where φ and φ̂ denote
the (dimensionless) velocities before and after the rescaling.

Figure 9(a) shows the variation of the (rescaled) averaged vertical speed (which is a
good indicator of the weight-supporting capability) with increasing frequency ratio, for
both the flexible and the rigid flyers. It is seen that the vertical speed of the rigid flyer
increases monotonically with increasing frequency ratio. At f̂ = 0.4 (where the driving
frequency is much lower than the resonant frequency), the averaged vertical speeds of
both flyers are almost the same. In the vicinity of the resonant frequency, the averaged
vertical speed of the flexible flyer rises sharply and becomes much higher than that of
the rigid one. Away from the resonant frequency, the averaged vertical speed of the
flexible flyer declines rapidly. The speeds of the two flyers become equalized again at
f̂ = 0.78. When the driving frequency is further increased, the averaged vertical speed
of the flexible flyer stays below that of the rigid flyer.

In figure 9(b), the difference in the r.m.s. values of UR for the two flyers (after
rescaling) is plotted as a function of the frequency ratio. By relating figure 9(b)
with figure 9(a), a strong correlation between the difference in the weight-supporting
capabilities of the two flyers and the modulation of the relative velocity due to the
involvement of passive angular oscillation can be clearly seen. Near the resonant
region, the non-monotonic dependence on frequency ratio is exhibited in both
figure 9(a) and 9(b). After the resonant region ( f̂ > 1.0), ˆ̄U increases monotonically
with increasing f̂ , while 1Ûrms

R reaches a negative constant value. The similar trend
of variation in ˆ̄U with increasing f̂ , for the flexible and rigid flyers, can be explained
by the greatly attenuated passive angular oscillation in the flexible flyer. The lower
value of ˆ̄U in the flexible flyer (in comparison with that in the rigid one) can be
attributed to (a) an (almost) in-phase passive angular oscillation and (b) a larger
averaged opening angle.
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FIGURE 9. (Colour online) The association of the difference in averaged vertical speeds
for flexible and rigid flyers and the relative vertical velocity between the flyer and the
imposed background flow. (a) Averaged vertical speed in the flexible and rigid flyers as a
function of frequency ratio; (b) difference in the r.m.s. value of relative vertical velocity as
a function of frequency ratio. The dimensionless amplitude Ā is fixed to 1.0. Other control
parameters for the given flyers are the same as those for figure 5. The stars denote the
quantities for the flexible flyer at f̂ = 1.0.

4.4. Angular oscillation patterns
For the driving conditions illustrated in figures 5 and 6, the passive angular oscillations
of the flexible flyers can be classified into four categories: quasi-non-oscillatory
(squares), mono-periodic (triangles), bi-periodic (circles) and non-periodic (rhombuses).
From these figures, it is also seen that the regions occupied by the bi-periodic
oscillation are rather small, in comparison with the regions occupied by the other
patterns.

The amplitudes of the angular oscillations in the quasi-non-oscillatory cases are
negligibly small (ᾱosc 6 2◦) and the flyer almost behaves as a rigid one. To further
illustrate the differences among other patterns of angular oscillations, the time histories
of the opening angle, the phase diagram spanned by the opening angle and angular
velocity, and the power spectra, for some selected cases, are shown in figure 10.
For the mono-periodic case shown in figure 10(a), the passive angular oscillation
is slaved to the oscillatory driving motion. (Note that a tiny peak appears in the
power spectrum at a frequency that is twice as high as the driving frequency.
Since the amplitude of this peak is rather small, the passive angular oscillation
is practically mono-periodic.) For the bi-periodic case shown in figure 10(b), two
dominant frequencies (i.e. the driving frequency and half of the driving frequency) are
observed. For the non-periodic case shown in figure 10(c), the dominant frequency
is still the driving frequency, but some small peaks are also observed at lower
frequencies. In a previous study on a pinned and rotatable flexible flyer placed in an
oscillating flow (Huang et al. 2018), the passive angular oscillations were found to
be mono-periodic and always slaved to the imposed oscillatory flow, irrespective of
the driving conditions. We still lack an explanation on the difference in the angular
oscillation patterns found in these two studies.
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FIGURE 10. (Colour online) The time histories of the opening angle, the phase diagrams
(spanned by the opening angle and angular velocity) and the power spectra, for the angular
oscillations at the frequency ratios of (a) f̂ = 0.75, (b) f̂ = 1.4 and (c) f̂ = 3.0. The
dimensionless amplitude Ā is fixed to 1.0. Other control parameters for the flexible flyer
are the same as those for figure 5.

4.5. Wake symmetry properties
Although the left–right symmetry with respect to the centreline of the flyer is ensured
in the initial and boundary conditions (see § 3.2), wake symmetry breaking may
occur spontaneously under certain circumstances. Since no physical perturbations
are imposed, the wake symmetry breaking is triggered solely by the numerical
perturbations. The capability (or incapability) of preserving wake symmetry may
have a large impact on the postural stability of the flyer, since wake asymmetry
is unavoidably accompanied by lateral and rotational motions (the postural stability
behaviours will be addressed in § 4.6).

The wake symmetry properties for the flexible flyer under various driving conditions
are assessed after a long-time evolution of the flow field (T > 40). In figures 5 and 6,
the symmetric and asymmetric wakes are marked with hollow and solid symbols,
respectively. From these figures, some connections between the wake symmetry
property and the locomotion state can be recognized. For the descending cases, wake
symmetry can be preserved under most situations. The only exceptions exist in the
situation of very high oscillating amplitude or very small descending speed (i.e. in the
vicinity of the hovering curve). On the contrary, the wakes of an ascending flyer are
generally more susceptible to symmetry-breaking instability. For an ascending flyer,
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FIGURE 11. (Colour online) The wake patterns of the flexible flyer for nine selected cases,
with a dimensionless amplitude of 1.0 and the frequency ratios of (a) f̂ = 0.2, (b) f̂ = 0.5,
(c) f̂ = 0.68, (d) f̂ = 0.7, (e) f̂ = 0.75, ( f ) f̂ = 0.78, (g) f̂ = 1.4, (h) f̂ = 2.0 and (i) f̂ = 3.0.
The values of other control parameters are the same as those for figure 5. The streamlines
and the contours of dimensionless vorticity ω (vorticity scaled by f ) are used to visualize
the vortex structures.

wake symmetry can only be preserved near ‘narrow bands’ adjacent to the hovering
curve.

Some representative wake patterns of the flexible flyer corresponding to nine cases
selected from figure 5 are shown in figure 11. The frequency ratio is in the range
of 0.2–3.0 and the dimensionless amplitude is fixed to 1.0. At f̂ = 0.2, the flyer
descends steadily and the wake is clear of any large vortex structures such as the
Kármán vortex street (see figure 11a). This can be explained by the fact that the
descending speed is still not high enough. At f̂ = 0.5, the approximate hovering state
is achieved (actually the flyer still descends very gently). It is seen that two vortex
dipoles are stably attached to the two free ends (see figure 11b). The downward jets
induced by the dipoles are indicative of the production of weight-supporting forces.
Moreover, no other large vortex structures are visible in the far wake. Clearly, wake
symmetry is preserved in the two cases above. At f̂ = 0.68 and f̂ = 0.7 (where the
driving frequencies are close to the resonant frequency), since the hovering curve
is crossed (cf. figure 5), large ascending speeds are now achieved. The presence
of two queues of vortex dipoles below the ascending flyer is the prominent feature
of the wake patterns (see figure 11c,d). These vortex structures resemble those
produced by the active jellyfish-like flyer (Fang et al. 2017; Zhang et al. 2018). As
can be seen here, wake symmetry is preserved in the case of f̂ = 0.7, but not in the
case of f̂ = 0.68. According to the analysis in Zhang et al. (2018), the horizontal
component of the dipole-induced velocity is the key factor that determines the wake
symmetry property. A large dipole-induced horizontal velocity that points outwards
from the centreline tends to separate the two queues of dipoles apart and mitigate
the interactions between them. This favours the preservation of wake symmetry. At
f̂ = 0.75, the wake symmetry is also preserved. The weakened strength of the dipoles
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ø(a) (c) (d)(b)
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FIGURE 12. (Colour online) The wake patterns of the rigid flyer for four selected cases,
with the dimensionless amplitude of 1.0 and the frequency ratios of: (a) f̂ = 0.2, (b) f̂ =
0.7, (c) f̂ = 2.0 and (d) f̂ = 3.0. The values of other control parameters are the same as
those for figure 5. The streamlines and the contours of dimensionless vorticity ω (vorticity
scaled by f ) are used to visualize the vortex structures.

signifies a much reduced ascending speed (see figure 11e). At f̂ = 0.78, the frequency
is now removed away from the resonant region and the hovering curve is crossed
again. Similar to the case of f̂ = 0.2, the wake pattern also signifies a falling motion
(see figure 11f ). The difference in the wake patterns of these two cases reflects the
difference in the falling speed. At f̂ = 1.4, the descending speed is reduced to some
extent and two dipoles emerge at the two free ends (see figure 11g). At f̂ = 2.0, the
hovering curve is crossed once more and a small ascending speed is achieved. The
shedding of vortex dipoles near the free ends can be seen and wake symmetry is
preserved. Unlike the case of f̂ = 0.7, at this frequency the vortex structures dissipate
very rapidly with increased distance from the flyer and the two complete queues
of dipoles are not observed (see figure 11h). At f̂ = 3.0, the ascending velocity
becomes much larger with increased actuation efforts. The two queues of dipoles
behind the trailing ends reappear, together with an asymmetric wake (see figure 11i).
Comparing with the case at f̂ = 0.68, the two queues of dipoles now separate further
apart from each other. Thus, the asymmetric wake is not likely to be initiated by the
strong interaction between two queues of dipoles. Instead, we believe that symmetry
breaking is triggered by the inherent wake instability at a relatively high (flapping)
Reynolds number. In a previous study on the swimming of a two-dimensional jellyfish
model, asymmetric wakes were also found to arise spontaneously at high Reynolds
numbers (Alben, Miller & Peng 2013).

To reveal the influence of flexibility on the wake symmetry property, the wake
patterns of a rigid flyer under similar driving conditions are shown in figure 12 for
comparison. At f̂ = 0.2, the rigid flyer descends steadily and the wake pattern is
similar to that of the flexible flyer at the same frequency (see figure 12a). This is
because the passive angular oscillation of the flexible flyer is insignificant at this
frequency, due to the remoteness of the driving frequency from the natural frequency.
Thus, the flexible flyer behaves practically like a rigid one. At f̂ = 0.7, the driving
frequency is moved closer towards the hovering curve (but the hovering curve is still
not crossed) and the flyer descends very gently (see figure 12b). The wake pattern
resembles the one produced by the flexible flyer at f̂ = 0.5 (cf. figure 11b). At f̂ = 2.0,
the hovering curve is crossed and an ascending speed is achieved. The two queues of
dipoles are now visible, together with an asymmetric wake (see figure 12c). In this
case, symmetry breaking is likely to be triggered by the strong interaction between
the two queues of dipoles. To some extent, the wake structure at this frequency
resembles that of the flexible flyer at f̂ = 0.68 (cf. figure 11c), although the dipoles
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are more tightly squeezed towards the centreline. At f̂ = 3.0, the ascending speed of
the rigid flyer increases further and the two queues of dipoles separate apart from
each other (see figure 12d). The asymmetric wake pattern at this frequency resembles
that produced by the flexible flyer at the same frequency. Similar to the flexible
case at f̂ = 3.0, the wake symmetry breaking is likely to be initiated by the inherent
instability at high (flapping) Reynolds numbers. In brief, the wake patterns in flexible
and rigid flyers are fundamentally different only when the driving frequencies are
close to the resonant frequency.

4.6. Postural stability behaviours
In addition to the weight-supporting capability, the postural stability behaviour of the
flyer is also of great importance to hovering. In the study of actuation efforts required
for hovering, only the concave-down configuration with an upright initial posture (i.e.
θ(0) = 0) is considered. It turns out that, under certain driving conditions, the flyer
is not capable of maintaining the upright posture and a non-zero inclination angle
(together with a lateral motion) may spontaneously emerge afterwards.

In this section, we conduct a systematic investigation into the postural stability
behaviours of the given flyers under the same actuation conditions as those illustrated
in figure 5. We consider both the concave-down and the concave-up configurations,
and impose non-zero perturbations to the initial inclination angle while keeping
θ̇ (0)= 0. To be more specific, for the concave-down configuration and the concave-up
configuration, the initial inclination angles are set to π/18 and 17π/18, respectively.

The postural stability behaviours of the flyer are then assessed by examining
the time histories of inclination angle. Among all the cases studied, three different
behaviours pertinent to postural stability are identified: V-stable behaviour in which
only the concave-up configuration is the stable equilibrium solution (figure 13a);
bi-stable behaviour in which both the concave-up and the concave-down configurations
are the stable equilibrium solutions (figures 13b,c); and unstable behaviour in which
converged inclination angles are not reached (figure 13d,e). Here we also distinguish
between two subtypes of bi-stable behaviours: upright subtype in which θ converges
to 0 or π (figure 13b), and chaotic-like swinging subtype in which the deviation of
the inclination angle from 0 or π is bounded (figure 13c). The unstable behaviours
can also be further classified into two subtypes: continuous rotation (figure 13d) and
chaotic-like flight (figure 13e).

In addition to the time histories of the inclination angle, the time histories of
the opening angle are also shown in figure 13. It is seen that the passive angular
oscillations that accompany the V-stable behaviour and the upright subtype of the
bi-stable behaviour are mono-periodic and slaved to the driving (figure 13a,b).
Since the amplitude of angular oscillation associated with the V-stable behaviour
is always less than 0.5◦, the flyer practically behaves like a rigid falling object.
For the chaotic-like swinging subtype of the bi-stable behaviour, the accompanying
angular oscillation is chaotic-like in itself (figure 13c). The angular oscillation that
accompanies the continuous rotation subtype of the unstable behaviour is actually
the superposition of a low-frequency rotation on a mono-periodic oscillation (which
is slaved to the driving) (figure 13d). For the chaotic-like flight subtype of the
unstable behaviour, the accompanying angular oscillation is also chaotic-like in itself
(figure 13e).

The trajectories of the flexible flyer associated with different postural stability
behaviours are shown in figure 14. For the V-stable behaviour and the upright
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FIGURE 13. (Colour online) Time histories of the inclination angle and the opening angle
for the flexible flyer with different postural stability behaviours: (a) V-stable behaviour
( f̂ = 0.2, Ā = 0.5); (b) bi-stable behaviour (upright subtype, f̂ = 1.0, Ā = 1.0); (c) bi-
stable behaviour (chaotic-like swinging subtype, f̂ = 2.0, Ā= 2.0); (d) unstable behaviour
(continuous rotation subtype, f̂ = 0.7, Ā = 2.0); and (e) unstable behaviour (chaotic-like
flight subtype, f̂ = 3.0, Ā= 3.0). The other control parameters are the same as those used
in figure 5.
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FIGURE 14. (Colour online) Trajectories of the flexible flyer with different postural
stability behaviours: (a) V-stable behaviour; (b) bi-stable behaviour (upright subtype);
(c) bi-stable behaviour (chaotic-like swinging subtype); (d) unstable behaviour (continuous
rotation subtype); and (e) unstable behaviour (chaotic-like flight subtype). The shape of the
flyer is coloured by time (from blue to red). The control parameters used in this figure
are the same as those used in figure 13.

subtype of the bi-stable behaviour, the flyer almost falls along a straight line
(figure 14a,b). For the chaotic-like swinging subtype of the bi-stable behaviour,
a flyer with the concave-down configuration tends to rise while a flyer with the
concave-up configuration tends to fall (figure 14c). The distinction between the
trajectories of the two subtypes of the unstable behaviours can be clearly seen by
contrasting figure 14(d) with 14(e).

In figure 15(a), different types of postural stability behaviours of the flexible flyer
are denoted by different symbols in the space of ( f̂ , Ā). It is seen that the V-stable
behaviour occupies a small region in the lower left corner, which represents very low
actuation efforts. The largest region representing moderate actuation efforts is occupied
by the bi-stable behaviours (with increasing actuation efforts, the bi-stable behaviours
transit from the upright subtype to the chaotic-like swinging subtype). The upper right
corner, which represents very high actuation efforts, is occupied by the chaotic-like
flight subtype of the unstable behaviour. The unstable behaviours also occupy a narrow
wedge-shaped region which splits the region of the bi-stable behaviours into two parts.
Within this wedge-shaped region, the unstable behaviours transit from the continuous
rotation subtype to the chaotic-like flight subtype when the driving amplitude exceeds
a critical value.

The association of the postural stability behaviours and the wake symmetry
properties can be established by relating figure 15(a) with figures 5 and 11.
(The following discussion is only relevant to the flexible flyer with concave-down
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FIGURE 15. (Colour online) The map of postural stability behaviours in the space
of ( f̂ , Ā), for (a) the flexible flyer and (b) the rigid flyer. The values of the
specified parameters are the same as those for figure 5. Solid square, V-stable
behaviour; solid triangle, bi-stable behaviour (upright subtype); open triangle, bi-stable
behaviour (chaotic-like swinging subtype); solid circle, unstable behaviour (continuous
rotation subtype); open circle, unstable behaviour (chaotic-like flight subtype). The cases
highlighted in the dashed boxes in panel (a) correspond to the five cases shown in
figure 14.

configuration.) The upright subtype of the bi-stable behaviour is always accompanied
by the recovery of wake symmetry after the perturbations. The unstable behaviours
(including the continuous rotation and the chaotic-like flight subtypes) are always
accompanied by wake asymmetry. The continuous rotation subtype of the unstable
behaviour is a unique locomotion style which only exists in the flexible flyers. This
locomotion style can be linked with the distinct wake pattern shown in figure 11(c).
The wake is slightly asymmetric and all vortex dipoles are tightly squeezed towards
the centreline. This wake pattern signifies a high-speed forward motion produced by
strong propulsion and a much weaker sideways motion due to asymmetry. In most
cases, the chaotic-like swinging subtype of the bi-stable behaviour is also accompanied
by wake asymmetry. However, for this subtype of the bi-stable behaviour, there exist
a few cases in which wake symmetry is still preserved (cf. figure 5). The seeming
inconsistency in these cases can be rationalized as follows. In assessing the wake
symmetry properties in § 4.5, the perturbations are numerical noise and are much
smaller in magnitude than those imposed in the study of the postural stability
behaviours. Thus, it may take a much longer time before wake asymmetry eventually
emerges.

Similarly, figure 15(b) shows the map of postural stability behaviours for the rigid
flyer in the space of ( f̂ , Ā). The influence of flexibility on the postural stability
behaviours can be clearly seen by contrasting figure 15(b) with figure 15(a). It is
seen that the area and shape of the region occupied by the V-stable behaviour are
barely influenced by flexibility. This is because the flexible flyer practically behaves
like a rigid one when actuation efforts are very low. Moreover, the demarcation line
that separates the two subtypes of the bi-stable behaviours is only slightly modulated
by flexibility. The noticeable differences between these two panels are found in the
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region representing moderate actuation efforts. First, the continuous rotation subtype
of the unstable behaviour is not observed in the rigid flyer. Second, the wedge-shaped
region in the stability map of the flexible flyer (which is occupied by the unstable
behaviours) does not show up in the stability map of the rigid flyer. Instead, in
the stability map of the rigid flyer, a gradual transition from the V-stable behaviour
to the bi-stable behaviours and then to the unstable behaviours is observed with
increasing actuation efforts. Last, in the map of the rigid flyer, the area of the region
for the unstable behaviour is much larger, in comparison with the map of the flexible
flyer. It is observed that, when the frequency ratio is larger than one, the rigid flyer
transits from the bi-stable state to the unstable state at relatively lower amplitude (in
comparison with the flexible flyer). This is because the effective actuation in the rigid
flyer is much stronger due to the absence of (in-phase) passive angular oscillation.
To summarize, adding flexibility can either initiate or suppress postural instability of
the flyer, depending on the driving condition.

Here the postural stability behaviours of the unconstrained flyers in the present
study are also compared with those of the pinned and rotatable flyers placed in
oscillatory flows (Huang et al. 2018). In Huang et al. (2018), 3-stable, bi-stable
and oblique-stable behaviours are found. The bi-stable behaviour contains three
subtypes, namely, upright, quasi-periodic swinging and chaotic-like swinging. In the
current study, V-stable, bi-stable and unstable behaviours are found. The bi-stable
behaviour contains two subtypes, namely, upright and chaotic-like swinging. The
unstable behaviour also contains two subtypes, namely, continuous rotation and
chaotic-like flight. The different behaviours reported in these two studies stem from
the different constraining conditions on the flyer. A more detailed discussion regarding
the comparison of stability properties in the two systems is provided as follows.

The 3-stable behaviour (or the V-stable behaviour) is observed when the actuation
is very weak. Under such circumstances, the effects of flexibility are also insignificant.
In Huang et al. (2018), the pinned flyer behaves just like a pendulum or an inverted
pendulum. The force of gravity tends to stabilize a flyer in the 3-configuration, while
it destabilizes the flyer in the V-configuration. In the present study, the flyer behaves
like a free-falling rigid object. Gravity does not affect the stability since the flyer
is allowed to move freely. The imbalanced aerodynamic torques on the two links
(when the flyer is slightly tilted) can explain the V-stable behaviour of the flyer (see
appendix D for the details).

In both studies, the bi-stable behaviours are observed at moderate or strong
actuation. In Huang et al. (2018), the bi-stable behaviour is explained by the existence
of two ‘wells’ in the rotational potential at θ = 0 and θ =π, based on an aerodynamic
model which accounts for the interaction between the flyer and the oscillating flow.
These two ‘wells’ in the rotational potential also shape the bi-stable behaviour in the
current study. The absence of the quasi-periodic swinging subtype of the bi-stable
behaviour in the current study is due to the sideways motions which prevent the
establishment of periodicity.

The unstable behaviour (in which the inclination angle becomes unbounded) is
found in the current study but not in Huang et al. (2018). The oblique-stable
behaviour (in which stability can be reached at inclined orientations) is found
in Huang et al. (2018) but not in the current study. The explanations for these
phenomena are still lacking. We conjecture that the differences mentioned above are
related to the linear displacements, which are only permitted in the current study.
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5. Conclusions
We considered the passive flights of a flexible 3-flyer in a vertically oscillating

airflow with zero mean stream. The flexibility of the flyer was introduced by a torsion
spring installed at the hinged joint. The results of this study provided new insight
into the mechanism by which flexibility affected the passive flight of a flyer in an
oscillatory airflow.

We first studied the influences of several parameters (such as spring stiffness,
density and resting angle) on the flight dynamics of the flyer. The study was
conducted under a fixed actuation condition and on the concave-down configuration
only. It was found that the amplitudes of passive angular oscillations increased
markedly at particular parameter values. This hinted that resonance may occur at these
parameter values due to the matching of natural frequency with the driving frequency.
The concurrent increase in the averaged vertical speed near these parameter values
suggested that the weight-supporting capability can be strongly affected by flexibility.

We then focused on the actuation efforts (i.e. driving frequency and amplitude) that
are needed in the hovering of the given (flexible and rigid) flyers with concave-down
configuration. It was found that the weight-supporting capabilities in flexible and
rigid flyers can be significantly different when the driving frequency approached the
resonant frequency of the flexible flyer. Whether the weight-supporting capability
was enhanced or reduced by adding flexibility primarily depended on whether the
relative motion between the flyer and the imposed background flow was strengthened
or weakened by the passive angular oscillation.

We also examined the angular oscillation patterns and the wake symmetry properties
of the given flyers under various driving conditions. The passive angular oscillations
observed in the flexible flyers can be further categorized into four categories, namely,
quasi-non-oscillatory, mono-periodic, bi-periodic and non-periodic. The wake patterns
in flexible and rigid flyers were found to be very different only when the driving
frequency approached the resonant frequency. In the frequency range where flexibility
significantly enhanced the weight-supporting capability, wake symmetry can be
preserved if the driving frequencies were kept slightly higher than the resonant
frequency.

Finally, we studied the postural stability behaviours of the given (flexible and
rigid) flyers with concave-up and concave-down configurations by imposing finite
perturbations on the initial inclination angles. It was found that when the driving
frequency and the resonant frequency were not too close to each other, the postural
stability of the flyer can be improved by adding flexibility. However, within a narrow
frequency range near the resonant frequency, adding flexibility can instead result in
postural instability.

Based on the findings of this study, it was concluded that a driving frequency
slightly higher than the natural frequency was ideal for the stable hovering of the
flexible 3-flyer. This was a compromise among minimal body oscillation, minimal
driving amplitude and maximal postural stability.

In the current study, the stability properties of the symmetric wake and the upright
flight posture were explored by imposing finite numerical or physical perturbations.
This approach lacked rigour in the mathematics and the results were less conclusive
theoretically. A more rigorous Floquet stability analysis will be performed in the
future to assess the intrinsic instability of the system.
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L

œ

å
x

U = UAsin(2πt/T)

y

FIGURE 16. (Colour online) Schematic diagram of a 3-shaped model fixed in a vertically
oscillating flow. Here L, α and θ denote the edge length, the opening angle and the
inclination angle, respectively; and UA and T denote the maximum velocity and the period
of the oscillatory flow, respectively.
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Appendix A. Code validation

The flow solver is validated by computing the force and moment coefficients on a
rigid 3-shaped model that is fixed in a vertically oscillating flow (Shao et al. 2016)
(see figure 16). In this case, the opening angle of the 3-shaped model is α = 45◦,
and the inclination angle is θ = 90◦. The Reynolds number, defined as UAL/ν (where
UA is the maximum velocity of the oscillatory flow, L is the edge length and ν is
the dynamic viscosity of the fluid), is 50. The dimensionless period of the oscillatory
flow, defined as TUA/L (where T is the dimensional period), is 2.0.

The vertical force coefficient Cf and the torque coefficient Cm are defined as Cf =

Fy/(
1
2ρf U2

AL) and Cm = Tz/(
1
2ρf U2

AL2), respectively. Here Fy and Tz are the vertical
force and the moment with respect to the apex, respectively; and ρf is the density
of the fluid. The time histories of Cf and Cm are shown in figure 17. From this
figure, it is seen that the result of the present work and that of Shao et al. (2016)
are generally in good agreement. Some discrepancies near the crests and troughs are
probably caused by the effect of thickness. In Shao et al. (2016), the thickness of the
3-shaped model is 0.06L. In the present study, the flyer is nominally treated as two
flat plates with zero thickness. The effective thickness is equivalent to the width of the
discrete delta-function used in the immersed boundary method and is 0.04L (Wang &
Zhang 2011).

Appendix B. Mesh independence and domain independence tests

To ensure that the mesh resolution used in the simulations is suitable for obtaining
accurate results, a mesh convergence test is conducted on a reference case. The passive
flight of a flexible 3-flyer in a vertically oscillating flow is simulated by using three
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FIGURE 17. (Colour online) Time histories of (a) vertical force coefficient Cf and
(b) torque coefficient Cm of a 3-shaped model fixed in a vertically oscillating flow. The
solid line and the empty circle denote the results of the present study and that from Shao
et al. (2016), respectively.

meshes of different resolutions. The control parameters for this case are β = 2.0,
γ = 17.78, α0 = 45◦, Ā= 1.0, Re= 150 and Fr= 6.124.

Figure 18(a,b) shows the time histories of the vertical velocity of the hinged joint
and the opening angle, which are obtained by using three different meshes. It is clearly
seen that the discrepancy between the results obtained with 1x = L/100 and 1x =
L/150 is sufficiently small (less than 2 %). Thus, the mesh resolution of 1x= L/100
is sufficient.

In addition, a domain independence test is also conducted on the same case. Both
the original computational domain of [−6L, 6L] × [−12L, 12L] and an enlarged
domain of [−8L, 8L] × [−20L, 20L] are used for the test. Figure 18(c,d) shows the
time histories of the vertical velocity of the hinged joint and the opening angle,
which are obtained by using the original and the enlarged domains. It turns out that
the results obtained with the two computational domains are almost indistinguishable.
Thus the size of the original domain is sufficient for obtaining accurate solutions.

Appendix C. Evaluation of the natural frequency
We first consider the torsion spring system in vacuum, with a pinned hinged joint.

The governing equation is

2β
3
α̈ + 2γ (α − α0)+ β Fr sin α = 0. (C 1)

The static equilibrium angle αe can be obtained by solving

β Fr sin αe + 2γ (αe − α0)= 0. (C 2)

By imposing a small perturbation δα to the equilibrium configuration αe, expanding
the nonlinear term in a Taylor series about αe and keeping the first-order term, the
linearized equation of angular oscillation can be written as

2β
3
δα̈ + (2γ + β Fr cos αe)δα = 0. (C 3)
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FIGURE 18. (Colour online) Results of the mesh independence and domain independence
tests. (a) Time histories of the vertical velocity of the hinged joint, which are obtained by
using three different meshes. (b) Time histories of the opening angle, which are obtained
by using three different meshes. (c) Time histories of the vertical velocity of the hinged
joint, which are obtained by using two different domains. (d) Time histories of the opening
angle, which are obtained by using two different domains. In (a,b), the dotted line, solid
line and dash-dotted line denote the results obtained with the grid width of L/50, L/100
and L/150, respectively. In (c,d), the solid line and dotted line denote the results obtained
by using the original and enlarged computational domains, respectively.

Thus the natural frequency of the pinned system in vacuum is given by

f (1)n0 =
1

2π

√
3γ
β
+ 3Fr cos αe . (C 4)

Clearly, the natural frequency f (1)n0 is a function of β, γ , α0 and Fr. For the
dimensionless parameters used for the flexible flyer of figure 9, we have f (1)n0 ≈ 0.61.

Next, we consider the torsion spring system in vacuum, with possible vertical
displacements (while the horizontal and rotation motions are still not permitted). The
dynamic system of (2.2) thus degenerates into the following form:

2β
3
α̈ + β sin α · ÿ=−2γ (α − α0)− β Fr sin α, (C 5)

2ÿ+ sin α · α̈ =− cos α · α̇2
− 2Fr. (C 6)

By substituting (C 6) into (C 5), the governing equation of angular oscillation becomes

( 2
3 −

1
2 sin2 α)β · α̈ − 1

2β sin α cos α · α̇2
+ 2γ (α − α0)= 0. (C 7)

Obviously, the static equilibrium configuration for the system with possible vertical
motion is αe = α0. By contrasting (C 7) with (C 1), it is seen that the vertical motion
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not only affects the inertia term and the restoring force, but also adds a nonlinear
damping term to the governing equation.

Equation (C 7) can be linearized about α0 by following the same procedure as that
described above. The linearized governing equation is

( 2
3 −

1
2 sin2 α0)β · δα̈ + 2γ · δα = 0. (C 8)

The natural frequency of this system now becomes

f (2)n0 =
1

2π

√
12γ

(4− 3 sin2 α0)β
. (C 9)

Note that the natural frequency of this system depends only on α0, β and γ , but
not on Fr. For the dimensionless parameters used for the flexible flyer of figure 9,
the natural frequency is f (2)n0 ≈ 0.78. Thus, the natural frequency of the torsion spring
system with free vertical motion can be significantly underestimated if (C 4) is used.

Now, let us consider the real system with a vertically oscillatory flow. Adding an
oscillatory flow may have three additional effects on the governing equation of angular
oscillation: modulating the moment of inertia due to the presence of added mass,
adding a term of aerodynamic damping, and adding a term of periodic driving. The
first two effects may have some influences on the natural frequency, and the natural
frequency of the real system can be evaluated by

f (3)n0 =

√
1− ξ 2

2π

√
12γ

(4− 3 sin2 α0)β + Ja
, (C 10)

where Ja denotes the added moment of inertia and ξ is the damping ratio (0<ξ < 1).
It is seen that the imposed oscillatory flow tends to reduce the natural frequency to
some extent. From figure 9, it is seen that the natural frequency of the real system is
approximately 0.75. Thus, the tendency of modulation in the natural frequency due to
the adding of an oscillatory flow is correctly predicted by (C 10).

Appendix D. Postural stability of a rigid 3-flyer in free falling
Here we consider a rigid 3-flyer which is descending steadily at constant speed

through otherwise stationary air (as shown in figure 19).
By setting α = α0 and α̈ = α̇ = 0 in (2.2), the rotational motion and translational

motion can be decoupled. The governing equation for the rotational motion becomes

2(J − βl2
c cos2 α0)θ̈ = Fa3 + Fa4 − lc cos θ cos α0 · Fa1 − lc sin θ cos α0 · Fa2. (D 1)

From this equation, it is clearly seen that the gravitational force plays no role in
the rotational motion of the rigid free-falling flyer and the postural stability is only
dictated by the aerodynamic torques. This is in contrast to the situation encountered
in Huang et al. (2018), where the postural stability of the pinned and rotatable flyer
is dictated by the torque due to the gravitational force.

We now examine the imbalanced aerodynamic torque after a small perturbation
(1θ > 0) is imposed on the equilibrium states (θ =π for the concave-up configuration
and θ = 0 for the concave-down configuration). For the concave-up configuration
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FaL
FaL

Ta

(a) (b)

Ta

Îœ

Îœ

g

FaR
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g
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FIGURE 19. (Colour online) Postural stability of a rigid descending 3-flyer with
(a) concave-up and (b) concave-down configurations. The grey and black solid lines denote
the unperturbed and perturbed flyers, respectively; U is the descending speed; and Ta
denotes the aerodynamic torque. In (a), Ta < 0 (since |FaL|> |FaR|). In (b), Ta > 0 (since
|FaL|< |FaR|). The differences in the aerodynamic forces on the left and right foils are the
result of inequality in the angles of attack after the perturbations.

(see figure 19a), the aerodynamic force on the left foil is always larger than that on
the right foil due to the inequality in the angles of attack. The resulting unbalanced
aerodynamic torque tends to restore the upright orientation. On the contrary, for the
concave-down configuration (see figure 19b), the unbalanced aerodynamic torque
tends to flip over the flyer. As a result, the concave-up configuration is stable, while
the concave-down configuration is unstable.
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