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Abstract: Inelastic localized deformation in front of a craigl dissipates energy
and toughens the material. Such concentrated dafamcould be resulted from plastic
localization in solids, such as interfacial sliding composites composing of
heterogeneous layers, or by shear banding as sdrnki metallic glasses (BMGs). The
mechanisms of the localized deformation and the sfzsuch events are crucial for the
effective fracture properties of those particulalids. In this paper, we investigate the
effective fracture strength and fracture toughne$ssolids where dissipation is
dominantly contributed from plasticity in narrowips by shear banding or interfacial
sliding. We derive the analytical solutions in dsliwhere energy dissipation occurs in
co-planar elastic-perfectly plastic strips withagtrsoftening, and also give approximate
formulas of the effective strength and toughnesghe solids with symmetric plastic
strips. The toughening as a function of branchimgle thickness, yield stress,
strength-softening ratio and local fracture tougisnef the strips is determined
quantitatively. The theory is also verified usingite-element (FE) simulations. These
theoretical and finite element analysis supply sebfar the design of strong and tough

materials in which the plastic deformation is rieséd within strips.

Keywords. Effective toughness; Fracture strength; Strainesufig; Shear banding;
Strip-yield model



1. Introduction

Inelastic deformation around a crack front conti@suto energy dissipation in
orders of magnitude higher than that of generatieny surfaces (Erdogan, 2000; Irwin,
1957). Since this finding in the 1950s, it has beegreat interest of the engineering
community to explore the relationship between trectlire strength or the fracture
toughness of ductile solids and their plastic defatiton mechanisms (Barenblatt, 1962;
Dugdale, 1960; Hutchinson, 1968; Pardoen et al052®Rice and Rosengren, 1968;
Rice and Sorensen, 1978; Tvergaard and Hutchiri€@9®; Wei and Hutchinson, 1997).
It is generally recognized that the plasticity maabms and the size of such localized
deforming zones are crucial for the fracture meadarproperties of a particular solid
(Barthelat, 2014; Becher et al., 1988; Bohnertlet2816; Chen and Dai, 2016; Das et
al., 2005; Gao et al.,, 1997; Kinloch et al., 19&Bou and Chen, 2016). Reliable
theoretical analysis may help to identify cruciattbrs governing the fracture strength
and toughness of such localized yielding materiatg] enable us to further tune the
microstructure of the materials for better perfong® in damage tolerance. That is
particularly meaningful for some advanced matenehere plastic deformation is not
homogeneous due to the presence of structuraldystieeity.

Taking bulk metallic glasses (BMGs) as an exanmpleir plasticity around a crack
front is accommodated by shear bands whose width ihe order of several to tens of
nanometers (Jiang et al., 2009; Jiang and Atzm0O@6;2Li et al., 2002) but can be as
long as the sample dimensions. BMGs are originathyropic homogeneous materials
but become heterogeneous because of strength déigrach those strip regions. Such a
mechanism resembles dislocation emission from ekdip: while dislocations leave no
lattice disturbance, the material in a shear bandelatively weaker than the intact
counterpart. As illustrated in Fig. 1a, there asngnshear bands in the palladium BMG,
which shield an opening crack and promote its fn@ctoughness comparable to those
of the toughest materials known (Demetriou et2011). Such mechanism is broadly
observed in high strength yet tough BMGs (Das ¢t28105; He et al., 2012; Hofmann
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et al., 2008; Liu et al., 2007; Schroers and John2004), as well as in amorphous
polymers (Argon and Cohen, 1990; Friedrich, 1988jr6and Niegisch, 1962).
Crack-tip shielding resulted from localized defotioa is not unique to BMGs or
amorphous polymers. Nature has utilized such ggdesiotif to make strong yet tough
composites with stacking brittle minerals and hygiéformable weak layers in between.
As shown in Fig. 1b, nacre from mollusk shells egéfies the mechanical design for
the damage-tolerant material with high volume-fiaciof brittle yet hard minerals and
low volume-fraction of tough yet soft organic laygBarthelat, 2014). The “mortar”
layers are believed to provide the dominant endrgsipation during the fracture of the
material. Such staggered structure is ubiquitof@ind in many bio-materials including

bones (Gupta et al., 2005) and spider silks (Keteal., 2010).

(a) (b)
Fig. 1. Two typical materials toughened by weak stripg. $hear banding in a
palladium BMG which has a yield strength of 1490 d&hd a fracture toughness of
200 MPa fi® (Demetriou et al., 2011). (b) A SEM image of nacoesisting of 95% of
mineral bricks and 5% of protein and polysacchametar (Barthelat, 2014).

For the aforementioned materials, the plastic lisgtlin preferential strips is the
primary mechanism accounting for their fractureemsfgthening and toughening.
Experiments on amorphous polymers (Argon and Cob@80), on BMGs (Demetriou
et al., 2011; He et al., 2012; Hofmann et al., 20@8 et al., 2015; Lewandowski et al.,

2006; Liu et al., 2007; Schroers and Johnson, 2@ hacre-like materials (Barthelat
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and Espinosa, 2007; Naglieri et al., 2015; Nieltehle 2016) and even on shales
(Chandler et al., 2016; Na et al., 2017) all denratsd that the shearing or softening
introduced crack-tip shielding enhanced the dantalgegance of these materials and
gave rise to their fracture toughness enhancersentar, how such energy dissipation
mechanism via the weak strips quantitatively infice the effective fracture strength
and toughness of such materials remains unclear.

The mechanical behavior of the layered solids hgadepends on the
traction-separation constitutive models of the riiaiges or heterogeneous layers, as
illustrated by the elastic-plastic model (Anandakt 2012; Su et al, 2004; McAuliffe
and Waisman, 2015), the frictional cohesive moéelriinello et al., 2009; Nguyen et
al., 2017) and the stochastic model (Wei, 2014¢uBmg on the fracture behavior of
the layers, the crack strip-yield model (Dugdal@6d; Barenblatt, 1962; Bilby et al.,
1963; Burdekin and Stone, 1966) established anyteall relationship between the
tensile loads and the length of the rigid plasémds, which became a foundation to
analyze the plastic banding influence on the fr&ctproperties of the materials
(Dowling and Townley, 1975; Budiansky and Hutchimsd978; Newman, 1984;
Hillerborg, 1991; Yamada et al., 2011). Hutchinsand Suo (1992) presented a
theoretical study on the cracking of a thin adhedayer joining two identical bulk
solids and suggested a local cracking morphologyctian to characterize the
macroscopic toughness of such sandwich specimées:. theory is applicable to brittle
elastic media. Tvergaard and Hutchinson (1993, 18686sidered the crack propagation
along the interface between a thin elastic-plasticesive layer and the elastic substrates,
and numerically explored the influences of layeckhess, layer-substrate modulus
mismatch and initial residual stress in the layéei and Hutchinson (1997) numerically
analyzed the crack opening growth accounting fa fHastic dissipation in the
layer-substrate solid. Estevez et al. (2000) ingattd the competition between the
shear yielding and crazing in the glassy polymel i@ consequence on the material’'s
fracture toughness. They found that the criticallttviof a craze appears to be a key

feature in the polymer’s toughness. Through coleesnodels Wei et al. (2009) and
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Shao et al. (2012) showed that fracture toughehinwveak strips is dependent on the
spacing of such zones as well as the mechanicpkpies of the strips. Hossain et al.
(2014) numerically computed the effective toughnes$ieterogeneous media by the
so-called surfing boundary condition and demonstidhat elastic heterogeneity can
have a profound influence on fracture toughnessciwhot only toughens the material
significantly but also leads toughness asymmetry.

In summary, regardless the tremendous progress #imgontribution of the weak
strips in crack front to fracture toughening, a @ee and physically sound theory to
predict both fracture strength and fracture toughn& such materials is not available
so far. In this paper, we aim to connect the leoathanical properties of the strips to
the effective fracture strength and toughness efsiblids. We describe the problem in
detail in Section 2, and give the analytical solus to the effective fracture strength and
toughness based on a modified strip-yield modéantion 3. Numerical validation to
the theory is carried by using finite-element (Sihulations, as seen in Section 4. We
employ the theory to explore the dependence ofuradoehavior on the properties of
the strips in Section 5 and then discuss the diffee between our model and the classic

model in Section 6.

2. Problem description

We consider an infinite plate with a central slangttieoughout notch of lengtRa
and of root radiusp. The plate is elastically isotropic with Young'sodulus E and
Poisson’s ratiov except the narrow strips in the notch front, whpkestic properties
are distinct from those of the intact part, as shawFig. 2a. A far-field uniform tensile
stresso is applied in the direction perpendicular to a-@xesting notch. As we
increaseo to a critical valueg,, localized plastic deformation initiates from thetch
tip in the form of shear bands or crazing stripthva thicknesst/2 and a lengths.
Our focus is to quantify how the initiation and tieension of the strips influence the
effective fracture strength and toughness of tladepM/e assume plastic deformation is

confined within the strips and the other parts loé plate deform elastically. For
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simplicity, but without loss of physics, we congide representative constitutive
behavior in the strips, which exhibits linear dlgsstrain softening and perfectly
plasticity in response to separation. For comparisee also consider a brittle response
for the strips, as shown in Fig. 2b. We defing, ¢, and gy, in turn the yield stress,
the yield strain, and the post-softening flow stresthe strip materials, anel, is the

Oy —0s0

strain when the softening initiates at,. Hence E, = is the softening

£s0—Ey0
modulus. For the material in the strips, we assuore Mises yielding: it would yield
and deform plastically when the von Mises stress reaches the flow stress shown in
Fig. 2b.

Let §,, denote the displacement jump in the normal dioac{separation) in the
strips and §; that in the tangential direction. The critical we$ of the two
displacements aré,,. and 6., beyond which the strips may fail. Following Tvaagd
and Hutchinson (1993, 1996), we assume that ssgtiipavould fracture when the work

to separation (per unit area) of the strip equalsatcritical valuej,., i.e., J;. =

f01 a(A)dA with 2 = /(8,/8nc)? + (8:/6:)2. When brittle failure occurs, the energy

/10-60
2

release rates,;, is , Which coincides with the local fracture toughnégsgs of the

. . . . . tO')Z,O .
strip. Particularly in a purely normal separatidtuation, G,. = T with g,9 = 0y,

A=te, and gy = % For the special case of co-planar narrow stig. @2c), we may

regard it as a localized necking problem of a thlste weakened by a slender notch
with circular root obeying the von Mises yield eribn, whose stress fields in the
necking plastic zones ahead of the notch are girtol@hat of the necking problem of

notched sheets solved by Hill (1952). Therefore,hypothetically remove the plastic

regions and assume that there is a uniform digtngwof normal stressz% along the

virtual upper and lower surfaces (red) and a norsstmlss% along the virtual notch

side surfaces (green) according to the neckinglenob solution, as shown in Fig. 2d.
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Fig. 2. lllustration of the heterogeneous weak strips adothe fronts of the central
notch. (a) A remote tensile plate with a centrander notch of lengtlza and tip
radius p. In front of the notch tip, there are symmetricakeplastic strips of lengtls,
thicknesst/2 and branching angl®#. Here0 <0 <m/2, p<a, andt <K a. (b)
Representative stress-strain response of the swipsre o, and o, are respectively
their yield stress and flow stress,, and g5, are the corresponding strains, akd

denotes the softening modulus. (c) A remote temsitdgral notched plate with co-planar
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strips, which corresponds to the special casé ef 0 in (a). (d) A modified strip-yield

model for the co-planar strip case.
3. Theoretical derivation

Here we give the analytical solutions to the effecfracture strength and fracture

toughness based on in turn the co-planar plagijg stodel and the branching model
shown in Fig 2. For clarity, we le;, a}’, af9 be the effective fracture strength of the
specimens with co-planar plastic strips, with brang brittle interfaces and with

branching plastic strips, respectively, afjd ]]’Z, ]}9 are their corresponding effective

fracture toughness.
3.1. Co-planar softening plastic strip

We study the influence of strain softening in tHasgc-plastic strips on the
effective fracture toughness of the specimen shiowiig. 2c wheref = 0. Increasing
in strip lengths gives rise to the energy release resulted fronsttess relaxation by
strip front propagation. Meanwhile the original ctotof length 2a may extend.
Therefore, we need to determine the overall eneglpase rates both at the front and its
end of one of the strips, as denoted in Fig. 28oing Dugdale (1960) and Barenblatt
(1962), the plastically deformed field in the sérig of uniform stress. The plastic strips
move forward and a new virtual notch of half length- s is created. According to
Hill's solution to the necking localization problewnf a tensile sheet weakened by

circular notches obeying the von Mises yield craer(Hill, 1952), we assume that a

uniform normal stressZ% is applied on the virtual surfaces, wherg denotes the

post-softening flow stress of the strips in unihte@asion.
We now derive the energy release rate of the $toit with the elastic-perfectly

plastic response with strain softening via the rmadewn in Fig. 2d. The stress



intensity factor of the corresponding crack stiply model given by Dugdale

(Anderson, 2005) is

K = o T@ ) — 4o [ acos(:L). )
For linear elastic solids, we have:
]1=GI=K12/E- 2)(
According to Rice (1968), the energy release rateosnding the virtual notch tip,
Jiv, is identical to the-integral of the corresponding sharp crack withieglent crack
length as long as(a + s) > t. By substituting Eqn. (1) into Eqn. (2), we obtalire
energy release rate of the strip front shown in Egg

(a+s)[3mo-4v3 (= )]2
a-t+s mo— O'S acos
Jiw = e €)

To obtain the energy release rate of the strip @@ calculate the strip opening

displacement (SODJ,,- at x = a, see Fig. 2d. Aa +s) » p and (a +s) > t, we

could use the SOD of the corresponding centralkcracdel. Bilby et al. (1963) and

3a0'sol a+s b

Burdekin and Stone (1966) presented a solutionhts $0OD, i.e.,ﬁ n—, by
assuming rigid plastic deformation in the strip,enhoy, = o,,. The SOD6,, could
be obtained by superimposing two elastic cracktewla §; and §,. Here §; is the

solution to an infinite cracked plate subjectedutaform tensile stres§Z2

¥ along the

plastic region, wherer < |x| < a + s and the Westergaard stress function is given as

(Gdoutos, 2005)

_ 4950 a a 72— (a+s)2
Zg = N {\/22 aro? acos — — acot lz —(a+s)2_azl}, (4)
with z = x + iy. Integrating the stress function in Eqn. (4) wigbpect toz, we have
_ 4050 ) Vz2—(a+s)? a a z2 (a+s)2 oz z2—(a+s)2
Z; = 7 { - acos— 7Tatanl —(a+s)2_azl aco t[ /(a+s)2_azl}

At |x| = a, the imaginary part of/; is

Im(Z,) = 20 [,/S(Za + 5) acos— + aln—s] (6)




20'50

NE

Then §; at position|x| = a for the plate subjected to uniformly distributdckss
within the plastic zonex < |x| < a + s is given as

1605
o =—Im(Z,) = Jls[,/s(2a+s)acosﬁ+alnﬁ]. (7a)

The SOD of the central crack, at |x| = a for the plate subject to a remote

uniform stressog is obtained by substituting=a +s and |x| = a into the SOD

formula 6, = ‘2—”\/12 — x? (Tada et al., 2000). Hence we obtain

85, = ‘%",/s(Za ¥s). (7b)
Now 6, at the position|x| = a for the infinite central notched plate subjecteé t

remote tensiorsy and locally distributed stregse

53 in the plastic strip is obtained by

combining Egns. (7a) with (7b),

Sypr =8, — 6, = w/s(2a + 5) 16050 [W/S(ZCL +s) acos— + aln—] (8)

V3no

O'yo

Within the case of rigid plasticity in the strihere |s— = CoS with the

distributed stressz%0 (Anderson, 2005). Equation. (8) is simplified ), =

16aoyo

\/§7IE
by Bilby et al. (1963) and Burdekin and Stone (1)9@6 those authors might only took

In ‘%S It is noted that here we have a different cogfficfrom the solution given

account of theniaxial plastic flow with values,,,

The energy release rate of the strip end shouldisbaf the elastic toughness,

and the plastic contributior—= f/fi‘) 6, (Shih, 1987; Anderson, 2005). With Eqgn. (8), we

obtain the energy release rate of the strip dmfi= a) of the central notched plate

shown in Fig. 2c as

800g0+/s(2a+s) 3202 a a
Jir = Gpe + 0«/§E — 3nE° [,/S(Za +s)acos—+ alnm]. 9)

According to the energy release rate fracture rooite (Hussain et al., 1973;
Nuismer, 1975), when a strip starts to fracture, @éhergy release rate at its end should
be equal to the local fracture toughness of thip.sfiherefore, we obtain an equation
governing the fracture behavior of the plastiqstri
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2 a a
80105057 2aTS)) 32050|/SF(2a+sf) acosa+sf+a lna+sf

]Irlo:of =G+ V3E - 3nE = Jic» (108_)

where s; is the strip length whew reaches the critical state = o; to initiate
fracture in the notched specimen in tension.

With the degradation in the plastically deformedpstthe propagation of the strip
front also dissipates a certain amount of energyupé area (Eqgn. 3), denoted &s.
An equation governing the plastic propagation beiraef the strip is obtained when
s> 0:

3 (a+s)[3na—4\/§ffso acos(ﬁ)]z
v — 9mE

When s = s, and g = of in Eqn. (10b), we could obtain the length of the

= G,. (10b)

softening plastic strip and the corresponding éffecfracture strengths; when the
strip starts to fracture at its end. The expliclusons of s, and o from Eqns. (10a)
and (10b) are not available. We resort to solve ang of the following equations

numerically,

’sts(2a+sf) _ 32a03, a
GIC + 8050 3nE(a+sy) 3nE In atsg - ]IC' (118.)

and

a

3TE(J1c—Gic)+32a0’, lna+5f

(a+sf)

] = G,. (11b)

192nsf(2a+sp)Ead,

Once s¢ is available,or can be written in terms of known parameters via

— EGg 4050 a
Of = atsy) + Tan acos ats,’ (12a)
or
\/EE(]IC_GIC) + 4050 a 4aosg a (12b)

Of = 8as0/sf(2a+sy) V3w acos a+sy + m/3sf(2a+sy) n a+sy’

Finally, the effective fracture toughness of that@lwith the co-planar softening

2
elastic-perfectly plastic strips shown in Fig. Zcobtained vig/y = m;ﬁ (Anderson,

2005) and is given in the form of
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— aGS a GS 20'50 a
Jr= a+sg + 8aoggoacos a+sy [ 3n(a+ss)E + 3mE 2C08 a+sf]’ (13a)

or

2
a{3nE(]IC—GIC)+3ZJSZO [,/sf(2a+sf)acosaf5f+a lnafsf]}
J; = . (13b)

1927sf02,(2a+s)E

Now we focus on the certain amount of energy datsig per unit area during the
propagation of the strip frontzg, which should be a material property parameter
analogous to the fracture toughnegs. For simplicityy, we assume that the
corresponding energy release rdlg at the front of the plastic strip is equal to

(‘Syo _6§0)(‘7y0 —0s0)
2

to t . .
, Where 6,y = teyg = 22 and 65’0=%, as shown in Fig. 2b.

togo(1-y)?

Letting y = — define the strength-softening ratio, we rewrm‘@—Tz
Oyo
G;.(1 —y)%. Now Egns. (11a), (12a) and (13a) may be rewriien
_ tag, _ 32ay%c In a + 8y(1-v)ogo |[tsp(2a+sy) (14a)
2E]1c 3nE],¢ a+sg EJic 6m(atsy)’

with

9 _ 1 _ Ay

Oyo =1-7) 27T(a+s ) \/§TL’ A a+ss’ (14b)
and

t(1-y)? 8(y—v2 t 16y2
Jr — Oy LAV 4 acos 2 |21 + X acos—|¢, (14c)
aogyo 2E(a+sf) atsg E 6m(a+sy) 3mE atsg

respectively. For the elastic-perfectly plastiagpstnodel, G; = 0. We can then obtain
the explicit formula ofs; and o by solving Eqns. (10a) and (10b) with, = gy,.

The two equations are given as

3”E(]Ic;GIC) 37TE(GIC2_]IC) 3_"(Léc_i) 3mt Elzc)
32 2 322
sp=ae **%0 [1—e %0 ]=ge” ¥ [l """ aoyo '], (15a)
and
4 3nE(Gic—J1c) 4 3m, t E]IC)
Jyo 32a02 Oyo 3224 go?
or = yo = acosfe yo ], 15b
, = ] [ ] (15b)

respectively. The corresponding effective fractotgghness is

16 3nE(Gre—J1c) 16402 3_”(t E]Ic)

aa 0 2 aoyo 32\2

Jr = —Xac0s2 e 299%0 | = —20cos? e’ P @0 |, (15c)
3mE 3mE



Notably, for the rigid plastic strip modef;; = G, = 0. We may further simplify
Eqgn. (15a-c) to

371'E]IC
Sp = a(e¥%y — 1), (16a)
3T[E]IC

. _

oF = %acos(e 320050, (16b)
and

16a02, _%

J = 2acos?(e %), (16c)

respectively. The above equations describe thdcalritconditions when energy
dissipation is confined within the plastic co-plas#ips in front of the notch tips. Next
we will consider more complicated scenarios wheanbhing occurs in plastically

deformed strips.
3.2. Branching softening plastic strip

In Fig. 2a, we showed branching strips forming date angle with respect to the
original plane of the notch. We first consider #@iféective fracture toughness of the
specimen with weak brittle elastic strips aheathefnotch tips. The strips are modeled
as linear elastic brittle interfaces of zero thieks which have a fracture toughnggs
We assume that the notch would only crack alongatbak strips with a kinking angle
6. Based on these assumptions, we calculate the stmargy release rate of one notch
tip in the kink direction. According to Nuismer (%) and Zeng and Wei (2017), the

strain energy release rate of the crack for paaeddaflection at an anglé is given by

KZ
%",Kw <0

Gy = ' (173)
Kfeszzele >0
with (Nuismer, 1975)
Kip = %cosg [K;(1 + cos @) — 3K; sin 6], (17b)
Kyp =%COS§[K1 sin@ + K;;(3cos 6 — 1)], (17¢c)

13



where K; and K;; are the Mode | and Mode Il stress intensity factoir the primary
crack, respectively.

In the coordinate system given in Fig. 2§,= ovma and K;; = 0 (Anderson,
2005). Substitutingk; and K;; into Eqns. (17b) and (17c), then substituting theto

Eqgn. (17a), we obtain the strain energy releasefoatthe direction along anglé as,

nao?

Go = — (cos%)“. (18)

According to Griffith’s theory (1921), the fractus&ress should be insensitive to the
notch tip radius. Rice (1968) also showed dnategral surrounding the notch tip is
identical to theJ-integral of the crack tip as long as > p. Therefore, the central notch
tip’s strain energy release rate in tAedirection shown in Fig. 2a iy in Eqgn. (18).
With the energy-based fracture criterion (Hussdirale 1973; Nuismer, 1975), the

notch begins to extend along the strip whgn equals to the fracture toughness of the
interface, J;.. We hence obtain the fracture streng;h of the plate with brittle failure
in the kinked strip within0 < 6 < m/2:
EJc ]
of = n—;(secz)z. (19)
The central notched plate with fracture streng]!h has an effective fracture

na(op)
E

toughness]}’ = (Anderson, 2005). Taking Eqgn. (19) into accoung, @btain
the effective fracture toughness of the centratimed plate with weak branching brittle

elastic interfaces,
J2 = Jie(sec2)*. 20§

It shows that both the local fracture toughngssof the strips and their branching
angle determine the effective fracture toughnesthefentire tensile specimen. Eqgns.
(19) and (20) are the products of two basic pa#s,local strength or toughness of the
strips and a secant function of the deflection @nBly analogy, we utilize the effective
fracture strength and toughness expressions focdf@anar plastic strips to construct
approximate formulas of the effective fracture sgjth and toughness for the branching

plastic strips in forms of
14



of = o (secg)m/z, (21a
and

0
]]‘? =]f(sec5)m, 10

respectively, wheren is a fitting parameter to be determined from FEwsations in

next section, ands; and j/r are respectively the effective fracture strengtid a

toughness of the aforementioned plate with thelaogy plastic strips.
4. Finite-element calculations

In the previous section, we have presented sewralytical solutions to the
effective fracture strength and toughness for teatral notched specimen with
co-planar plastic strips or branching brittle stri;m nature. Here we perform FE

calculations to verify these analytical results.

4.1. The finite-element model

For structural symmetry, we consider one fourtthef notched plate shown in Fig.
3. The length and width of the plate are aboutir2gs of the length of the notch and the
strip. An isotropic elastic-plastic plane stressistdutive model is adopted for the
material in the strip while the rest of the platdatms elastically. Yielding in the strip
follows the von Mises criterion and the plasticwildollows the stress-strain behavior
with strain softening shown in Fig. 2b. The platess elements including CPS4 and
CPS3 in ABAQUS (Simulia, 2011) are used. Mesh siemsitivity is carried out. The
mesh size about one-tenth of the strip thicknegkenstrip and around the notch tip is
sufficient to guarantee the convergence of the Igsitams. During the tensile

deformation, we calculate tlleintegral of the real notch tip in the strip direct For a
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given J;. of the strip, if thel-integral equals to it, we select the length of lestically
deforming strip and the corresponding tensile stasthe critical strip lengtk, and

the fracture strengtla; of the specimen, respectively.

> , , > elastic matrix
= elastic matrix =
) )
& : &
= : -
(2} ' w
> r : >

X symmetry X symmetry

(a) co-planar case (b) branching case

Fig. 3. Finite-element models for the plate with a centmaitch and co-planar
heterogeneous strips (a) or branching strips (bpdhhe notch tip. One quarter of the

sample is used by accounting for the symmetry efptftoblem.

4.2. Deformation in the strip front

We present representative stress and strain fi@idsnd the notch front in a
specimen with co-planar softening elastic-perfeqbhastic strips in Fig. 4. The
specimen is subject to a far-field tensile stressThe following dimensions and
material parameters are used in the simulationgh wi=5mm, t = 0.036a,

E = 100GPa, v =0.3, E; = E/4 = 25GPa, 0,, = 400MPa, g5 = 240MPa, and
Jic = 4.8kN/m. We show in Fig. 4a an elastically deformed satps = 36.0MPa.
When o increases, the strip yields and propagates, astress field similar to a
crack-tip stress field emerges around the striptfras shown in Fig. 4b and Fig. 4c.

When o = 117.4MPa, the length of the plastically deforming stripckas 0.17a (see
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Fig. 4b) and th&-integral of the notch tip is equal ®4kN/m; when ¢ = 158.9MPa,
the length of the plastically deforming strip isoab 0.44a and theJ-integral of the
notch tip equals tet.8kN/m, the same as the fracture toughness of the Jingrefore,
the fracture strengtho; of the specimen is158.9MPa, and the corresponding
maximum lengths, of the plastic strip i€.44a. In Fig. 4d and Fig. 4e we further
show the fields ofs,, and¢,, at this critical point when the plastic strip $tato

fracture. The result suggests that our assumptiamiformly distributed stress on the

strip surfaces is reasonable.

Fig. 4. Contour plots around the notch tip and the cogulaoftening elastic-perfectly

(©)

400

0.094
300 i

0.071
200

0.047
100

0.024
0

MPa 0

(e)

plastic strip during the tension process of thera¢motched plate, whetbe legend for
stress is the same for (a)-(d). (a) Von Mises stfiesd when the strip is totally in elastic
deformation. (b) Von Mises stress field when a pathe strip is in plastic deformation.

(c) Von Mises stress field when the strip in plaskeformation starts to fracture. (d) The
17



stresso,, and (e) the strair,, corresponding to the fracture moment shown in (c),

where the plastically deforming zone is highlighbgdthe dashed lines.

We show in Fig. 5 the stress evolution of the bnamg strip with strain softening
during the tension of the plate, where the relg@émeters are as follows: = 5mm,
t =0.036a, 6=45°, E=100GPa, v=03, E;=E/4, oy =400MPa,
050 = 240MPa, and J;. = 4.8kN/m. When ¢ = 44.0MPa, the strip begins to deform
plastically in the matrix, as shown in Fig. 5a; Whe = 126.7MPa, about 0.25a
length of the strip is in plastic deformation, &®wn in Fig. 5b; and ab=172.5MPa,
the length of the plastically deforming strip isoab 0.89a, as shown in Fig. 5c¢. At this
moment, thel-integral of the notch tip along the branching dii@en is equal to the
strip’s fracture toughnes4.8kN/m, so the fracture strength of the specimen is
172.5MPa and the corresponding critical length of the sisi®.89a. Compared with
the co-planar strip case, the assumption on unifiress distribution within the strip is
no longer valid, as shown in Figs. 5d~f, which bsna great difficulty to derive
analytical solutions to the effective fracture tbhngss of the plate with symmetric

branching plastic strips.

(b) (©)
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Fig. 5. Contour plots around the notch tip and the bramglsioftening elastic-perfectly
plastic strip during the tension process of tharaémotched plate. (a) Von Mises stress
field when the strip begins to deform plastica{ly) Von Mises stress filed when a part
of the strip is in plastic deformation. (c) Von Mssstress field when the strip in plastic
deformation starts to fracture. (d) Radial strésshoop stress and (f) shear stress fields
in the cylindrical coordinate corresponding to frecture moment shown in (c), where

the plastically deforming zone is highlighted bg ttashed lines.
4.3. Numerical verification

Now we compare the FE results and our theoretieliptions for the central notched
plate with the co-planar plastically deformingsétiln Fig. 6, we verify the two types
of results showing the influence of the local ftaettoughnesg;. of the strips on the
plastically deforming length of the strips and be fracture strength of the specimen.
For strength-softening ratig = 1.0, 0.8 and 0.6, we see that the plastic strip leagth

the specimen fracture strength are both increasitigan increasing normalized

fracture toughnesgja’—“ of the plastic strips. Meanwhile we see good agesdgs
Y0
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between the FE results and the corresponding thearpredictions.

7

O y=1.0:FE 0.6
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Fig. 6. Comparison between the FE results and our theatefiredictions, which

verifies the influence of the fracture toughnggs of the weak plastic strips. (a)

Normalized length of the co-planar plastically defog strips as a function of

normalized fracture toughnescé’c— with different values of the softening ratio,
V0

where the following parameters are useds= 5mm, t = 0.036a, E = 100GPa,
gyo = 400MPa, J,. = 0.2~11.0kN/m, E; = 2E, E for y = 0.8, 0.6 respectively. (b)

The corresponding normalized fracture strengtihefdpecimens.

We verify the influence of the strength-softenirgfio y of the strips on the
plastically deforming length of the strips and be fracture strength of the specimen in
Fig. 7. For different softening modulugg = E/2, E/8 for the plastic strips, we
consider two different local fracture toughnessueal J;, = 5kN/m and 3kN/m.
From the FE result sets for the four combinatioms, see that with the decreasing
softening ratio, the plastic strip length in the&men increases progressively, but the
corresponding fracture strength decreases progedgsirhe FE result sets for the two
values of the softening modulug show difference, especially in the critical length
which demonstrates that the influence of the saftgnatio on the strip length and the
effective strength depends on the softening modastusvell. However, our theoretical
analysis does not take this into account and wedss@nction between the FE and

theoretical results. Fortunately, the effectivestith has a much weaker dependence on
20



E;, as shown in Fig. 7b. We also see good matchegebatthe FE results and the
theoretical predictions wheh; = E /2. In other words, if the softening modulus falls in

a proper range, our theoretical solutions showareasle predictability.

3.0 ' ' T 0451 '
E=E/2, E/8 I o
25+ % D> J,=5kN/m:FE _i 1 T aa..,,*“
--------- Eqns. (14a), (14b) ;| 0.4 R
20 o Q& J=3kN/m:FE i >
S —-—- Eqns.(14a), (14b) ,-' o034 4
ST e 0
i ° o3t S
10T / 1 NG
% D7 < \-\<1
i x Db ] 0.25 -
0.5 Re < \
papt i
: . . . . 0.2 . . . A
0 0.2 0.4 06 08 0 0.2 0.4 0.6 0.8
1-y 1-y
(a) (b)

Fig. 7. Comparison between the FE results and our theatefiredictions, which
verifies the influence of the strength-softeningjargy of the weak plastic strips. (a)
Normalized length of the co-planar plastically defmg strips as a function of —y
with different values of softening modulug and local fracture toughnegg., where
the following parameters are used:=5mm, t = 0.036a, E = 100GPa, g,, =

400MPa. (b) The corresponding normalized fracture strermjtthe specimens.

We further examine the influence of the softeningdmus E; of the strips on the
plastically deformed length of the strips and oa fitacture strength of the specimen, as
shown in Fig. 8. In each case with softening ratie- 0.8 or 0.6, we consider two
different local fracture toughness valugg, = 5kN/m and 3kN/m. The FE result sets
of the four combinations imply that an increasirgjtening modulus increases the
plastically deforming length of the strips, but dexses the fracture strength of the
specimen. However, whef; > E /2, the softening modulus has nearly no influence on
the length and the strength. As shown in Fig. &oaigh our theoretical derivation

neglects the softening modulus effect, i.e., weiagsthat the energy release rdig at

2 —1)2
the plastic strip front is equal tteJyOSTY), we see good matches between the FE results
and the theoretical predictions wheély > E /2. In sum, all the agreements between the
21



FE results and the theoretical predictions showkigs. 6, 7 and 8 indicate that our
assumption onG; and the other simplifications seem to be reas@napproximations
as long askg > E /2. Therefore, we could further use our analyticdusons Eqns.
(14), (15) and (16) to explore the influence of #teps on the effective fracture

toughness of the heterogeneous specimens.
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0.2 § 4 <ﬂ > % J,=5kN/m:FE
w-..q_ .................. — cviiiie — — - Eqns. (14a), (14b)
0.1 1 025 4 O JS3kNmiFE |
—.—--—— Eqns. (14a), (14b)
: : : 0.2 . . .
0 0.5 1.0 1.5 2.0 0 0.5 1.0 1.5 2.0
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Fig. 8. Comparison between the FE results and our theatefiredictions, which
verifies the influence of the softening modulds of the weak plastic strips. (a)
Normalized length of the co-planar plastically defmg strips as a function of
normalized softening moduluB,/E with different values of the softening ratjo and
local fracture toughnesg., where the following parameters are used= 5mm,

t =0.036a, E = 100GPa, g,, = 400MPa. (b) The corresponding normalized fracture
strength of the specimens.

We have constructed two approximate formulas fer gffective fracture strength
and toughness of the notched plate with branchaftgsing plastic strips, i.e., Eqns.
(21a) and (21b). The two equations have an unknpanameterm. We determine
m = 2.6 by fitting the FE results for the effective strémgnd toughness respectively,
as shown in Fig. 9a and Fig. 9b. Here two diffetenal fracture toughness values are
considered, and we see that both scenarios haasanable agreement between the FE

results and the fitting formulas.
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(a) (b)
Fig. 9. Determination of the value ot in Eqn. (21) by fitting the FE results, where (a)
and (b) show the fitting results of the effectivacture strength Eqn. (21a) and the
effective fracture toughness Eqn. (21b) respectiimth with m = 2.6, where the
following parameters are used = 5mm, t =0.036a, E = 100GPa, E; = E/2,
gy0 = 400MPa andy = 0.8.

5. Effective fracture toughness

For the plate with the co-planar softening elapgcfectly plastic strips, Eqns. (14a)
and (14c) indicate that the strip thicknessyield stresso,,q, strength-softening ratigr
and local fracture toughnegg. all have influences on the effective fracture tougss
of the plate. According to the dimensional analyseory (Anderson, 2005), we further
define the dimensionless strip thickne;ssyield stress% and local toughnesé;f,
where the notch lengtlm and Young’s modulusE are selected as the primary
quantities. For the plate with the branching siripgns. (20) and (21b) show that the
branching angled also has an important influence on the effectraettire toughness
of the specimen. Here we explore the influenceldhase factors of the heterogeneous

strips on the effective fracture toughness of tlaéepn detalil.
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5.1. The geometric parameters of strips

For the brittle branching strips, Eqn. (20) indesatthat the branching angle
increases the effective fracture toughnﬁﬁsin proportional to(secg)‘*. There is a
maximum amplification factor “4” ab = /2 for the effective toughness. For the
plastically branching strips, Eqn. (21b) suggektd the branching angle increases the
effective fracture toughness by approximately foilog the relationship o’(secg)“.

We see that the plate with branching strips alwesa greater effective toughness than
that with co-planar strips because bc(thacg)‘* and (secg)z-6 are greater than 1
when 0 < 8 < /2. Meanwhile, it is seen that the brittle branchstgps toughen the
central notched plate in more drastic than thetigldwsanching strips do, as shown in
Fig. 10a.

In addition, we examine the influence of the plastrip thickness on the effective
fracture toughness of the heterogeneous plate gqies.H14a) and (14c) with different
strength-softening ratigr, dimensionless yield streé’%2 and local toughnes"gb—f, as
shown in Fig. 10b. We see that the effective frectioughness of the plate has an
almost linear dependence on the thickness of th@asmar plastic strips. Decreasing the
softening ratio in turn from 1.0 to 0.6, to 0.4 aw@d0.3, the strip thickness initially
decreases the effective toughness and later iresagsand the critical softening ratio
for the tendency transition is about 0.4 (see tbe horizontal dotted line) for the case
with a = 5mm, E = 100GPa, o,, = 400MPa and J,. = 6kN/m. The horizontality

of the critical transition case suggests that tiip shickness has no influence on the
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effective toughness. Actually, the critical tramsit state also depends on the
dimensionless yield stre§é5’3 and local toughnesé’gc. As % decreases from 4e-3 to
2e-3 or as%f increases from 1.2e-5 to 4e-5, we obtain two tt@msstates from the

basic case, as illustrated by the other two hotaolmes with circles or stars. The
thickness influence may explain why there is a dempgize effect of the notch tips in

many BMGs’ fracture experiments (Lowhaphandu and/dredowski, 1998; Schroers

and Johnson, 2004; Lewandowski et al., 2006).
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Fig. 10. Influence of the strip geometric parameters omibrenalized effective fracture
toughness of the tensile central notched platenfalence of the strip branching angle,
where the following parameters are used= 5mm, t = 0.036a, E = 100GPa,

gy0 = 400MPa, y = 0.8, J;. = 6kN/m. (b) Influence of the strip thickness, where the
softening basic case is plotted using Eqns. (14@) @4c) witha = 5mm, E =
100GPa, gy, = 400MPa, y = 0.6 and J,. = 6kN/m, and the other five cases are

calculated by changing one parameter of the basie as denoted in the figure.

5.2. Plastic property of strips
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We reveal in Eqns. (14a), (14c), (15c) and (16} the plastic properties of the
strips, such as the vyield stress, have complexuentites on the effective fracture
toughness of the plate with the heterogeneoussstilfe show the influence of the
dimensionless yield stress and strength-softeniaigo ron the effective fracture
toughness in Fig. 11a and Fig. 11b, respectivehe Vield stress of the rigid plastic
strips increases the effective toughness, whileyittle stress of the elastic-plastic strips
with softening initially increases the effectivaighness and then decreases the effective
toughness. For the latter case, there is an optiielal stress for toughness. The value is
sensitive to the softening ratio, dimensionlesg dtrickness and local toughness, as
explored in Fig. 11a.

The influence of the strength-softening ratiois seen in Fig. 11b. Smaller
softening ratio could often lead to lower effectifracture toughness. At a greater
dimensionless thickness, such as 0.09, or at @&hijimensionless yield stress, such as
0.016, or at a smaller dimensionless local toughngsch as 6e-6, decreasipgcould
initially increase the effective toughness and tearease the effective toughness. The

transitional region is sensitive to the dimensiesl¢hickness, yield stress, and local

toughness.
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Fig. 11. Influence of the plastic properties of the strips the effective fracture
toughness of the tensile central notched plate watplanar heterogeneous strips. (a)

The influence of the yield stress of the stripgdicted by Eqgns. (14a), (14c), (15¢) and
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(16c) with a = 5mm, t = 0.036a, E = 100GPa, J;,, = 6kN/m and y = 0.8. For the
softening case, we also explored the sensitivity,obn other parameters, as indicated
in the figure. (b) The influence of the strengtlitsoing ratio of the strips, where the
basic case is plotted using Eqns. (14a) and (l4ith w= 5mm, t = 0.036a,

E = 100GPa, gy, = 800MPa and J,. = 6kN/m, and the other six cases are calculated

by changing one parameter of the basic case aseatkimothe figure.
5.3. Local fracture toughness of strips

We now explore the influence of the local fracttwaghness/;. of the strips on
the effective fracture toughness of the plate hasve in Fig. 12. It is seen that the local
fracture toughness has a similar impact in thedrigilastic strip model, the
elastic-perfectly plastic strip model and the sufig elastic-perfectly plastic strip
model. With the increasing local toughness, theatiffe toughness converges to a
steady number, which implies the existence of amemic choice of the local fracture
toughness for toughening. Meanwhile, a greateenofy ratioy or a smaller thickness

t gives rise to a higher effective toughness asthady state.
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Fig. 12. Influence of the local fracture toughness of thestic strips on the effective
fracture toughness of the tensile central notchiate pwith co-planar heterogeneous
strips, where the rigid plastic, elastic-plasticd asoftening plastic basic cases are

predicted by Eqns. (14a), (14c), (15c) and (16cdhwi = 5mm, t = 0.1a, E =
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100GPa, oy, = 400MPa and y = 0.8, and the other four cases are obtained by

changing one parameter of the basic case as denoted

6. Discussion

Now we compare the theoretical solutions derivedhfour notch strip-yield model
to the results derived from the classic crack stigdd model (i.e., D-B model).
According to Dugdale and Barenblatt’s rigid plasassumption (Dugdale, 1960;
Barenblatt, 1962), the uniform normal stresg, is applied on the virtual crack
surfaces and there is the relationsléip= G,. = 0. We obtain the following solutions
to the plastic strip lengtls;, the effective fracture strengtby and the effective

fracture strength toughneg$ for the tensile fractured plate respectively:

TIE]IC
2
sp = a(e®™vo — 1), (22a
) _TIE]IC
oz 2
of = nyo acos(e °%7¥0), (22b)
4ac? _nEjéc
Jr = Fyoacosz(e 89730, (22¢)

It is noted that Eqgns. (22a), (22b) and (22c) hthee same form but different
coefficients than Egns. (16a), (16b) and (16c)peetvely. Because the material is
supposed to obey the von Mises yield criterionhi@ present work, a uniform normal
loading stressz%0 is assumed on the virtual notch surfaces accortdirtdjll’s solution
to the necking localization problems (Hill, 195Zherefore, the two models both with

the rigid plasticity assumption predict differeesults: the D-B model predicts greater

yield-strip length, smaller fracture strength amdaller toughness than the presented

20'50

with the 73

assumption, as shown in Fig. 13. However, if thesta yield criterion is
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used, the normal stress on the virtual surfacesldt® o, (Hill, 1952), i.e., the same
as that in the D-B model. According to Hill (195Zhe uniform normal stress
assumption is reasonable only when the plastip $&mgth is approximately greater
than the notch root radius. It implies that all gredictions with small plastic length are
lack of accuracy and should be neglected, includihg predictions of the

elastic-perfectly plastic model and the softenitagfic model, as seen in Fig. 13.
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D-B model
gl The prese.n.ted moFieI i 08 |
Rigid plastic
——— Elastic plastic
6 | — — - Softening, y=0.8 30.6 -

0 2 4 6 8 0 2 4 6 8
Sy JaE x1.0e-5 1 JaE x1.0e-5
(@) (b)
12 |
10 }
8 -7
<) e
X 6 7/
~T /4
4 7
2 L
0 2 4 6 8
ch/aE x1.0e-5
(c)

Fig. 13. Comparison of the D-B model (Dugdale, 1960; Balamb1962) and the
present notch yield-strip model, where the follogvparameters are used:= 0.005m,

E =100GPa, 0,9 =400MPa, G, =2000N/m and J,. = 0~40000N/m . (a)
Normalized length of the co-planar plastic stripghe tensile fractured plate predicted
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by Egns. (22a), (16a), (15a) and (14a). (b) Theesponding normalized fracture
strength of the plate predicted by Eqgns. (22b),bJ1615b) and (14b). (c) The
corresponding normalized effective fracture tougsneredicted by Eqns. (22c), (16c),
(15c¢) and (14c).

Heretofore, we assume the symmetrical branchingsswith respect to the crack
plane near the notch tips in the plate. In thegres of imperfections, it is common that
one kinking plastic strip appears first and thea siymmetrical one follows. That is
typically seen in BMG specimens with notches subgdo mode | type of loading.
However, the strengthening and toughening influesicether strip types having the
same material constitutive relationship but différgeometry is still worth exploring.
As demonstrated in Fig. 14, we have obtained theeSHIts of two non-branching strip
scenarios with one kinking plastic strip around twéch tip, which shed light on the
understanding of the strip geometry influence. Vée shat the one kinking strip
increases the effective fracture strength (obvipwso the toughness) much greater
than the symmetrical branching strips do. In thei@adar case of fracture strength, we
found that when the fitting value is selected as 5.1 our solution Eqn. (21a) capture
well with the dependence of fracture strength anbhing angle. It seems to imply that
the strips with different geometry may only resulta different value of the fitting
parameterm in Eqn. (21). Therefore, our conclusions about $krengthening and
toughening influence of the yield-strip ought to dugalitatively the same for different

strip geometries.
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Fig. 14. Comparison of the effective fracture strength fitve branching and
non-branching plastic strip scenarios using FE ktians. The following parameters
are used:a = 5mm, t = 0.036a, E =100GPa, E; =E/2, oy, =400MPa and

y = 0.8. The exponentn in Eqgn. (21a) is 5.1.
7. Conclusions

In this work, we investigate the influence of hetggneous strips on the effective
fracture strength and toughness of the centralheot@late via theoretical analysis and
FE calculation based on a notch strip-yield modetifired from the crack strip-yield
model (Barenblatt, 1962; Dugdale, 1960). We dematesthow the strips’ branching
angle, thickness, yield stress, flow stress, softemodulus and fracture toughness
affect the macroscopic fracture strength or fractmughness in such a plate. We find

that the effective fracture toughness of the phagenly depends on five dimensionless

quantities: the strips’ branching anghe dimensionless thicknes;s yield Stress%,

local fracture toughnes% and strength-softening ratip. The influence factors of the

heterogeneous strips on the toughening behaviorrarealed analytically, and the
following conclusions are drawn:

(1) Branching brittle interfaces toughen the platéed the effective fracture

4
toughness of the plate are proportional(’em:cg) . The branching angle of the plastic

strips increases the effective fracture toughndsthe plate and is proportional to

2.6
(secg) , While the effective fracture toughness may eiiherease or decrease when

the strip thickness increases. The exact trendrisive to the strength-softening ratio,
dimensionless yield stress and local toughnedseo$trips.

(2) Within a certain range of the yield stress anftening ratio, the plastic strips
maximize the effective fracture toughness of thetepl Our results on the toughening

influence of plastic strips address some fundanhersjpects about the macro fracture
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toughness of the local heterogeneous solid. Thegemt a theoretical guide for the

design of both strong and tough materials withliaed plastic strips.
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Highlights

1) A notch strip-yield model accounting for strain softening effect is
presented,;

2) Analytica solutions for the effective fracture strength and
toughness solution are obtained for particular boundary-value problems;

3) Governing dimensionless quantities on fracture toughness are

identified.



