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Recently, the study of topological phase transitions and edge states for acoustic wave systems has

become a research hotspot. However, most current studies on topological edge states are based on

Bragg scattering, which is not practical to apply in situations involving low-frequency sound because

of the large structural dimensions. Therefore, the authors construct, in this study, a graphene-like

structure based on a sub-wavelength resonant unit Helmholtz resonator and adjust the acoustic

capacitance diameter of adjacent units to change the local resonance frequency, and thereby impose

the degeneracy of the Dirac cone and topological spin states, which is characterized by valley Chern

numbers of opposite sign. The authors also check topological valley edge states at zigzag and arm-

chair interfaces and find that gapless topological valley edge states only appear at zigzag interfaces,

whereas armchair interfaces host gap edge states. Moreover, the results show that the transmission

properties of edge states in a zigzag rectangular waveguide are immune to backscattering and

defects. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5115016

[RF] Pages: 736–741

I. INTRODUCTION

In recent years, the development of the quantum Hall

effect (Klitzing, 1986; Laughlin, 1983), quantum spin Hall

effect (Kane and Mele, 2005; Bernevig et al., 2006), and topo-

logical insulators (Hasan and Kane, 2010; Qi and Zhang,

2011) in condensed-matter physics has inspired the study of

topological phase transitions and edge states for classical wave

systems such as phononic crystals (Wang et al., 2009;

Khanikaev et al., 2012; Hafezi et al., 2013; Rechtsman et al.,
2013). As with electronic materials, these classical wave

systems can be used to make bandgap structures by designing

artificial periodic structures, but they belong to the class of

bosonic systems and have no obvious response to external

magnetic fields considering the spin effect. Meanwhile, the

linear acoustic wave equation remains invariant under time

reversal, so it cannot be simply analogous to spin degeneracy.

To solve this problem, researchers implemented the acoustic

analogous quantum Hall effect (Miniaci et al., 2018; Mousavi

et al., 2015), Floquent topological insulators, and topological

edge states in acoustic systems by introducing a circulating

background airflow (similar to the effect of magnetic field)

(Fleury et al., 2014; Ni et al., 2016; Yang et al., 2015), time-

space modulation (Fleury et al., 2016; Khanikaev et al., 2015;

Peng et al., 2016; Souslov et al., 2017), and coupling reso-

nance (He et al., 2016; Wei et al., 2017). Furthermore,

researchers implemented phononic analogs of the quantum

spin Hall effect and topological boundary states by construct-

ing a lattice structure with a specific symmetry, which creates

a sonic pseudospin state by breaking space-inversion symme-

try (He et al., 2015). This method of breaking space-inversion

symmetry to implement an acoustic topological phase is

simple, practical, and very promising for the development of

topological acoustics.

Constructing acoustic topological systems by breaking

space-inversion symmetry involves two key steps: first, con-

structing a lattice structure with the requisite symmetry to

create a Dirac cone at the high-symmetry points of the

Brillouin zone and, second, making the Dirac cone degener-

ate by breaking the space-inversion symmetry. Currently,

acoustic topological systems are constructed mainly by

arranging scatterers in a triangular or hexagonal lattice,

thereby forming a Dirac cone at the high symmetry K point

or at the center of the Brillouin zone (Lu et al., 2017; Zhang

et al., 2017a). In addition, a Dirac-like cone forms at the cen-

ter of the square lattice (Huang et al., 2011). The main ways

to break the spatial symmetry include changing the filling

ratio (Zhang et al., 2017a), executing a rotation operation

(Lu et al., 2016), or changing the geometric parameters

(Zhang et al., 2017b) so as to reduce the symmetry of the

entire system. Liu et al. inverted p/d symmetrical bands by

adjusting the filling ratio and designed an “x-type” splitter to

study the chiral propagation characteristic of acoustic topo-

logical boundary states (He et al., 2015). Numerous studies

have focused on the triangular or hexagonal lattices arranged

by non-cylindrical scatterers and have used rotation to

reduce spatial symmetry, and thereby construct the quantum

pseudospin Hall effect and topological edge states. In
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addition, researchers have also broken space-inversion sym-

metry by modulating the geometric parameters of the lattice

elements in the graphene-like structure, to realize the bound-

ary topological state of the acoustic wave (Lu et al., 2016).

However, most current studies on acoustic topological phase

transitions and topological boundary states are based on

Bragg scattering. The wavelength of the applied frequency is

usually 0.5k, which typically requires a large geometric size

to support low-frequency sound waves. Therefore, sub-

wavelength units must be introduced into the acoustic topol-

ogy structure to achieve acoustic topological phase transi-

tions and boundary states at sub-wavelength scales (Yves

et al., 2017a; Yves et al., 2017b) .

Helmholtz resonators and concentrated-mass locally reso-

nant units have sub-wavelength resonators, and thereby allow

effective control over long-wavelength sound waves (Fang

et al., 2006). Therefore, introducing these sub-wavelength

locally resonant units into the design of topological acoustic

systems is likely to solve the operational problems caused by

low-frequency sound waves. However, poor impedance

matching between concentrated-mass locally resonant units

and the air leads to poor energy transmittance. Therefore, we

construct in the present study a graphene-like structure by

using a sub-wavelength resonant unit Helmholtz resonator and

adjust the acoustic capacitance diameter of the adjacent units

to change the local resonance frequency, and thereby make the

Dirac cone degenerate with topological spin states. We demon-

strate the existence of topological transitions by varying the

radii of the two adjacent acoustic chambers; these transitions

are characterized by valley Chern numbers of opposite sign. In

addition, the valley-protected topological edge states are con-

firmed along the interfaces separating the topological insula-

tors with opposite spin states.

II. HELMHOLTZ ACOUSTIC METAMATERIAL
STRUCTURE

Figure 1 shows the system structure of the Helmholtz

resonators arranged in the form of a graphene-like lattice

structure. The two adjacent lattice points A and B have

different sound volume diameters, R�Dr and RþDr,

respectively, and the height is H. The diameter of the sound

path is r, the height is H2, the waveguide width is W, and the

height is H1. When the diameters of A and B are equal, the

entire structure has a C3v point group structure, which has tri-

ple mirror symmetry and triple rotational symmetry. When

the diameters of A and B are not equal, the mirror symmetry

of the entire structure is broken, and the system degrades

from a C3v symmetry to a C3 symmetry.

Employing the finite-element software COMSOL

Multiphysics to calculate the band structure of the Helmholtz

metamaterials, the calculation model was reduced to a single

unit, as shown in Fig. 1(b), by applying Bloch boundary con-

ditions on opposing boundaries. The entire band structure

was obtained by sweeping the wave vector along the edges of

the irreducible Brillouin zone. In the calculation, only the air

was considered, with the following parameters: density

q¼ 1.25 kg/m3 and sound velocity c¼ 343 m/s. The geomet-

ric parameters of the metamaterials are as follows: lattice

constant a¼ 30 mm, R¼ 6.25 mm, H¼ 2 mm for the acoustic

chamber, r¼ 1 mm, H2¼ 1 mm for a short tube; w¼ 6 mm,

and H1¼ 3 mm for a wave guide.

Helmholtz resonant acoustic metamaterials can effec-

tively reduce the frequency band structure and lead to sub-

wavelength control of acoustic waves (Fang et al., 2006).

According to the design theory of the Helmholtz resonator,

the short neck and the acoustic cavity of the Helmholtz reso-

nator are regarded as the acoustic mass (similar to induc-

tance in electronic circuits) and the acoustic capacitance

(similar to capacitance in electronic circuits), respectively.

Subject to external excitation, the air at the short neck of the

Helmholtz resonator oscillates vertically, radiating sound

waves into the surrounding medium. The resonance fre-

quency is

f ¼ 1

2p
ffiffiffiffiffiffi
LC
p ; (1)

which is far less than the frequency corresponding to the

wavelength of the sound wave. Moreover, the resonance

FIG. 1. (Color online) (a) Layout and (b) unit cell of Helmholtz acoustic metamaterial structure.
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frequency may be tuned by adjusting the geometric parame-

ters. This approach leads to a good design for sub-

wavelength topological acoustic systems.

Figures 2(a) and 2(b) show the bulk band dispersion

curves of the Helmholtz acoustic metamaterial structure with

Dr¼ 0 mm and Dr¼ 0.25 mm, respectively. A subwave-

length Dirac cone forms at the high-symmetry K point of the

Brillouin zone at Dr¼ 0 mm, and its normalized frequency

xa/2pc is 0.2829 (x/2p means that the actual physical

frequency of the Dirac cone is 3205.7 Hz, a is the lattice con-

stant of 30 mm, and c is the speed of sound propagating in

air, 343 m/s). When the adjacent units in a Helmholtz acous-

tic superstructure have the same size, the entire system satis-

fies triple mirror symmetry and triple rotational symmetry.

In other words, the lattice point group and the hexagonal lat-

tice are consistent with C3V symmetry.

When Dr¼ 0.25 mm, the triple-mirror symmetry of the

entire system is broken because of the unequal size of

the resonator unit at the adjacent lattice point, which reduces

the symmetry to C3. Meanwhile, the sub-wavelength Dirac-

cone degeneracy at the K point is lifted, which gives rise to a

complete band gap with the normalized frequency of

0.2732–0.2930 (actual frequency is 3097–3320.1 Hz). At the K

point, a pair of extreme frequency points form as qþ (3097 Hz)

and p� (3320.1 Hz) because of a degradation of the degener-

acy. Furthermore, for the Helmholtz acoustic metamaterial

structure, a Dirac cone also appears at xa/2pc¼ 0.5, which is

due to Bragg scattering, and the corresponding frequency is

greater.

III. SUBWAVELENGTH ACOUSTIC VALLEY VORTEX

Figure 3 shows the variation of the frequency extremes

with Dr at the K point in the Brillouin zone. As the absolute

value of Dr increases, the local resonance frequencies

between adjacent lattices differ more, causing the sub-

wavelength band gap to gradually increase. When Dr¼ 0,

the sub-wavelength band gap closes because of the symme-

try at the K point, with qþ and p� forming a degenerate state.

As Dr varies from �3 to 3 mm, the band gap near the sub-

wavelength Dirac cone opens, closes, and then reopens. The

insets in Fig. 3 shows the absolute sound pressure distribu-

tion at the extremes of the frequency for Dr¼�0.25 mm and

Dr¼ 0.25 mm. The valley states qþ and p� have opposite

vortex directions (at the lattice point of the hexagonal

lattice). When Dr¼�0.25 mm, qþ at the upper cutoff fre-

quency of the bandgap has clockwise chirality, whereas p�

at the lower cutoff frequency of the band gap has anticlock-

wise chirality. When Dr¼ 0.25 mm, the energy band is

reversed, and the valley states qþ and p� exchange their spin

states; that is, qþ is located at the lower cutoff frequency of

the band gap and p� is located at the upper cutoff frequency

of the bandgap. The band structure of the Helmholtz acoustic

metamaterial structure reverses with changes in the diameter

of the adjacent lattice cavity, which stimulates the sub-

wavelength topological phase transition and spin state.

To better understand this topological phase transitions,

we introduce a nonzero valley Chern number. Through the

k � p perturbation method, the topological phase transition

can be described by the continuum Hamiltonian (Zhang

et al., 2017b):

HK dkð Þ ¼ VDdkxrx þ VDdkyry þ mV2
Drz; (2)

where VD is the Dirac velocity of the conic dispersion at

Dr¼ 0 mm, dk is the momentum deviation from the valley

center K, and ri are the Pauli matrices of the vortex pseudo-

spins. The effective mass characterizes two different valley

states with opposite vortices:

FIG. 2. (Color online) Bandgap structure and Dirac point of Helmholtz acoustic metamaterial structure. Calculated band structures with (a) Dr¼ 0 mm, and

(b) Dr¼ 0.25 mm.

FIG. 3. (Color online) Band-edge frequencies depicted for acoustic system

with different Dr. Color illustrations show the distribution of absolute sound

pressure at the valley states qþ and p� for Dr¼�0.25 and Dr¼ 0.25.
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m ¼ Dx

2V2
D

; (3)

where the bandwidth Dw¼wqþ�wp�, so the effective

Hamiltonian depends strongly on Dr. The local Berry curva-

ture XkðdkÞ centered at the K valley can be calculated by

using the eigenvector, and topological charges can be calcu-

lated by integrating the local Berry curvature (Semenoff

et al., 2008; Martin et al., 2008; Qiao et al., 2011):

Ck ¼
1

2p

ð
Xk dkð Þds ¼ 1

2
sgnðmÞ: (4)

The Chern number K0 can be derived from time-reversal

symmetry and has the opposite sign. The valley Chern num-

ber is

Cv ¼ Ck � Ck0 : (5)

With Dr < 0, the valley Chern number is nonzero 1, and the

Chern number has the opposite sign for Dr < 0 because of

the reversal of the sub-wavelength band gap. Thus, the topo-

logical phase transition occurs in conjunction with a change

of the valley Chern number at Dr¼ 0 mm, which predicts

that edge states propagate along the interface between the

two hexagonal lattices with opposite Dr.

IV. SUBWAVELENGTH TOPOLOGICAL VALLEY EDGE
STATES

To prove the existence of sub-wavelength topological

edge states at the interface, two types of superlattices are

established for the cases Dr¼�0.25 mm with six unit cells

labeled N type and Dr¼ 0.25 mm with six unit cells labeled

M type. Two types of N�M interfaces usually exist in

graphene-like structures. One is the zigzag type [see Fig.

4(a)], and the other is the armchair type [see Fig. 4(b)]. The

two calculated types of interface bandgap structures and edge

state sound pressure distributions are shown in Figs. 5 and 6.

Figure 5 shows the bandgap structure of the zigzag-type

interface, in which the red part is the scattering curve of the

edge state and the black curves represent the dispersion

curve of the bulk state. In the middle of the bandgap of the

bulk state, at a frequency at which the acoustic wave cannot

propagate, the topological phase transition exhibits a gap-

free edge state at the interface. Figure 5(b) shows the sound-

pressure distribution of the valley states K and K0. Since the

Chern number changes by þ1 at the valley state B (k ¼ 2a0/

3p) from N to M, the edge state of the sound wave propa-

gates rightward at this position, while the change of the

Chern number is �1 at the valley state A (k¼�2a0/3p), so

the edge state of sound waves propagates in the opposite

direction. The valley pseudospin of the state is locked to the

propagation direction. This means that each valley state cor-

responds to only one direction of propagation.

V. ANALYSIS OF ROBUSTNESS OF
SUBWAVELENGTH TOPOLOGICAL VALLEY SPIN
TRANSMISSION

A Z-shaped waveguide was first established to study the

sub-wavelength topological valley spin transmission by 25

� 24 units, with all interfaces being zigzag-type interfaces,

FIG. 4. (Color online) Two types of interfaces: (a) zigzag-type interface and

(b) armchair-type interface.

FIG. 5. (Color online) (a) Bandgap structure of zigzag-type interface, and

(b) sound pressure distribution of valley states A and B.

FIG. 6. (Color online) (a) Band gap structure of armchair-type interface, and

(b) sound pressure distribution of valley states A and B. The figure shows

the band gap structure of the armchair-type interface, in which the red and

blue parts are the dispersion curves of the edge state, and the black curves

represent the dispersion curves of the bulk state. The valley state is at k¼ 0

and edge states exist with a gap ranging from 3189.1 to 3238.3 Hz in the

middle of the band gap of the bulk state. For this type of interface, both the

K and K0 valley states appear at k¼ 0, and the band gap supports two edge

states at the upper and lower cutoff frequencies. The sound pressure distri-

bution is shown in the figure; the two edge states of sound waves propagate

in the opposite directions, and the sound waves located in the edge state

band gap are not transmitted across this interface.

J. Acoust. Soc. Am. 146 (1), July 2019 Jiang et al. 739



as shown in Figs. 7(a) and 7(b). Plane waves at 3200 and

3260 Hz are applied at the left boundary around the inter-

face, and the pressure distributions suggest that sound travels

smoothly in the zigzag path despite the presence of two

sharp corners. Furthermore, the sound transmission is

immune to strong backscattering caused by bends in the

transmission path. In addition, a defect is artificially created

in the Z-shaped waveguide, as shown in Fig. 7(c), and the

pressure distributions show that the sound transmission

along the topological interface at valley frequencies is

immune to defects. Moreover, a rectangular waveguide was

established to check sound transmission along interfaces of

both zigzag type (i.e., horizontal interfaces) and armchair

type (i.e., vertical interfaces), as shown in Fig. 7(d). A plane

wave of frequency 3200 Hz appears just inside the gap of the

armchair-type edge states and stops propagating from the

zigzag to the armchair interfaces. This result is consistent

with the previous analysis of the band structure, and the

structures allow robust transmission of acoustic waves

through sub-wavelength topological edges.

VI. CONCLUSION

This paper proposes a graphene-like structure based on

a sub-wavelength resonant unit Helmholtz resonator to

implement a sub-wavelength Dirac cone and produce topo-

logical phase transitions. The creation of sub-wavelength

topological spin states depends on the radii of the two adja-

cent acoustic chambers, and these states are characterized by

valley Chern numbers of opposite sign. We verified the topo-

logical valley edge states at two types of interfaces (zigzag

and armchair) and found that gapless topological valley edge

states appear only at zigzag interfaces, whereas gap edge

states appear at armchair interfaces. Moreover, the results

show that the transmission properties of edge states in a zig-

zag rectangular waveguide are immune to backscattering

and defects.
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