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Abstract: Inelastic localized deformation in front of a crack tip dissipates energy 

and toughens the material. Such concentrated deformation could be resulted from plastic 

localization in solids, such as interfacial sliding in composites composing of 

heterogeneous layers, or by shear banding as seen in bulk metallic glasses (BMGs). The 

mechanisms of the localized deformation and the size of such events are crucial for the 

effective fracture properties of those particular solids. In this paper, we investigate the 

effective fracture strength and fracture toughness of solids where dissipation is 

dominantly contributed from plasticity in narrow strips by shear banding or interfacial 

sliding. We derive the analytical solutions in solids where energy dissipation occurs in 

co-planar elastic-perfectly plastic strips with strain softening, and also give approximate 

formulas of the effective strength and toughness for the solids with symmetric plastic 

strips. The toughening as a function of branching angle, thickness, yield stress, 

strength-softening ratio and local fracture toughness of the strips is determined 

quantitatively. The theory is also verified using finite-element (FE) simulations. These 

theoretical and finite element analysis supply a base for the design of strong and tough 

materials in which the plastic deformation is restricted within strips. 

 

Keywords: Effective toughness; Fracture strength; Strain softening; Shear banding; 

Strip-yield model   
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1. Introduction 

Inelastic deformation around a crack front contributes to energy dissipation in 

orders of magnitude higher than that of generating new surfaces (Erdogan, 2000; Irwin, 

1957). Since this finding in the 1950s, it has been a great interest of the engineering 

community to explore the relationship between the fracture strength or the fracture 

toughness of ductile solids and their plastic deformation mechanisms (Barenblatt, 1962; 

Dugdale, 1960; Hutchinson, 1968; Pardoen et al., 2005; Rice and Rosengren, 1968; 

Rice and Sorensen, 1978; Tvergaard and Hutchinson, 1992; Wei and Hutchinson, 1997). 

It is generally recognized that the plasticity mechanisms and the size of such localized 

deforming zones are crucial for the fracture mechanical properties of a particular solid 

(Barthelat, 2014; Becher et al., 1988; Bohnert et al., 2016; Chen and Dai, 2016; Das et 

al., 2005; Gao et al., 1997; Kinloch et al., 1983; Zhou and Chen, 2016). Reliable 

theoretical analysis may help to identify crucial factors governing the fracture strength 

and toughness of such localized yielding materials, and enable us to further tune the 

microstructure of the materials for better performance in damage tolerance. That is 

particularly meaningful for some advanced materials where plastic deformation is not 

homogeneous due to the presence of structural heterogeneity. 

Taking bulk metallic glasses (BMGs) as an example, their plasticity around a crack 

front is accommodated by shear bands whose width is on the order of several to tens of 

nanometers (Jiang et al., 2009; Jiang and Atzmon, 2006; Li et al., 2002) but can be as 

long as the sample dimensions. BMGs are originally isotropic homogeneous materials 

but become heterogeneous because of strength degradation in those strip regions. Such a 

mechanism resembles dislocation emission from a crack tip: while dislocations leave no 

lattice disturbance, the material in a shear band is relatively weaker than the intact 

counterpart. As illustrated in Fig. 1a, there are many shear bands in the palladium BMG, 

which shield an opening crack and promote its fracture toughness comparable to those 

of the toughest materials known (Demetriou et al., 2011). Such mechanism is broadly 

observed in high strength yet tough BMGs (Das et al., 2005; He et al., 2012; Hofmann 
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et al., 2008; Liu et al., 2007; Schroers and Johnson, 2004), as well as in amorphous 

polymers (Argon and Cohen, 1990; Friedrich, 1983; Spurr and Niegisch, 1962). 

Crack-tip shielding resulted from localized deformation is not unique to BMGs or 

amorphous polymers. Nature has utilized such a design motif to make strong yet tough 

composites with stacking brittle minerals and highly deformable weak layers in between. 

As shown in Fig. 1b, nacre from mollusk shells exemplifies the mechanical design for 

the damage-tolerant material with high volume-fraction of brittle yet hard minerals and 

low volume-fraction of tough yet soft organic layers (Barthelat, 2014). The “mortar” 

layers are believed to provide the dominant energy dissipation during the fracture of the 

material. Such staggered structure is ubiquitously found in many bio-materials including 

bones (Gupta et al., 2005) and spider silks (Keten et al., 2010). 

  

(a)                                    (b) 

Fig. 1. Two typical materials toughened by weak strips. (a) Shear banding in a 

palladium BMG which has a yield strength of 1490 MPa and a fracture toughness of 

200 MPa m0.5 (Demetriou et al., 2011). (b) A SEM image of nacre consisting of 95% of 

mineral bricks and 5% of protein and polysaccharide mortar (Barthelat, 2014). 

For the aforementioned materials, the plastic “sliding” in preferential strips is the 

primary mechanism accounting for their fracture strengthening and toughening. 

Experiments on amorphous polymers (Argon and Cohen, 1990), on BMGs (Demetriou 

et al., 2011; He et al., 2012; Hofmann et al., 2008; Lei et al., 2015; Lewandowski et al., 

2006; Liu et al., 2007; Schroers and Johnson, 2004), on nacre-like materials (Barthelat 
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and Espinosa, 2007; Naglieri et al., 2015; Niebel et al., 2016) and even on shales 

(Chandler et al., 2016; Na et al., 2017) all demonstrated that the shearing or softening 

introduced crack-tip shielding enhanced the damage-tolerance of these materials and 

gave rise to their fracture toughness enhancement. So far, how such energy dissipation 

mechanism via the weak strips quantitatively influence the effective fracture strength 

and toughness of such materials remains unclear. 

The mechanical behavior of the layered solids heavily depends on the 

traction-separation constitutive models of the interfaces or heterogeneous layers, as 

illustrated by the elastic-plastic model (Anand et al., 2012; Su et al, 2004; McAuliffe 

and Waisman, 2015), the frictional cohesive model (Parrinello et al., 2009; Nguyen et 

al., 2017) and the stochastic model (Wei, 2014). Focusing on the fracture behavior of 

the layers, the crack strip-yield model (Dugdale, 1960; Barenblatt, 1962; Bilby et al., 

1963; Burdekin and Stone, 1966) established an analytical relationship between the 

tensile loads and the length of the rigid plastic bands, which became a foundation to 

analyze the plastic banding influence on the fracture properties of the materials 

(Dowling and Townley, 1975; Budiansky and Hutchinson, 1978; Newman, 1984; 

Hillerborg, 1991; Yamada et al., 2011). Hutchinson and Suo (1992) presented a 

theoretical study on the cracking of a thin adhesive layer joining two identical bulk 

solids and suggested a local cracking morphology function to characterize the 

macroscopic toughness of such sandwich specimens. Their theory is applicable to brittle 

elastic media. Tvergaard and Hutchinson (1993, 1996) considered the crack propagation 

along the interface between a thin elastic-plastic adhesive layer and the elastic substrates, 

and numerically explored the influences of layer thickness, layer-substrate modulus 

mismatch and initial residual stress in the layer. Wei and Hutchinson (1997) numerically 

analyzed the crack opening growth accounting for the plastic dissipation in the 

layer-substrate solid. Estevez et al. (2000) investigated the competition between the 

shear yielding and crazing in the glassy polymer and the consequence on the material’s 

fracture toughness. They found that the critical width of a craze appears to be a key 

feature in the polymer’s toughness. Through cohesive models Wei et al. (2009) and 
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Shao et al. (2012) showed that fracture toughening by weak strips is dependent on the 

spacing of such zones as well as the mechanical properties of the strips. Hossain et al. 

(2014) numerically computed the effective toughness of heterogeneous media by the 

so-called surfing boundary condition and demonstrated that elastic heterogeneity can 

have a profound influence on fracture toughness, which not only toughens the material 

significantly but also leads toughness asymmetry. 

In summary, regardless the tremendous progress about the contribution of the weak 

strips in crack front to fracture toughening, a concise and physically sound theory to 

predict both fracture strength and fracture toughness of such materials is not available 

so far. In this paper, we aim to connect the local mechanical properties of the strips to 

the effective fracture strength and toughness of the solids. We describe the problem in 

detail in Section 2, and give the analytical solutions to the effective fracture strength and 

toughness based on a modified strip-yield model in Section 3. Numerical validation to 

the theory is carried by using finite-element (FE) simulations, as seen in Section 4. We 

employ the theory to explore the dependence of fracture behavior on the properties of 

the strips in Section 5 and then discuss the difference between our model and the classic 

model in Section 6. 

2. Problem description 

We consider an infinite plate with a central slender throughout notch of length 2� 

and of root radius �. The plate is elastically isotropic with Young’s modulus � and 

Poisson’s ratio � except the narrow strips in the notch front, whose plastic properties 

are distinct from those of the intact part, as shown in Fig. 2a. A far-field uniform tensile 

stress � is applied in the direction perpendicular to a pre-existing notch. As we 

increase � to a critical value ��, localized plastic deformation initiates from the notch 

tip in the form of shear bands or crazing strips with a thickness �/2 and a length 
. 

Our focus is to quantify how the initiation and the extension of the strips influence the 

effective fracture strength and toughness of the plate. We assume plastic deformation is 

confined within the strips and the other parts of the plate deform elastically. For 
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simplicity, but without loss of physics, we consider a representative constitutive 

behavior in the strips, which exhibits linear elastic, strain softening and perfectly 

plasticity in response to separation. For comparison, we also consider a brittle response 

for the strips, as shown in Fig. 2b. We define ���, 
��, and ��� in turn the yield stress, 

the yield strain, and the post-softening flow stress in the strip materials, and 
�� is the 

strain when the softening initiates at ��� . Hence �� = ���	����	�������  is the softening 

modulus. For the material in the strips, we assume von Mises yielding: it would yield 

and deform plastically when the von Mises stress ���	 reaches the flow stress shown in 

Fig. 2b.  

Let �� denote the displacement jump in the normal direction (separation) in the 

strips and ��  that in the tangential direction. The critical values of the two 

displacements are ��� and ���, beyond which the strips may fail. Following Tvergaard 

and Hutchinson (1993, 1996), we assume that such a strip would fracture when the work 

to separation (per unit area) of the strip equals to a critical value ��� , i.e., ��� =
� �(�)d�"�  with � = #(��/���)$ + (��/���)$. When brittle failure occurs, the energy 

release rate &�� is 
'�(�$ , which coincides with the local fracture toughness ��� of the 

strip. Particularly in a purely normal separation situation, &�� = ����)$* , with ��� = ���, 

� = �
� and 
� = ���* . For the special case of co-planar narrow strips (Fig. 2c), we may 

regard it as a localized necking problem of a thin plate weakened by a slender notch 

with circular root obeying the von Mises yield criterion, whose stress fields in the 

necking plastic zones ahead of the notch are similar to that of the necking problem of 

notched sheets solved by Hill (1952). Therefore, we hypothetically remove the plastic 

regions and assume that there is a uniform distributing of normal stress 
$���√,  along the 

virtual upper and lower surfaces (red) and a normal stress 
���√,  along the virtual notch 

side surfaces (green) according to the necking problem’s solution, as shown in Fig. 2d. 
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(a)                            (b) 

   

(c)                            (d) 

Fig. 2. Illustration of the heterogeneous weak strips around the fronts of the central 

notch. (a) A remote tensile plate with a central slender notch of length 2� and tip 

radius �. In front of the notch tip, there are symmetric weak plastic strips of length 
, 

thickness �/2 and branching angle -. Here 0 ≤ - ≤ 0/2, � ≪ �, and � ≪ �. (b) 

Representative stress-strain response of the strips, where ��� and ��� are respectively 

their yield stress and flow stress, 
�� and 
�� are the corresponding strains, and �� 
denotes the softening modulus. (c) A remote tensile central notched plate with co-planar 
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strips, which corresponds to the special case of - = 0 in (a). (d) A modified strip-yield 

model for the co-planar strip case. 

3. Theoretical derivation 

Here we give the analytical solutions to the effective fracture strength and fracture 

toughness based on in turn the co-planar plastic strip model and the branching model 

shown in Fig 2. For clarity, we let �2, �23, �24 be the effective fracture strength of the 

specimens with co-planar plastic strips, with branching brittle interfaces and with 

branching plastic strips, respectively, and �2, �23, �24 are their corresponding effective 

fracture toughness.  

3.1. Co-planar softening plastic strip 

We study the influence of strain softening in the elastic-plastic strips on the 

effective fracture toughness of the specimen shown in Fig. 2c where - = 0. Increasing 

in strip length 
 gives rise to the energy release resulted from the stress relaxation by 

strip front propagation. Meanwhile the original notch of length 2�  may extend. 

Therefore, we need to determine the overall energy release rates both at the front and its 

end of one of the strips, as denoted in Fig. 2c. Following Dugdale (1960) and Barenblatt 

(1962), the plastically deformed field in the strips is of uniform stress. The plastic strips 

move forward and a new virtual notch of half length � + 
 is created. According to 

Hill’s solution to the necking localization problem of a tensile sheet weakened by 

circular notches obeying the von Mises yield criterion (Hill, 1952), we assume that a 

uniform normal stress 
$���√,  is applied on the virtual surfaces, where ��� denotes the 

post-softening flow stress of the strips in uniaxial tension. 

We now derive the energy release rate of the strip front with the elastic-perfectly 

plastic response with strain softening via the model shown in Fig. 2d. The stress 
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intensity factor of the corresponding crack strip-yield model given by Dugdale 

(Anderson, 2005) is 

5� = �#0(� + 
) − 4���89:�,; acos	( 99:�).                             (1) 

For linear elastic solids, we have: 

�� = &� = 5�$/�.                                                 (2) 

According to Rice (1968), the energy release rate surrounding the virtual notch tip, 

��@, is identical to the J-integral of the corresponding sharp crack with equivalent crack 

length as long as 	(� + 
) ≫ �. By substituting Eqn. (1) into Eqn. (2), we obtain the 

energy release rate of the strip front shown in Fig. 2c: 

��@ = (9:�)B,;��C√,��� DEFGH IIJ�KL)M;* .                                     (3) 

To obtain the energy release rate of the strip end, we calculate the strip opening 

displacement (SOD) �@N at O = �, see Fig. 2d. As (� + 
) ≫ � and (� + 
) ≫ �, we 

could use the SOD of the corresponding central crack model. Bilby et al. (1963) and 

Burdekin and Stone (1966) presented a solution to the SOD, i.e., 
P9���;* ln 9:�9 , by 

assuming rigid plastic deformation in the strip, where ��� = ���. The SOD �@N could 

be obtained by superimposing two elastic crack solutions �" and �$. Here �" is the 

solution to an infinite cracked plate subjected to uniform tensile stress 
$���√,  along the 

plastic region, where � < |O| < � + 
 and the Westergaard stress function is given as 

(Gdoutos, 2005) 

UV =	 C���√,; W X#X)�(9:�)) acos 99:� − acot Z9X 8X)�(9:�))(9:�))�9)[\,                    (4) 

with ] = O + ^_. Integrating the stress function in Eqn. (4) with respect to ], we have 

U� = C���√, W#X)�(9:�)); acos 99:� − 9; atan Z8X)�(9:�))(9:�))�9)[ − X; acot Z9X 8X)�(9:�))(9:�))�9)[\.  (5) 

At |O| = �, the imaginary part of U� is 

Im(U�) = 	 C���√,; B#
(2� + 
) acos 99:� + � ln 99:�L.                         (6) 
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Then �" at position |O| = � for the plate subjected to uniformly distributed stress 
$���√,  

within the plastic zone � < |O| < � + 
 is given as 

�" = C* Im(U�) = "b���√,;* B#
(2� + 
) acos 99:� + � ln 99:�L.                 (7a) 

The SOD of the central crack �$ at |O| = � for the plate subject to a remote 

uniform stress � is obtained by substituting c = � + 
 and |O| = � into the SOD 

formula �$ = C�* √c$ − O$ (Tada et al., 2000). Hence we obtain 

�$ = C�* #
(2� + 
).                                              (7b) 

Now �@N at the position |O| = � for the infinite central notched plate subjected the 

remote tension � and locally distributed stress 
$���√,  in the plastic strip is obtained by 

combining Eqns. (7a) with (7b),  

�@N = �$ − �" = C�* #
(2� + 
) − "b���√,;* B#
(2� + 
) acos 99:� + � ln 99:�L.    (8) 

Within the case of rigid plasticity in the strip, there is 
99:� = cos √,;�C���  with the 

distributed stress 
$���√,  (Anderson, 2005). Equation. (8) is simplified to �@N =

"b9���√,;* ln 9:�9 . It is noted that here we have a different coefficient from the solution given 

by Bilby et al. (1963) and Burdekin and Stone (1966), as those authors might only took 

account of the uniaxial plastic flow with value ���. 

The energy release rate of the strip end should consist of the elastic toughness &�� 
and the plastic contribution 

$���√, �@N (Shih, 1987; Anderson, 2005). With Eqn. (8), we 

obtain the energy release rate of the strip end (|O| = �) of the central notched plate 

shown in Fig. 2c as 

��N = &�� + P����#�($9:�)√,* − ,$���),;* B#
(2� + 
) acos 99:� + � ln 99:�L.         (9) 

According to the energy release rate fracture criterion (Hussain et al., 1973; 

Nuismer, 1975), when a strip starts to fracture, the energy release rate at its end should 

be equal to the local fracture toughness of the strip. Therefore, we obtain an equation 

governing the fracture behavior of the plastic strip: 
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��N|�d�e = &�� + P�e���#�e($9:�e)√,* − ,$���) Z#�e($9:�e) DEFG IIJ�e:9 fg IIJ�e[,;* = ���,  (10a) 

where 
2  is the strip length when �  reaches the critical state � = �2  to initiate 

fracture in the notched specimen in tension. 

With the degradation in the plastically deformed strip, the propagation of the strip 

front also dissipates a certain amount of energy per unit area (Eqn. 3), denoted as &�. 
An equation governing the plastic propagation behavior of the strip is obtained when 


 > 0: 

��@ =	 (9:�)B,;��C√,��� DEFGH IIJ�KL)M;* = &�.                              (10b) 

When 
 = 
2 and � = �2 in Eqn. (10b), we could obtain the length 
2 of the 

softening plastic strip and the corresponding effective fracture strength �2 when the 

strip starts to fracture at its end. The explicit solutions of 
2 and �2 from Eqns. (10a) 

and (10b) are not available. We resort to solve any one of the following equations 

numerically, 

&�� + 8���8�eV�($9:�e),;*(9:�e) − ,$9���),;* ln 99:�e = ���,                          (11a) 

and 

(9:�e)Z,;*(jkl�Vkl):,$9���) fg IIJ�e[
)

"M$;�e($9:�e)*���) = &�.                               (11b) 

Once 
2 is available, �2 can be written in terms of known parameters via 

�2 = 8 *V�;(9:�e) + C���√,; acos 99:�e,                                     (12a) 

or 

�2 = √,*(jkl�Vkl)P���#�e($9:�e) + C���√,; acos 99:�e + C9���;#,�e($9:�e) ln 99:�e.               (12b) 

Finally, the effective fracture toughness of the plate with the co-planar softening 

elastic-perfectly plastic strips shown in Fig. 2c is obtained via �2 = ;9�e)*  (Anderson, 

2005) and is given in the form of 
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�2 = 9V�9:�e + 8����acos 99:�e [8 V�,;n9:�eo* + $���,;* acos 99:�e],              (13a) 

or 

�2 = 9W,;*(jkl�Vkl):,$���) Z#�e($9:�e)DEFG IIJ�e:9 fg IIJ�e[\
)

"M$;�e���) ($9:�e)* .                  (13b) 

Now we focus on the certain amount of energy dissipating per unit area during the 

propagation of the strip front, &�, which should be a material property parameter 

analogous to the fracture toughness ��� . For simplicity, we assume that the 

corresponding energy release rate &�  at the front of the plastic strip is equal to 

(q���q��r )(�������)$ , where ��� = �
�� = ����*  and ���s = ����* , as shown in Fig. 2b. 

Letting t = ������  define the strength-softening ratio, we rewrite &� = ����) ("�u))$* =
&��(1 − t)$. Now Eqns. (11a), (12a) and (13a) may be rewritten as: 

1 = ����)$*jkl − ,$9u)���),;*jkl ln 99:�e + Pu("�u)���)*jkl 8��e($9:�e)b;(9:�e) ,                  (14a) 

with 

�e��� = (1 − t)8 �$;(9:�e) + Cu√,; acos 99:�e,                            (14b) 

and 

je9��� = ��� W �("�u))$*(9:�e) + acos 99:�e ZP(u�u))* 8 �b;(9:�e) + "bu)
,;* acos 99:�e[\,    (14c) 

respectively. For the elastic-perfectly plastic strip model, &� = 0. We can then obtain 

the explicit formula of 
2 and �2 by solving Eqns. (10a) and (10b) with ��� = ���. 

The two equations are given as 


2 = �exyz({kl|}kl)x)I~��) [1 − exyz(}kl|{kl)x)I~��) ] = �exyx)(z{klI~��) � �)I)[1 − exyx)( �)I� z{klI~��) )],     (15a) 

and 

�2 = C���√,; acos	[exyz(}kl|{kl)x)I~��) ] = C���√,; acos	[exyx)( �)I� z{klI~��) )],                  (15b) 

respectively. The corresponding effective fracture toughness is 

�2 = "b9���),;* acos$ �exyzn}kl|{klox)I~��) � = "b9���),;* acos$ Zexyx)( �)I� z{klI~��) )[.            (15c) 
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Notably, for the rigid plastic strip model, &� = &�� = 0. We may further simplify 

Eqn. (15a-c) to 


2 = �(exyz{klx)I~��) − 1),                                           (16a) 

�2 = C���√,; acos	(e�xyz{klx)I~��) ),                                       (16b) 

and 

�2 = "b9���),;* acos$(e�xyz{klx)I~��) ),                                     (16c) 

respectively. The above equations describe the critical conditions when energy 

dissipation is confined within the plastic co-planar strips in front of the notch tips. Next 

we will consider more complicated scenarios when branching occurs in plastically 

deformed strips. 

3.2. Branching softening plastic strip 

In Fig. 2a, we showed branching strips forming a certain angle with respect to the 

original plane of the notch. We first consider the effective fracture toughness of the 

specimen with weak brittle elastic strips ahead of the notch tips. The strips are modeled 

as linear elastic brittle interfaces of zero thickness which have a fracture toughness ���. 
We assume that the notch would only crack along the weak strips with a kinking angle 

-. Based on these assumptions, we calculate the strain energy release rate of one notch 

tip in the kink direction. According to Nuismer (1975) and Zeng and Wei (2017), the 

strain energy release rate of the crack for potential deflection at an angle - is given by 

&4 = � �)�)* , 5"4 < 0
���) :�)�)* , 5"4 ≥ 0	,                                        (17a) 

with (Nuismer, 1975) 

5"4 = "$ cos 4$ [5�(1 + cos -) − 35�� sin -],                          (17b) 

5$4 = "$ cos 4$ [5� sin - + 5��(3 cos - − 1)],                          (17c) 
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where 5� and 5�� are the Mode I and Mode II stress intensity factors of the primary 

crack, respectively. 

In the coordinate system given in Fig. 2a, 5� = �√0� and 5�� = 0 (Anderson, 

2005). Substituting 5� and 5�� into Eqns. (17b) and (17c), then substituting them into 

Eqn. (17a), we obtain the strain energy release rate for the direction along angle - as, 

&4 = ;9�)
* (cos 4$ 	)C.                                              (18) 

According to Griffith’s theory (1921), the fracture stress should be insensitive to the 

notch tip radius. Rice (1968) also showed the J-integral surrounding the notch tip is 

identical to the J-integral of the crack tip as long as 	� ≫ �. Therefore, the central notch 

tip’s strain energy release rate in the - direction shown in Fig. 2a is &4 in Eqn. (18). 

With the energy-based fracture criterion (Hussain et al., 1973; Nuismer, 1975), the 

notch begins to extend along the strip when &4 equals to the fracture toughness of the 

interface, ���. We hence obtain the fracture strength �23 of the plate with brittle failure 

in the kinked strip within 0 ≤ - ≤ 0/2: 

�23 = 8*jkl;9 (sec 4$ 	)$.                                              (19) 

The central notched plate with fracture strength �23  has an effective fracture 

toughness 	�23 = ;9H�e�K)*  (Anderson, 2005). Taking Eqn. (19) into account, we obtain 

the effective fracture toughness of the central notched plate with weak branching brittle 

elastic interfaces, 

�23 = ���(sec 4$ 	)C.                                                 (20) 

It shows that both the local fracture toughness ��� of the strips and their branching 

angle determine the effective fracture toughness of the entire tensile specimen. Eqns. 

(19) and (20) are the products of two basic parts, i.e., local strength or toughness of the 

strips and a secant function of the deflection angle. By analogy, we utilize the effective 

fracture strength and toughness expressions for the co-planar plastic strips to construct 

approximate formulas of the effective fracture strength and toughness for the branching 

plastic strips in forms of 
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�24 = �2(sec 4$)�/$,                                              (21a) 

and  

�24 = �2(sec 4$)�,                                                (21b) 

respectively, where � is a fitting parameter to be determined from FE simulations in 

next section, and �2  and �2  are respectively the effective fracture strength and 

toughness of the aforementioned plate with the co-planar plastic strips. 

4. Finite-element calculations 

In the previous section, we have presented several analytical solutions to the 

effective fracture strength and toughness for the central notched specimen with 

co-planar plastic strips or branching brittle strips in nature. Here we perform FE 

calculations to verify these analytical results. 

4.1. The finite-element model 

For structural symmetry, we consider one fourth of the notched plate shown in Fig. 

3. The length and width of the plate are about 25 times of the length of the notch and the 

strip. An isotropic elastic-plastic plane stress constitutive model is adopted for the 

material in the strip while the rest of the plate deforms elastically. Yielding in the strip 

follows the von Mises criterion and the plastic flow follows the stress-strain behavior 

with strain softening shown in Fig. 2b. The plane stress elements including CPS4 and 

CPS3 in ABAQUS (Simulia, 2011) are used. Mesh size sensitivity is carried out. The 

mesh size about one-tenth of the strip thickness in the strip and around the notch tip is 

sufficient to guarantee the convergence of the simulations. During the tensile 

deformation, we calculate the J-integral of the real notch tip in the strip direction. For a 
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given ��� of the strip, if the J-integral equals to it, we select the length of the plastically 

deforming strip and the corresponding tensile stress as the critical strip length 
2 and 

the fracture strength �2 of the specimen, respectively. 

   

(a) co-planar case              (b) branching case 

Fig. 3. Finite-element models for the plate with a central notch and co-planar 

heterogeneous strips (a) or branching strips (b) ahead the notch tip. One quarter of the 

sample is used by accounting for the symmetry of the problem. 

4.2. Deformation in the strip front 

We present representative stress and strain fields around the notch front in a 

specimen with co-planar softening elastic-perfectly plastic strips in Fig. 4. The 

specimen is subject to a far-field tensile stress �. The following dimensions and 

material parameters are used in the simulations, with � = 5mm , � = 0.036� , 

� = 100GPa , � = 0.3 , �� = �/4 = 25GPa , ��� = 400MPa , ��� = 240MPa , and 

��� = 4.8kN/m. We show in Fig. 4a an elastically deformed strip at � = 36.0MPa. 

When � increases, the strip yields and propagates, and a stress field similar to a 

crack-tip stress field emerges around the strip front, as shown in Fig. 4b and Fig. 4c. 

When � = 117.4MPa, the length of the plastically deforming strip reaches 	0.17� (see 
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Fig. 4b) and the J-integral of the notch tip is equal to 2.4kN/m; when � = 158.9MPa, 

the length of the plastically deforming strip is about 	0.44� and the J-integral of the 

notch tip equals to 4.8kN/m, the same as the fracture toughness of the strip. Therefore, 

the fracture strength �2  of the specimen is 158.9MPa , and the corresponding 

maximum length 
2 of the plastic strip is 0.44�. In Fig. 4d and Fig. 4e we further 

show the fields of ��� and 
�� at this critical point when the plastic strip starts to 

fracture. The result suggests that our assumption of uniformly distributed stress on the 

strip surfaces is reasonable. 

   

(a)                    (b)                   (c) 

  

(d)                            (e) 

Fig. 4. Contour plots around the notch tip and the co-planar softening elastic-perfectly 

plastic strip during the tension process of the central notched plate, where the legend for 

stress is the same for (a)-(d). (a) Von Mises stress field when the strip is totally in elastic 

deformation. (b) Von Mises stress field when a part of the strip is in plastic deformation. 

(c) Von Mises stress field when the strip in plastic deformation starts to fracture. (d) The 
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stress ��� and (e) the strain 
�� corresponding to the fracture moment shown in (c), 

where the plastically deforming zone is highlighted by the dashed lines. 

We show in Fig. 5 the stress evolution of the branching strip with strain softening 

during the tension of the plate, where the related parameters are as follows: � = 5mm, 

� = 0.036� , - = 45° , � = 100GPa , � = 0.3 , �� = �/4 , ��� = 400MPa , 

��� = 240MPa, and ��� = 4.8kN/m. When � = 44.0MPa, the strip begins to deform 

plastically in the matrix, as shown in Fig. 5a; When � = 126.7MPa, about 	0.25� 

length of the strip is in plastic deformation, as shown in Fig. 5b; and at �=172.5MPa, 

the length of the plastically deforming strip is about 0.89�, as shown in Fig. 5c. At this 

moment, the J-integral of the notch tip along the branching direction is equal to the 

strip’s fracture toughness 4.8kN/m , so the fracture strength of the specimen is 

172.5MPa and the corresponding critical length of the strip is 0.89�. Compared with 

the co-planar strip case, the assumption on uniform stress distribution within the strip is 

no longer valid, as shown in Figs. 5d~f, which brings a great difficulty to derive 

analytical solutions to the effective fracture toughness of the plate with symmetric 

branching plastic strips. 

   

(a)                  (b)                   (c) 
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(d)                     (e)                   (f) 

Fig. 5. Contour plots around the notch tip and the branching softening elastic-perfectly 

plastic strip during the tension process of the central notched plate. (a) Von Mises stress 

field when the strip begins to deform plastically. (b) Von Mises stress filed when a part 

of the strip is in plastic deformation. (c) Von Mises stress field when the strip in plastic 

deformation starts to fracture. (d) Radial stress, (e) hoop stress and (f) shear stress fields 

in the cylindrical coordinate corresponding to the fracture moment shown in (c), where 

the plastically deforming zone is highlighted by the dashed lines. 

4.3. Numerical verification 

Now we compare the FE results and our theoretical predictions for the central notched 

plate with the co-planar plastically deforming strips. In Fig. 6, we verify the two types 

of results showing the influence of the local fracture toughness ��� of the strips on the 

plastically deforming length of the strips and on the fracture strength of the specimen. 

For strength-softening ratio t = 1.0, 0.8 and 0.6, we see that the plastic strip length and 

the specimen fracture strength are both increasing with an increasing normalized 

fracture toughness 
jkl9��� of the plastic strips. Meanwhile we see good agreements 
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between the FE results and the corresponding theoretical predictions.

  
(a)                               (b) 

Fig. 6. Comparison between the FE results and our theoretical predictions, which 

verifies the influence of the fracture toughness ���  of the weak plastic strips. (a) 

Normalized length of the co-planar plastically deforming strips as a function of 

normalized fracture toughness 
jkl9��� with different values of the softening ratio t, 

where the following parameters are used: � = 5mm , � = 0.036� , � = 100GPa , 

��� = 400MPa, ��� = 0.2~11.0kN/m, �� = 2�, � for t = 0.8, 0.6 respectively. (b) 

The corresponding normalized fracture strength of the specimens. 

We verify the influence of the strength-softening ratio t of the strips on the 

plastically deforming length of the strips and on the fracture strength of the specimen in 

Fig. 7. For different softening modulus, �� = �/2, �/8 for the plastic strips, we 

consider two different local fracture toughness values, ��� = 5kN/m and 3kN/m. 

From the FE result sets for the four combinations, we see that with the decreasing 

softening ratio, the plastic strip length in the specimen increases progressively, but the 

corresponding fracture strength decreases progressively. The FE result sets for the two 

values of the softening modulus �� show difference, especially in the critical length, 

which demonstrates that the influence of the softening ratio on the strip length and the 

effective strength depends on the softening modulus as well. However, our theoretical 

analysis does not take this into account and we see distinction between the FE and 

theoretical results. Fortunately, the effective strength has a much weaker dependence on 
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��, as shown in Fig. 7b. We also see good matches between the FE results and the 

theoretical predictions when �� = �/2. In other words, if the softening modulus falls in 

a proper range, our theoretical solutions show reasonable predictability. 

  
(a)                               (b) 

Fig. 7. Comparison between the FE results and our theoretical predictions, which 

verifies the influence of the strength-softening ratio t of the weak plastic strips. (a) 

Normalized length of the co-planar plastically deforming strips as a function of 1 − t 

with different values of softening modulus �� and local fracture toughness ���, where 

the following parameters are used: � = 5mm , � = 0.036� , � = 100GPa , ��� =
400MPa. (b) The corresponding normalized fracture strength of the specimens. 

We further examine the influence of the softening modulus �� of the strips on the 

plastically deformed length of the strips and on the fracture strength of the specimen, as 

shown in Fig. 8. In each case with softening ratio t = 0.8 or 0.6, we consider two 

different local fracture toughness values, ��� = 5kN/m and 3kN/m. The FE result sets 

of the four combinations imply that an increasing softening modulus increases the 

plastically deforming length of the strips, but decreases the fracture strength of the 

specimen. However, when �� > �/2, the softening modulus has nearly no influence on 

the length and the strength. As shown in Fig. 8, although our theoretical derivation 

neglects the softening modulus effect, i.e., we assume that the energy release rate &� at 

the plastic strip front is equal to 
����) ("�u))$* , we see good matches between the FE results 

and the theoretical predictions when �� > �/2. In sum, all the agreements between the 
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FE results and the theoretical predictions shown in Figs. 6, 7 and 8 indicate that our 

assumption on &� and the other simplifications seem to be reasonable approximations 

as long as �� > �/2. Therefore, we could further use our analytical solutions Eqns. 

(14), (15) and (16) to explore the influence of the strips on the effective fracture 

toughness of the heterogeneous specimens. 

  
(a)                               (b) 

Fig. 8. Comparison between the FE results and our theoretical predictions, which 

verifies the influence of the softening modulus ��  of the weak plastic strips. (a) 

Normalized length of the co-planar plastically deforming strips as a function of 

normalized softening modulus ��/� with different values of the softening ratio t and 

local fracture toughness ��� , where the following parameters are used: � = 5mm, 

� = 0.036�, � = 100GPa, ��� = 400MPa. (b) The corresponding normalized fracture 

strength of the specimens. 

We have constructed two approximate formulas for the effective fracture strength 

and toughness of the notched plate with branching softening plastic strips, i.e., Eqns. 

(21a) and (21b). The two equations have an unknown parameter �. We determine 

� = 2.6 by fitting the FE results for the effective strength and toughness respectively, 

as shown in Fig. 9a and Fig. 9b. Here two different local fracture toughness values are 

considered, and we see that both scenarios have a reasonable agreement between the FE 

results and the fitting formulas. 
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(a)                              (b) 

Fig. 9. Determination of the value of � in Eqn. (21) by fitting the FE results, where (a) 

and (b) show the fitting results of the effective fracture strength Eqn. (21a) and the 

effective fracture toughness Eqn. (21b) respectively both with � = 2.6, where the 

following parameters are used: � = 5mm , � = 0.036� , � = 100GPa , �� = �/2 , 

��� = 400MPa and t = 0.8. 

5. Effective fracture toughness 

For the plate with the co-planar softening elastic-perfectly plastic strips, Eqns. (14a) 

and (14c) indicate that the strip thickness �, yield stress ���, strength-softening ratio t 

and local fracture toughness ��� all have influences on the effective fracture toughness 

of the plate. According to the dimensional analysis theory (Anderson, 2005), we further 

define the dimensionless strip thickness 
�9, yield stress 

���*  and local toughness 
jkl9*, 

where the notch length �  and Young’s modulus �  are selected as the primary 

quantities. For the plate with the branching strips, Eqns. (20) and (21b) show that the 

branching angle - also has an important influence on the effective fracture toughness 

of the specimen. Here we explore the influence of all these factors of the heterogeneous 

strips on the effective fracture toughness of the plate in detail. 
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5.1. The geometric parameters of strips 

For the brittle branching strips, Eqn. (20) indicates that the branching angle 

increases the effective fracture toughness �23 in proportional to (sec 4$ 	)C. There is a 

maximum amplification factor “4” at - = 0/2 for the effective toughness. For the 

plastically branching strips, Eqn. (21b) suggests that the branching angle increases the 

effective fracture toughness by approximately following the relationship of (sec 4$)$.b. 

We see that the plate with branching strips always has a greater effective toughness than 

that with co-planar strips because both (sec 4$ 	)C and (sec 4$)$.b are greater than 1 

when 0 < - ≤ 0/2. Meanwhile, it is seen that the brittle branching strips toughen the 

central notched plate in more drastic than the plastic branching strips do, as shown in 

Fig. 10a. 

In addition, we examine the influence of the plastic strip thickness on the effective 

fracture toughness of the heterogeneous plate via Eqns. (14a) and (14c) with different 

strength-softening ratio t, dimensionless yield stress 
���*  and local toughness 

jkl9*, as 

shown in Fig. 10b. We see that the effective fracture toughness of the plate has an 

almost linear dependence on the thickness of the co-planar plastic strips. Decreasing the 

softening ratio in turn from 1.0 to 0.6, to 0.4 and to 0.3, the strip thickness initially 

decreases the effective toughness and later increases it, and the critical softening ratio 

for the tendency transition is about 0.4 (see the blue horizontal dotted line) for the case 

with � = 5mm, � = 100GPa, ��� = 400MPa and ��� = 6kN/m. The horizontality 

of the critical transition case suggests that the strip thickness has no influence on the 
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effective toughness. Actually, the critical transition state also depends on the 

dimensionless yield stress 
���*  and local toughness 

jkl9*. As 
���*  decreases from 4e-3 to 

2e-3 or as 
jkl9* increases from 1.2e-5 to 4e-5, we obtain two transition states from the 

basic case, as illustrated by the other two horizontal lines with circles or stars. The 

thickness influence may explain why there is a complex size effect of the notch tips in 

many BMGs’ fracture experiments (Lowhaphandu and Lewandowski, 1998; Schroers 

and Johnson, 2004; Lewandowski et al., 2006). 

  

(a)                               (b) 

Fig. 10. Influence of the strip geometric parameters on the normalized effective fracture 

toughness of the tensile central notched plate. (a) Influence of the strip branching angle, 

where the following parameters are used: � = 5mm , � = 0.036� , � = 100GPa , 

��� = 400MPa, t = 0.8, ��� = 6kN/m. (b) Influence of the strip thickness, where the 

softening basic case is plotted using Eqns. (14a) and (14c) with � = 5mm, � =
100GPa, ��� = 400MPa, t = 0.6 and ��� = 6kN/m, and the other five cases are 

calculated by changing one parameter of the basic case as denoted in the figure. 
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We reveal in Eqns. (14a), (14c), (15c) and (16c) that the plastic properties of the 

strips, such as the yield stress, have complex influences on the effective fracture 

toughness of the plate with the heterogeneous strips. We show the influence of the 

dimensionless yield stress and strength-softening ratio on the effective fracture 

toughness in Fig. 11a and Fig. 11b, respectively. The yield stress of the rigid plastic 

strips increases the effective toughness, while the yield stress of the elastic-plastic strips 

with softening initially increases the effective toughness and then decreases the effective 

toughness. For the latter case, there is an optimal yield stress for toughness. The value is 

sensitive to the softening ratio, dimensionless strip thickness and local toughness, as 

explored in Fig. 11a. 

The influence of the strength-softening ratio t  is seen in Fig. 11b. Smaller 

softening ratio could often lead to lower effective fracture toughness. At a greater 

dimensionless thickness, such as 0.09, or at a higher dimensionless yield stress, such as 

0.016, or at a smaller dimensionless local toughness, such as 6e-6, decreasing t could 

initially increase the effective toughness and then decrease the effective toughness. The 

transitional region is sensitive to the dimensionless thickness, yield stress, and local 

toughness. 

  
(a)                             (b) 

Fig. 11. Influence of the plastic properties of the strips on the effective fracture 

toughness of the tensile central notched plate with co-planar heterogeneous strips. (a) 

The influence of the yield stress of the strips, predicted by Eqns. (14a), (14c), (15c) and 
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(16c) with � = 5mm, � = 0.036�, � = 100GPa, ��� = 6kN/m and t = 0.8. For the 

softening case, we also explored the sensitivity of �2 on other parameters, as indicated 

in the figure. (b) The influence of the strength-softening ratio of the strips, where the 

basic case is plotted using Eqns. (14a) and (14c) with � = 5mm , � = 0.036� , 

� = 100GPa, ��� = 800MPa and ��� = 6kN/m, and the other six cases are calculated 

by changing one parameter of the basic case as denoted in the figure. 

5.3. Local fracture toughness of strips 

We now explore the influence of the local fracture toughness ��� of the strips on 

the effective fracture toughness of the plate, as shown in Fig. 12. It is seen that the local 

fracture toughness has a similar impact in the rigid plastic strip model, the 

elastic-perfectly plastic strip model and the softening elastic-perfectly plastic strip 

model. With the increasing local toughness, the effective toughness converges to a 

steady number, which implies the existence of an economic choice of the local fracture 

toughness for toughening. Meanwhile, a greater softening ratio t or a smaller thickness 

� gives rise to a higher effective toughness at the steady state.  

 

 
Fig. 12. Influence of the local fracture toughness of the plastic strips on the effective 

fracture toughness of the tensile central notched plate with co-planar heterogeneous 

strips, where the rigid plastic, elastic-plastic and softening plastic basic cases are 

predicted by Eqns. (14a), (14c), (15c) and (16c) with � = 5mm ,	� = 0.1� , � =

×1.0e-4
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100GPa , ��� = 400MPa  and t = 0.8 , and the other four cases are obtained by 

changing one parameter of the basic case as denoted. 

6. Discussion 

Now we compare the theoretical solutions derived from our notch strip-yield model 

to the results derived from the classic crack strip-yield model (i.e., D-B model). 

According to Dugdale and Barenblatt’s rigid plastic assumption (Dugdale, 1960; 

Barenblatt, 1962), the uniform normal stress ���  is applied on the virtual crack 

surfaces and there is the relationship &� = &�� = 0. We obtain the following solutions 

to the plastic strip length 
2s , the effective fracture strength �2s  and the effective 

fracture strength toughness �2s  for the tensile fractured plate respectively: 


2s = �(eyz{kl�I~��) − 1),                                              (22a) 

�2s = $���; acos	(��yz{kl�I~��) ),                                          (22b) 

�2s = C9���);* acos$(��yz{kl�I~��) ).                                        (22c) 

It is noted that Eqns. (22a), (22b) and (22c) have the same form but different 

coefficients than Eqns. (16a), (16b) and (16c), respectively. Because the material is 

supposed to obey the von Mises yield criterion in the present work, a uniform normal 

loading stress 
$���√,  is assumed on the virtual notch surfaces according to Hill’s solution 

to the necking localization problems (Hill, 1952). Therefore, the two models both with 

the rigid plasticity assumption predict different results: the D-B model predicts greater 

yield-strip length, smaller fracture strength and smaller toughness than the presented 

with the 
$���√,  assumption, as shown in Fig. 13. However, if the Tresca yield criterion is 
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used, the normal stress on the virtual surfaces should be ��� (Hill, 1952), i.e., the same 

as that in the D-B model. According to Hill (1952), the uniform normal stress 

assumption is reasonable only when the plastic strip length is approximately greater 

than the notch root radius. It implies that all the predictions with small plastic length are 

lack of accuracy and should be neglected, including the predictions of the 

elastic-perfectly plastic model and the softening plastic model, as seen in Fig. 13. 

  
(a)                                 (b) 

 
(c) 

Fig. 13. Comparison of the D-B model (Dugdale, 1960; Barenblatt, 1962) and the 

present notch yield-strip model, where the following parameters are used: � = 0.005m, 

� = 100GPa , ��� = 400MPa , &�� = 2000N/m  and ��� = 0~40000N/m . (a) 
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by Eqns. (22a), (16a), (15a) and (14a). (b) The corresponding normalized fracture 

strength of the plate predicted by Eqns. (22b), (16b), (15b) and (14b). (c) The 

corresponding normalized effective fracture toughness predicted by Eqns. (22c), (16c), 

(15c) and (14c). 

Heretofore, we assume the symmetrical branching strips with respect to the crack 

plane near the notch tips in the plate. In the presence of imperfections, it is common that 

one kinking plastic strip appears first and then the symmetrical one follows. That is 

typically seen in BMG specimens with notches subjected to mode I type of loading. 

However, the strengthening and toughening influence of other strip types having the 

same material constitutive relationship but different geometry is still worth exploring. 

As demonstrated in Fig. 14, we have obtained the FE results of two non-branching strip 

scenarios with one kinking plastic strip around the notch tip, which shed light on the 

understanding of the strip geometry influence. We see that the one kinking strip 

increases the effective fracture strength (obviously also the toughness) much greater 

than the symmetrical branching strips do. In the particular case of fracture strength, we 

found that when the fitting value	� is selected as 5.1 our solution Eqn. (21a) captures 

well with the dependence of fracture strength on branching angle. It seems to imply that 

the strips with different geometry may only result in a different value of the fitting 

parameter � in Eqn. (21). Therefore, our conclusions about the strengthening and 

toughening influence of the yield-strip ought to be qualitatively the same for different 

strip geometries. 
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Fig. 14. Comparison of the effective fracture strength for the branching and 

non-branching plastic strip scenarios using FE simulations. The following parameters 

are used: � = 5mm , � = 0.036� , � = 100GPa , �� = �/2 , ��� = 400MPa  and 

t = 0.8. The exponent � in Eqn. (21a) is 5.1. 

7. Conclusions 

In this work, we investigate the influence of heterogeneous strips on the effective 

fracture strength and toughness of the central notched plate via theoretical analysis and 

FE calculation based on a notch strip-yield model modified from the crack strip-yield 

model (Barenblatt, 1962; Dugdale, 1960). We demonstrate how the strips’ branching 

angle, thickness, yield stress, flow stress, softening modulus and fracture toughness 

affect the macroscopic fracture strength or fracture toughness in such a plate. We find 

that the effective fracture toughness of the plate mainly depends on five dimensionless 

quantities: the strips’ branching angle -, dimensionless thickness 
�9, yield stress 

���* , 

local fracture toughness 
jkl9* and strength-softening ratio t. The influence factors of the 

heterogeneous strips on the toughening behavior are revealed analytically, and the 

following conclusions are drawn: 

(1) Branching brittle interfaces toughen the plate, and the effective fracture 

toughness of the plate are proportional to Hsec 4$KC
. The branching angle of the plastic 

strips increases the effective fracture toughness of the plate and is proportional to 

Hsec 4$K$.b
, while the effective fracture toughness may either increase or decrease when 

the strip thickness increases. The exact trend is sensitive to the strength-softening ratio, 

dimensionless yield stress and local toughness of the strips. 

(2) Within a certain range of the yield stress and softening ratio, the plastic strips 

maximize the effective fracture toughness of the plate. Our results on the toughening 

influence of plastic strips address some fundamental aspects about the macro fracture 
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toughness of the local heterogeneous solid. They present a theoretical guide for the 

design of both strong and tough materials with localized plastic strips. 
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1) A notch strip-yield model accounting for strain softening effect is 

presented; 

2) Analytical solutions for the effective fracture strength and 

toughness solution are obtained for particular boundary-value problems; 

3) Governing dimensionless quantities on fracture toughness are 

identified. 

 

 


