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T. Gao1, Z. Wang2,3,† and P. A. Milewski1

1Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK
2Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

3School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China

(Received 16 November 2018; revised 19 June 2019; accepted 25 June 2019)

This work is concerned with waves propagating on water of finite depth with a
constant-vorticity current under a deformable flexible sheet. The pressure exerted by
the sheet is modelled by using the Cosserat thin shell theory. By means of multi-scale
analysis, small amplitude nonlinear modulation equations in several regimes are
considered, including the nonlinear Schrödinger equation (NLS) which is used to
predict the existence of small-amplitude wavepacket solitary waves in the full Euler
equations and to study the modulational instability of quasi-monochromatic wavetrains.
Guided by these weakly nonlinear results, fully nonlinear steady and time-dependent
computations are performed by employing a conformal mapping technique. Bifurcation
mechanisms and typical profiles of solitary waves for different underlying shear
currents are presented in detail. It is shown that even when small-amplitude solitary
waves are not predicted by the weakly nonlinear theory, we can numerically find
large-amplitude solitary waves in the fully nonlinear equations. Time-dependent
simulations are carried out to confirm the modulational stability results and illustrate
possible outcomes of the nonlinear evolution in unstable cases.

Key words: shear waves, solitary waves, surface gravity waves

1. Introduction

Hydroelastic waves, which describe interactions between deformable ice sheets
and water flows beneath, attract a growing interest due to their contribution to
climate studies and ice-sheet breakup (Massom et al. 2018) and increasing human
activities in polar regions. Hydroelastic waves also enjoy a wide range of engineering
applications such as airfields built on floating ice, ice breaking with air-cushioned
vehicles and manmade very large floating structures. The typical wavelength of
hydroelastic waves varies from tens to hundreds of metres, and in consequence, these
wave phenomena are easily observable and measurable. A number of field studies
have been conducted at McMurdo Sound in Antarctica (Squire et al. 1988) and at
Lake Saroma in Hokkaido, Japan (Takizawa 1985, 1988). For a quick review, the
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readers are referred to Ashton (1986), Squire et al. (1996), Părău & Dias (2002) and
references therein.

As stated in Korobkin et al. (2011), a major difficulty with studying hydroelastic
waves is the modelling of ice deformations. Linear Euler–Bernoulli beam theory
has been intensively used in the early development of hydroelastic waves, where
the pressure P exerted by the elastic sheet due to flexing is expressed as P= Dηxxxx
where D is the flexural rigidity, x is the direction of wave propagation and η describes
free-surface fluctuations. It is a very good approximation while dealing with small
deformations of the elastic cover. The ice breaks due to large wave amplitude where
the elastic model is no longer appropriate. By Goodman et al. (1980), it happens
when the strain in the ice is greater than some critical value that is 4.3× 10−5 for sea
ice and 2.14× 10−4 for pure ice. The monograph by Squire et al. (1996) summarises
linear theories prior to 1996. However the model becomes inaccurate while describing
waves of finite amplitude. Observations of intense waves-in-ice events reported by
Marko (2003) highlight this limitation. To compute accurately large deformations
of the sheet, the nonlinear Kirchhoff–Love (KL) theory of plates was first adopted,
where the pressure is in the form of P = Dκxx (κ is the curvature of the surface).
Based on the KL model, Forbes (1986) computed steady periodic hydroelastic waves
of finite amplitude by using a high-order series-expansion technique. For the moving
load problem, Părău & Dias (2002) derived a forced nonlinear Schrödinger equation
(NLS), by means of which the authors proved the existence of solitary waves for
shallow to moderate water depths. More recently, Milewski et al. (2013) numerically
found dark solitary waves and depression generalised solitary waves in deep water in
the full Euler equations by using a conformal mapping technique. The existence of
these solutions with non-decaying oscillatory tails in the far field was due to the fact
that the associated NLS at the bifurcation point is of defocussing type. As a result,
free solitary waves can only exist at finite amplitude, and they are numerically found
by Milewski et al. (2011). This is in contrast with capillary–gravity solitary waves in
deep water bifurcating from infinitesimal periodic waves (Wang & Milewski 2012).
A numerical approach of truncating series was adopted by Vanden-Broeck & Părău
(2011) to compute nonlinear periodic waves and elevation generalised solitary waves
in finite-depth water, and infinitely many families of solutions were found.

Toland (2007) proposed a novel model on the pressure exerted by the ice sheet
based on the Cosserat theory of hyperelastic shells satisfying Kirchhoff’s hypotheses,
which takes the form

P=D
(
κss +

1
2κ

3
)
, (1.1)

where s is the arclength parameter. This new model is consistent with conservation of
elastic potential energy and has become the standard model for both theoretical and
numerical analyses. Guyenne & Părău (2012) discovered depression and elevation
branches of solitary waves below the minimum of the phase speed under this
framework. Their results were extended by Wang et al. (2013) to the global
bifurcation in the subcritical regime. Gao & Vanden-Broeck (2014) revisited the
problem and showed that elevation generalised solitary waves exist in finite depth
but discrete embedded solitons featuring decaying tails were not found. Unsteady
computations were performed by Guyenne & Părău (2012) in deep water and by
Guyeene & Părău (2014) in shallow water using direct numerical simulations based
on the truncated Dirichlet–Neumann operator. The dynamics of hydroelastic solitary
waves in the full Euler equations was carried out by Gao et al. (2016) in deep water
and by Gao et al. (2018) for shallow water. In addition, new asymmetric solitary
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Rotational hydroelastic waves 57

waves were also discovered in this context by the same authors (Gao et al. 2016,
2018). Stability of two-dimensional hydroelastic periodic waves was investigated by
Trichtchenko et al. (2019) via asymptotic analysis for modulational instability and
linear spectral analysis using the Fourier–Floquet–Hill method. Besides, numerical
computations were used to analyse high-frequency instabilities in addition to the
modulational instability.

The aforementioned literature all bear on the irrotational flow of inviscid fluids.
However, sea surface waves are frequently accompanied by underlying currents.
Currents, the dominant horizontal water movements in the ocean, are normally
considered to be steady in view of their large temporal and spatial scales in
comparison with surface waves. But in many situations the current velocity in
the vertical direction is not constant (e.g. tidal currents and wind-driven currents),
and the simplest configuration is a linear shear or constant-vorticity current. Surface
gravity waves propagating on linear shear currents were investigated intensively
by many authors. Of note are the works of Thomas et al. (2012) who derived
nonlinear Schrödinger equations (such an equation was called a vor-NLS in
Thomas et al. (2012)) to investigate the modulational instability of wavetrains,
Francius & Kharif (2017) who conducted the stability analysis based on a linear
spectral method, Guyenne (2017) who proposed a high-order spectral method using
the Dirichlet–Neumann operator, Simmen & Saffman (1985), Teles Da Silve &
Peregrine (1988), Vanden-Broeck (1994) who computed steady periodic waves in
the full Euler equations using hodograph transformation and the boundary integral
method, Choi (2009) who numerically studied the Benjamin–Feir instability via
a time-dependent conformal mapping technique and Riberio et al. (2017) who
investigated the flow structure beneath rotational water waves. More recently Hsu
et al. (2018) derived a nonlinear Schrödinger equation for surface capillary–gravity
waves on water of finite depth in the presence of constant vorticity to conduct a
modulational stability analysis. In the case of three-dimensional space, Milewski &
Wang (2013) derived a Benney–Roskes–Davey–Stewartson model which was used to
compute fully localised lumps. Fully nonlinear computations of the three-dimensional
solitary waves were achieved by Trichtchenko et al. (2018).

In the context of hydroelastic waves, there is still much to explore in wave–current
interactions. Peake (2001, 2004) studied the interaction between a uniform current
and the elastic plate, and showed that a mean flow has a significant influence on
hydroelastic waves. Gao et al. (2019) computed travelling hydroelastic solitary waves
and their dynamics in the presence of a linear shear current in the limit of deep
water. Bhattacharjee & Sahoo (2009) investigated the effect of a linear shear current
profile on the propagation of flexural–gravity waves in the linear shallow-water
theory, and the transmission and reflection coefficients were derived by imposing
conservation of energy flux and the continuity of the vertical deflection of the ice
sheet. Another relevant example is the flapping of an elastic plate in a confined
channel. It enjoys quite a range of engineering and biomedical applications, for
example, energy harvesting devices (Balint & Lucey 2005; Jaiman et al. 2014;
Shoele & Mittal 2016). A linear shear current in the presence of viscosity can be
achieved experimentally by moving horizontally the rigid bottom with a constant speed
(see figure 1a) or by dragging the plate with a specific value of speed U∗ which
equals the product of the fixed vorticity and the depth of water (so the velocity at
the bottom is zero). A schematic is shown in figure 1.

In this work, we are concerned with hydroelastic waves on water of finite depth
interacting with a linear shear current in inviscid flows. We derive a nonlinear
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Plate
U*

FIGURE 1. Schematic of the relevant problems.

Schrödinger equation for quasi-monochromatic wavetrains and discuss the various
behaviours of the coefficient of the nonlinear term from the NLS at different
parameter values. Fully nonlinear computations of solitary waves, as well as the
Benjamin–Feir instability, are performed to validate the predictions of the NLS and
describe behaviour beyond its applicability. The rest of the paper is structured as
follows. The mathematical formulation of the problem is presented in § 2, following
by the derivation of the NLS in § 3, analysis of the modulational instability in § 4 and
the numerical scheme for the primitive equations in § 5. The fully nonlinear results
are presented in § 6, and a conclusion is given in § 7.

2. Mathematical formulation

We consider an incompressible flow of an inviscid fluid in a two-dimensional
Cartesian coordinate system, where gravity points in the negative y direction. The
velocity field is denoted (u, v) in the fluid region bounded below by the horizontal
rigid bottom y=−h and above by the elastic sheet y= η(x, t). The Euler equations
governing the motion of an ideal fluid body are

∂u
∂x
+
∂v

∂y
= 0, (2.1)

∂u
∂t
+ u

∂u
∂x
+ v

∂u
∂y
=−

Px

ρ
, (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=−

Py

ρ
− g, (2.3)

where P is the pressure, ρ the density of the fluid and g the acceleration due to gravity.
The boundary conditions of the present problem are

v = ηt + uηx, at y= η(x, t),

P− Patm =D
(
κss +

κ3

2

)
, at y= η(x, t),

v = 0, at y=−h,

 (2.4)

where D is the flexural rigidity of the elastic cover and Patm is the atmospheric
pressure, assumed to be zero. Here κ is the curvature of the deformable sheet, and
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y

x

gh

y = ˙(x, t)

U0

FIGURE 2. Schematic description of the present problem.

κss is its second derivative with respect to the arclength parameter s. The vorticity is
denoted by

Ω ,
∂v

∂x
−
∂u
∂y
. (2.5)

The governing equation for the vorticity

Ωt + uΩx + vΩy = 0, (2.6)

indicates that if the initial vorticity is constant everywhere in the fluid body, it remains
unchanged as time evolves. By assuming a constant vorticity Ω =Ω0, it can be easily
checked that

(u0, v0)= (U0 −Ω0y, 0), in − h< y< 0, (2.7)

is a solution to the Euler equations, satisfying all boundary conditions, where U0 is
a constant velocity at y = 0. For this two-dimensional problem, we assume that the
velocity field is an irrotational perturbation of the linear shear current, namely,

(u, v)= (u0, v0)+∇φ, (2.8)

where φ is the potential function of the irrotational part (a schematic description is
shown in figure 2). Substituting (2.8) into (2.1)–(2.4) yields

φxx + φyy = 0, for − h< y<η(x, t),
φy = 0, at y=−h,

ηt = φy − ηx (u0 + φx) , at y= η(x, t),

φt + u0φx +
1
2
|∇φ|2 +Ω0ψ + gη+

D
ρ

[
1
2
κ3
+ κss

]
= B(t), at y= η(x, t),


(2.9)

where ψ is the streamfunction of the fluid, and the harmonic conjugate of φ as well.
It is noted that the integral constant B(t) can be absorbed by redefining the velocity
potential φ, and we can always assume U0 = 0 through a moving frame of reference.
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3. Normal form analysis
In this section, we sketch the derivation of the cubic nonlinear Schrödinger equation

and related modulational approximations by the method of multiple scales. By taking
the derivative of the last equation of (2.9) with respect to x and making use of the
Cauchy–Riemann relation to eliminate ψ , we arrive at

φtx + ηxφty + φx(φxx + ηxφxy)+ φy(φxy + ηxφyy)−Ω0η(φxx + ηxφxy)

−Ω0ηxφx +Ω0(−φy + ηxφx)+ gηx +
D
ρ

[
1
2
κ3
+ κss

]
x

= 0. (3.1)

For a weakly nonlinear wavetrain, we can assume φ and η are of order ε, where ε is
a positive small parameter that measures the wave slope. It follows that the velocity
potential on the free surface can be expanded about y= 0 as

φ(x, η, t)= φ(x, 0, t)+ ηφy(x, 0, t)+
η2

2
φyy(x, 0, t)+O(ε4). (3.2)

Therefore expanding the kinematic and dynamic boundary conditions about y = 0
yields

ηt − φy = ηφyy − ηxφx +Ω0ηηx +
η2

2
φyyy − ηηxφxy, (3.3)

gηx +
D
ρ
ηxxxxx + φtx −Ω0φy

=−ηφtxy − ηxφty − φxφxx − φyφxy +Ω0ηφxx +Ω0ηφyy −
η2

2
φtxyy − ηηxφtyy

− ηφxφxxy − ηxφxφxy − ηφyφxyy − ηxφyφyy +Ω0

[
η2φxxy + ηηxφxy +

η2

2
φyyy

]
+

D
ρ
∂x

[
5
2
η2

xηxxxx +
5
2
η3

xx + 10ηxηxxηxxx

]
. (3.4)

Here we retain the terms valid up to the third order of ε which is sufficient for our
purposes. We now consider the development of a fast oscillatory wavetrain whose
envelope features a slowly evolving structure. To derive the governing equation of
the wave envelope, we introduce ‘slow’ variables X = εx, T = εt and τ = ε2t, and
pick ei(kx−ωt) as the carrying wave. Three distinct cases will arise out of the analysis:
the general case (denoted ‘non-resonant’ below) and two resonant cases: the Wilton-
ripple-like resonance where the harmonic is resonant with the carrier wave and the
long-wave/short-wave resonance where the mean flow induced by the carrier wave is
resonant with the long-wave mode of the system.

3.1. Non-resonant case
The derivation of the standard NLS is well documented (Davey & Stewartson 1974;
Djordjevic & Redekopp 1977) and therefore omitted here. Some intermediate results
can be found in appendix A. Substituting the ansatz

η= εA11(X − cgT, τ )eiΘ
+

∞∑
n=2

εn
n∑

j=0

Anj
(
X − cgT, τ

)
ejiΘ
+ c.c., (3.5)
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Rotational hydroelastic waves 61

φ =

∞∑
n=1

εn
n∑

j=0

φnj(X − cgT, y, τ )ejiΘ
+ c.c., (3.6)

where Θ = kx− ωt and c.c. represents the complex conjugate into the kinematic and
dynamic boundary conditions (3.3)–(3.4) yields at the leading order,

iωA11 + k sinh(kh)ϕ11 = 0,

i
(

gk+
D
ρ

k5

)
A11 + [ωk cosh(kh)−Ω0k sinh(kh)]ϕ11 = 0,

 (3.7)

where ϕ11 = φ11/ cosh(k(y + h)). The existence of a non-zero solution results in the
dispersion relation

ω2
−Ω0 tanh(kh)ω− k tanh(kh)

(
g+

D
ρ

k4

)
= 0. (3.8)

At the second order, one gets

(A11)T + cg(A11)X = 0, (3.9)

where cg = ωk is the group speed (its explicit form is presented in (A 7) in
appendix A). At the cubic order, after a considerable amount of algebra, one obtains
the solvability conditions that result in the equations governing the relation between
the mean flow φ10 and the carrier wave amplitude A11

[cg(cg −Ω0h)− gh]φ10X =

[
2gω

tanh(kh)
+

cgω
2

sinh2(kh)

]
|A11|

2, (3.10)

and the equation for the modulation of the carrier wave

iA11τ + λA11XX +
α1

2ω2 coth(kh)−Ω0ω
A11φ10X +

α2

2ω2 coth(kh)−Ω0ω
|A11|

2A11 = 0,

(3.11)

where

λ=
ωkk

2
, (3.12)

α1 =−kω
{

hω2

cg sinh2(kh)
+

(
1−

hΩ0

cg

)
[2ω coth(kh)−Ω0]

}
(3.13)

α2 = −
2kω2

cg tanh(kh)

[
ω2

sinh2(kh)
− 2Ω0ω coth(kh)+Ω2

0

]
− kω

[
ω2

sinh2(kh)
− 2Ω0ω coth(kh)+Ω2

0

]
D1

D0

+ 2k2ω[2ω coth(kh)−Ω0] cosh(2kh)
D2

iD0
− 2k2ω2 sinh(2kh)

D2

iD0

− 4k2ω3 coth(kh)+ 3Ω0k2ω2
+

5D
ρ

k7ω. (3.14)
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62 T. Gao, Z. Wang and P. A. Milewski

The explicit form of D0, D1 and D2 can be found in appendix A. Combining (3.10)
and (3.11) yields a single equation for the envelope A11 (for the sake of simple
notations, we write A at the place of A11),

iAτ + λAXX +
α

2ω2 coth(kh)−Ω0ω
|A|2A= 0, (3.15)

where

α = α2 + α1

[
2gω

tanh(kh)
+

cgω
2

sinh2(kh)

]/
[cg(cg −Ω0h)− gh]. (3.16)

Equation (3.15) matches with Thomas et al. (2012) in the case of gravity waves
with vorticity where D = 0. We call (3.15) the vor-NLS which reduces to the
form in Milewski & Wang (2013) in absence of the linear shear current and for a
one-dimensional free surface.

3.2. Second harmonic resonance
The second harmonic resonance takes place when a wave of a specific wavenumber
k† propagates at the identical speed of its second harmonic, i.e. ω(2k†)= 2ω(k†), or
equivalently

tanh(k†h)ω2(k†)−
15D
ρ
(k†)5 = 0. (3.17)

This condition for capillary–gravity waves gives rise to the Wilton ripples (Wilton
1915). The coefficient α of the nonlinear term from the vor-NLS (3.15) becomes
singular due to D0 = 0. A modified multi-scale analysis is required, including the
harmonic mode 2 in the leading order, and obtaining solvability conditions at quadratic
order. The expansion of η up to ε2 is therefore

η = εA11(X, T)eiΘ
+ εA12(X, T)e2iΘ

+ ε2A21(X, T)eiΘ

+ ε2A22(X, T)e2iΘ
+ · · · + c.c., (3.18)

with a corresponding expansion for φ. Solving the Laplace equation with the
kinematic boundary condition on the bottom yields

φ = εϕ10 + εϕ11(X, T) cosh(k(y+ h))eiΘ
+ εϕ12(X, T) cosh(2k(y+ h))e2iΘ

+ ε2ϕ20 + ε
2
[ϕ21(X, T) cosh(k(y+ h))− i(y+ h) sinh(k(y+ h))]eiΘ

+ ε2
[ϕ22(X, T) cosh(2k(y+ h))− i(y+ h) sinh(2k(y+ h))]e2iΘ

+ · · · + c.c.
(3.19)

We perform similar calculations as presented in McGoldrick (1970) or Jones (1992)
by substituting the ansatz (3.18)–(3.19) into boundary conditions (3.3), (3.4) and
collecting the coefficients of ε2eiΘ and ε2e2iΘ . At the leading order, the solvability
conditions for the first harmonic and the second harmonic give two separate equations

ω(k)2 −Ω0 tanh(kh)ω(k)− k tanh(kh)
(

g+
D
ρ

k4

)
= 0, (3.20)
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Rotational hydroelastic waves 63

4ω(k)2 − 2Ω0 tanh(2kh)ω(k)− 2k tanh(2kh)
(

g+
16D
ρ

k4

)
= 0. (3.21)

They are equivalent when the second harmonic resonance takes place, i.e.
ω(2k) = 2ω(k). At the second order, the solvability conditions for (A21, ϕ21) and
(A22, ϕ22) result in the second harmonic resonance equations for k= k†

A1T + cg,1A1X =−ikc1A2A∗1, (3.22)

A2T + cg,2A2X =−ikc2A2
1, (3.23)

where we have used Aj for A1j for j= 1, 2 to ease the notations, the group velocities
are given by cg,j =ωk( jk) and

c1 =
Ω2

0 + [3 coth2(kh)− 1]ω2
− [3 coth(kh)+ tanh(kh)]Ω0ω

2ω coth(kh)−Ω0
,

c2 =
Ω2

0 + [3 coth2(kh)− 1]ω2
− [3 coth(kh)+ tanh(kh)]Ω0ω

4ω coth(2kh)−Ω0
.

 (3.24)

The equations can be solved analytically in the unmodulated case, i.e. ∂X = 0.
Following McGoldrick (1970), the amplitudes are represented in polar coordinates
Aj = ajeiθj where aj and θj are the real amplitudes and phases. Separating the real
and imaginary parts of (3.22) and (3.23) yields a dynamical system of four ordinary
differential equations for a1, a2, θ1 and θ2

a1T =−kc1a1a2 sin θ,
a2T = kc2a2

1 sin θ,
a1θ1T =−kc1a1a2 cos θ,
a2θ2T =−kc2a2

1 cos θ,

 (3.25)

where θ = 2θ1 − θ2 is the so-called relative phase. This relative phase reduces the
dimension of the problem by one. By Simmons (1969), two conserved quantities can
be found by making use of (3.25)

a2
1 +

c1

c2
a2

2 = E, (3.26)

a1a2 cos θ =L, (3.27)

where E and L are two constants that depend on the initial conditions, resulting in
the integrability of the system. We note that the ratio c1/c2 is always positive and
c1/c2 = 2 in the irrotational case of deep water. The dynamical system can be
solved explicitly in Jacobi elliptic functions as shown in McGoldrick (1970) (also
see figure 1 from that paper for the phase portrait). All the features of the second
harmonic resonance of a capillary–gravity wave are inherited in the present problem.
In particular, the Wilton ripples have no variation in the relative phase. As the result
is well known, we omit the details and the reader can refer to McGoldrick (1970). To
perform a modulational stability analysis, one is required to investigate the expansion
at the cubic order where two counterpart equations to the vor-NLS can be obtained
for A1 and A2. This was done for irrotational resonant capillary–gravity waves by
Jones (1992) where coupled NLS models were derived and used to conduct stability
analysis for travelling-wave solutions. It was shown that the instability always appears
provided the modulational wavenumber (δ in their notation) is sufficiently small for a
given steady solution – similarly to the Benjamin–Feir instability for a single carrier
wave. This claim will be examined numerically for the present problem in § 6 within
the full Euler equations.
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3.3. Short-wave/long-wave interaction
Interactions among short waves and long waves occur in finite depth when the group
speed cg of the short-wave envelope matches the phase speed of the long wave
denoted by c0 (Benney 1977) where

c0 =
1
2(Ω0h+

√
4gh+Ω2

0 h2). (3.28)

Under such circumstance, the coefficient α from (3.16) becomes singular since

cg(cg −Ω0h)= gh. (3.29)

McGoldrick (1970) studied the corresponding problem for irrotational capillary–gravity
waves and his arguments and analysis remain valid for the current problem. The new
scalings in this case are

X = ε2/3x, T = ε2/3t, τ = ε4/3t. (3.30a−c)

Again we expand η(X − cgT, τ ) and φ(X − cgT, y, τ )

φ = ε2/3ϕ0 + ε[ϕ10 + ϕ11 cosh(k(y+ h))eiΘ
] + ε4/3

[ϕ20 + ϕ21 cosh(k(y+ h))eiΘ
]

+ ε5/3
[ϕ30 + ϕ31 cosh(k(y+ h))eiΘ

− i(y+ h) sinh(k(y+ h))eiΘϕ11X ]

+ ε2

[
−
(y+ h)2

2
ϕ0XX + ϕ40 + ϕ41 cosh(k(y+ h))eiΘ

− i(y+ h) sinh(k(y+ h))eiΘϕ21X

]
+ ε7/3

[
−
(y+ h)2

2
ϕ10XX + ϕ50 + ϕ51 cosh(k(y+ h))eiΘ

− i(y+ h) sinh(k(y+ h))eiΘϕ31X

−
(y+ h)2

2
cosh(k(y+ h))eiΘϕ11XX

]
+ · · · + c.c. (3.31)

η = εA11eiΘ
+ ε4/3(A20 + A21eiΘ)+ ε5/3(A30 + A31eiΘ)

+
2(A40 + A41eiΘ)+ e7/3(A50 + A51eiΘ)+ e8/3(A60 + A61eiΘ) · · · + c.c. (3.32)

The short-wave envelope is described by A11 while ϕ0 is the long-wave velocity
potential. Note that the nonlinearity of the elasticity only appears at O(ε3) and the
only flexural contribution to the analysis is from the linearised bending term Dηxxxx.
The dispersion relation (A 5) can be retrieved by the solvability conditions at the
mode eiΘ from O(ε), O(ε4/3) and the group speed (A 7) can be found from O(ε5/3)
and O(ε2). The zero mode from O(ε2) reveals the resonant condition (3.29). Finally
the evolution equation can be discovered by the solvability condition at the mode eiΘ

from O(ε7/3)

iAτ + λAXX = δAϕ0X , (3.33)

where

λ=
ωkk

2
, (3.34)
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δ = k
[

1+
(cg −Ω0h)(ω2(coth2(kh)− 1)− 2Ω0ω coth(kh)+Ω2

0 )

g(2ω coth(kh)−Ω0)

]
. (3.35)

We have replaced A11 by A to simplify notation. In the irrotational case, the coefficient
δ is equivalent to that from McGoldrick (1970) where the flexural term in ω is
replaced by a surface tension term. The kinematic boundary condition at order
O(ε8/3) gives

ϕ0τX =−

[
cgω

2
+ gω sinh(2kh)

(2cg −Ω0h) sinh2(kh)
−

gΩ0

2cg −Ω0h

]
(|A|2)X. (3.36)

We may write (3.33) in a more conventional form by letting

B(X − cgT, τ )= δϕ0X , (3.37)

and then

iAτ + λAXX = AB,
Bτ =−∆(|A|2)X,

}
(3.38)

with

∆= δ

[
cgω

2
+ gω sinh(2kh)

(2cg −Ωh) sinh2(kh)
−

gΩ
2cg −Ωh

]
. (3.39)

When Ω = 0, the coefficient agrees with that found in Kawahara et al. (1975) which
corrects the coefficient in Djordjevic & Redekopp (1977).

It is not difficult to show that ∆ is always positive. Then (3.38) allows travelling-
wave solutions in terms of Jacobi elliptic functions as presented in Djordjevic &
Redekopp (1977). Following that paper, we consider a uniform wavetrain solution
(A0e−iB0τ , B0). By performing a modulational perturbation of the form

A= (A0 + ã)e−iB0τ , B= B0 + b̃, (3.40a,b)

with

ã= (areal + iaimag)eiK(X−cgT)eiστ , (3.41)

b̃= beiK(X−cgT)eiστ . (3.42)

Substituting (3.40) back into (3.38) and linearising, it is found that σ must satisfy

f (σ )= σ 3
− λ2K4σ + 2λ1K3A2

0 = 0. (3.43)

Here, f admits two stationary points σ± = ±|λ|K2/
√

3. The sufficient and necessary
condition for σ only having real solutions and therefore stability is f (σ+) < 0 since
f (σ−) is always positive. After simplification, we end up with the stability condition

K >K∗ =
√

3
(
∆|A|2

λ2

)1/3

. (3.44)

In conclusion – and similarly to the Benjamin–Feir instability – the uniform wavetrain
is unstable subject to a modulational perturbation with a modulation wavenumber
less than the threshold K∗. Equivalently, there always exists a sufficiently long
modulational wavelength for the appearance of instability. The theory will be
examined numerically in the full Euler equations in § 6.
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4. Modulational instability
In this section, we discuss how the problem’s parameters affect the modulational

instability of small-amplitude periodic waves using the vor-NLS

iAτ + λAXX + γ |A|2A= 0, (4.1)

where the coefficients λ and γ are given in the previous section. To simplify, we non-
dimensionalise the problem (2.9) by choosing[

D
ρg

]1/4

,

[
D
ρg5

]1/8

,

[
gD3

ρ3

]1/8

, (4.2a−c)

as length, time and potential scales respectively. It follows that D = ρ = g = 1, and
two parameters remain, the rescaled vorticity and depth are

Ω∗0 =

[
D
ρg5

]1/8

Ω0, h∗ =
[

D
ρg

]−1/4

h. (4.3)

We drop the asterisks in subsequent analyses for simplicity. In the dimensionless form,
the dynamical boundary condition on the free surface becomes

φt + u0φx +
1
2 |∇φ|

2
+Ω0ψ + η+ [

1
2κ

3
+ κss] = B(t). (4.4)

The other governing equations remain unchanged.
A Stokes wave solution to the vor-NLS can be written as

As = A0eiγA2
0τ . (4.5)

Perturbing the solution, as in Trichtchenko et al. (2019), by a complex function f of
magnitude δ

A= [1+ δf (X, τ )]As, (4.6)

where f takes the form

f (X, τ )= dAei(k̃X−ω̃τ )
+ idωei(k̃X−ω̃τ ), (4.7)

results in the following condition for non-trivial solutions (Craik 1988)

ω̃2
= k̃2(k̃2λ2

− 2λγA2
0). (4.8)

For k̃2λ2 < 2λγA2
0, ω̃ is complex and the Stokes wave solution is unstable. Since k̃

is arbitrary, the condition λγ > 0 indicates instability for sufficiently small k̃, and the
associated growth rate of instability reads

µ=

√
−k̃4λ2 + 2k̃2λγA2

0. (4.9)

The maximum growth rate µmax = |γ |A2
0 is attained when

k̃= k̃m = A0

√
γ

λ
. (4.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

52
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

ot
tin

gh
am

 T
re

nt
 U

ni
ve

rs
ity

, o
n 

03
 A

ug
 2

01
9 

at
 0

6:
43

:5
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.528
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Rotational hydroelastic waves 67
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FIGURE 3. Graph of λ and µ̃ versus k with Ω0 = 0.1 for h = 10. The locations where
γ = 0 or λ= 0 are marked as circles. The regime is modulational stable for k ∈ (0, k1)∪
(k∗, k†)∪ (k‡, k2) as shown in bold and unstable for k ∈ (k1, k∗)∪ (k†, k‡)∪ (k2,∞).

The range of unstable modulational wavenumbers is

0< k̃< k̃max, (4.11)

where k̃max = A0
√

2γ /λ =
√

2k̃m. On the other hand, when λγ < 0 we have stability,
and ω̃ becomes real. The period of a cycle of modulation–demodulation, denoted by
Tm, is then equal to 2π/ω̃. For a better illustration, we define µ̃ as

µ̃= |γ | sgn(λγ ). (4.12)

Hence µ̃ is simply the normalised maximum growth rate for the unstable regime,
while a negative µ̃ corresponds to the stable regime. Figures 3 and 4 present graphs
of λ and µ̃ versus wavenumber k when Ω0= 0.1 for h= 10 and h= 500, respectively.
Periodic waves change stability type several times due to four different reasons.

(i) γ swaps sign at two locations, which are marked as circles in the bottom graph
of figures 3 and 4.

(ii) λ changes sign at the circle point at k= k∗, where cg attains its minimum, being
sketched as the vertical dotted line in the top graph of figures 3 and 4. At the
corresponding location in the bottom graph of the figures, a discontinuity of µ̃
is observed.

(iii) Second harmonic resonance occurs at a specific wavenumber k= k† as previously
mentioned in § 3.2, which results in γ being singular because of (3.17). Therefore
we observe an asymptote that is the vertical dashed line at k = k† in figures 3
and 4.

(iv) Short-wave/long-wave resonant interaction takes place at k= k‡ as studied in § 3.3
where the group speed of the short-wave envelope (flexural wave) matches the
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FIGURE 4. Same as figure 3 for h= 500. The regime is modulational stable for (k∗, k†)∪
(k3, k4) as shown in bold and unstable for k ∈ (0, k∗)∪ (k†, k3)∪ (k4,∞).

long-wave speed (gravity wave). The appearance of a second vertical asymptote
in figure 3 is because the coefficient γ of the vor-NLS becomes singular due to
(3.29). Such phenomenon disappears in deep water because the stability boundary
k= k2 and k= k‡ coincide when h→∞ as shown in figure 4.

We separate the k–h modulational instability diagrams into two categories: (i) small
value of depth h < 30; (ii) large value of depth 30 < h < 500. The border h = 30
is chosen for the purpose of a good display. The result for zero vorticity is shown
in figure 5, where the unstable regions are sketched in grey and the stable ones are
in white. The thick black curve corresponds to the wavenumber of the minimum
of the phase velocity. The envelope moves at the same speed with the carrier wave
at this particular curve, hence there is a possibility of finding wavepacket solitary
waves bifurcating from the minimum of the phase speed in the full Euler equations.
A critical value of depth hc ' 233 can be obtained (marked as a pentagram in
figure 5), where the type of the NLS changes between focussing and defocussing
(see, for example, Milewski & Wang 2013, Gao et al. 2018). In the presence of
constant vorticity, typical examples are plotted in figure 6 for small h and in figure 7
for large h. For h < 30 (figure 6), large wavenumbers are generally in the unstable
regions but the stability characteristics are of more complicated structures for small
wavenumbers. It is interesting to point out that all the thick black curves begin at the
origin point in the k–h space, since k = 0 always minimise the phase speed in the
limit h→ 0.

In the subsequent sections, we perform numerical simulations in the full Euler
equations (2.9) to compute wavepacket solitary waves bifurcation from the thick black
curves, and classify the bifurcation mechanisms based on the vor-NLS, as well as
examining the time evolution of the modulational instability of quasi-monochromatic
wavetrains and the Wilton solutions where the vor-NLS becomes invalid as the second
harmonic resonance takes place.
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FIGURE 5. Modulational instability diagrams for hydroelastic waves with no vorticity for
30 < h < 500 (a) and h < 30 (b). The stable regions are in white and the unstable are
in grey. The thick black curve represents the wavenumbers corresponding to the phase
speed minimum at which wavepacket solitary waves bifurcate. The pentagram with the
coordinate (0.7598, 233) on the thick black curve indicates the location of a stability
exchange.
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FIGURE 6. Modulational instability diagram for hydroelastic waves when h < 30 with
(a) Ω0 = −1, (b) Ω0 = −0.1, (c) Ω0 = 0.1 and (d) Ω0 = 0.35. The stable regions are
in white and the unstable are in grey. The thick black curves represent the wavenumbers
corresponding to the phase speed minimum at which wavepacket solitary waves bifurcate.
Stability exchanges take place at (0.785, 19.17) in (b) and at (0.8473, 9.544) in (d).

5. Numerical scheme
Numerical simulations for both steady and time-dependent solutions to the

constant-vorticity Euler equations can be achieved efficiently by employing a
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FIGURE 7. Modulational instability diagrams for hydroelastic waves when 30< h< 500
with (e) Ω0 =−1, ( f ) Ω0 =−0.1, (g) Ω0 = 0.1. The stable regions are in white and the
unstable are in grey. The thick black curves represent the wavenumbers corresponding to
the phase speed minimum at which wavepacket solitary waves bifurcate.

conformal mapping method, which was pioneered for potential flow by Dyachenko
et al. (1996a) for deep water, generalised to finite depth in Dynacenko et al. (1996b)
(see also Choi & Camassa 1999) and adapted to constant vorticity cases in Choi
(2009). The core idea of this numerical method is to transform the fluid domain onto
a fixed simple geometry, e.g. a uniform strip of thickness h̄ in the new ξ–ζ plane,
where the free boundary is mapped to ζ = 0. Following Choi & Camassa (1999), the
difference between h and h̄ is the mean value of the free-surface elevation in the
transformed plane, namely,

h̄(t)= h+
1
L

∫ L/2

−L/2
η(ξ, t) dξ, (5.1)

where L is the wavelength. Variables on the upper surface in the transformed plane
are defined by

X(ξ , t), x(ξ , 0, t), Y(ξ , t), y(ξ , 0, t). (5.2a,b)

Calculations similar to those presented in Choi (2009) result in the following surface
Euler equations completely describing the evolution

Xξ = 1− T
[
Yξ
]
, Φξ =−T

[
Ψξ
]
,

Yt = YξT
[
Ψξ −Ω0YYξ

J

]
− Xξ

(
Ψξ −Ω0YYξ

J

)
,

Φt =
Ψ 2
ξ −Φ

2
ξ

2J
− Y −M−Ω0

(
Ψ −

YXξΦξ

J

)
+ΦξT

[
Ψξ −Ω0YYξ

J

]
,


(5.3)

where M is the pressure exerted by the elastic sheet in the transformed plane and
takes the form of

M=
1
2

[
κξξ

J
+

(κξ
J

)
ξ

+ κ3

]
. (5.4)

Here, J , X2
ξ + Y2

ξ is the Jacobian of the map, and the curvature κ is given by

κ =
YξξXξ − XξξYξ

J3/2
. (5.5)
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The pseudo-differential operator T is defined by

T [ f ] =
1

2h̄

∫
f (ξ ′) coth

[
π

2h̄
(ξ ′ − ξ)

]
dξ ′. (5.6)

In the limit of deep water (h̄→∞), T reduces to the Hilbert transform. For travelling
waves translating at a constant velocity c, the surface Euler equations can be reduced
to

Ψ = cY +
Ω0

2
Y2, (5.7)

1
2J
(c+Ω0YXξ +Ω0T [YYξ ])2 + B+ Y +

1
2

[
κξξ

J
+

(κξ
J

)
ξ

+ κ3

]
= 0, (5.8)

where B is the Bernoulli constant (B=−c2/2 for solitary waves). Solitary waves are
approximated by long periodic waves allowing for efficient computations using the fast
Fourier transform. The wave amplitude in periodic and solitary wave cases is defined
by

a= 1
2

(
max
ξ∈R

Y −min
ξ∈R

Y
)
. (5.9)

We confine ourselves to symmetric steady travelling-wave solutions, which can be
written in the form of Fourier series as

Y =
N∑

n=−N

anei2πnξ/L, a0 = 0, (5.10)

where the coefficients an = a−n are the real unknowns to be solved by Newton’s
method. We introduce N collocation points uniformly distributed along the ξ -axis,
which provides discrete algebraic equations by projecting (5.8) onto each element of
the basis ei2πnξ/L. All derivatives and pseudo-differential operators are calculated via
Fourier multipliers, making the programme efficient and accurate, while the nonlinear
terms are computed in real space; [−L/2, L/2] is the domain of computation, which
is taken to be sufficiently large for solitary waves so that a further increase in L does
not change the solution to numerical accuracy.

6. Numerical results
6.1. Solitary waves

In the weakly nonlinear theory, the existence of wavepacket solitary waves requires
two conditions: a non-dispersive point in the dispersion relation where the group
velocity cg equals the phase velocity cp and a focussing NLS at this particular point,
therefore the envelope can modulate carrier wave into a locally confined travelling
solution. The general solution of bright soliton for (4.1) takes the form

A(X, τ )=

√
2C
γ

sech

(
ε

√
C
λ

X

)
eiCτ , (6.1)
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0.25 0.30 0.35

FIGURE 8. Curve h= hc versus Ω0.

vor-NLS λ γ cmin k∗ Type

h= 500, Ω0 =−1 0.4877 3.2192 0.7671 0.5279 Focussing
h= 500, Ω0 = 0 1.3075 −0.0035 1.3247 0.7598 Defocussing
h= 500, Ω0 = 0.1 1.3928 −0.0730 1.3910 0.7850 Defocussing
h= 10, Ω0 =−1 0.4867 4.2571 0.7670 0.5278 Focussing
h= 10, Ω0 = 0 1.3075 0.1789 1.3247 0.7598 Focussing
h= 10, Ω0 = 0.35 1.5914 −0.0057 1.5598 0.8473 Defocussing

TABLE 1. The values of the coefficients in the vor-NLS, the minimum phase speeds and
the associated wavenumber for different Ω0.

where C is a positive constant. It follows that

η(x, t)≈ 2ε

√
2C
γ

sech

(
ε

√
C
λ

(
x− cgt

))
cos
[

k
(

x− cpt+
ε2C

k
t
)
+ θ0

]
, (6.2)

where θ0 is the relative phase between the carrier wave and the envelope, and the
carrier and envelope speeds can be made to match exactly by perturbing the carrier
wavenumber k. The phase θ0, while it is a free parameter within the NLS framework,
should be taken as 0 or π (Akers & Milewski 2009). This is a good approximation
for wavepacket solitary waves in the primitive equations and can serve as the initial
guess for Newton’s method. In the absence of vorticity, the NLS for hydroelastic
waves changes type at a critical value of depth hc = 233. More generally, hc can
be presented as a function in Ω0 (see figure 8). If h > hc, the NLS is defocussing
otherwise focussing. Nevertheless, even in the defocussing situation, the weakly
nonlinear theory does not deny the existence of wavepacket solitary waves in the
fully nonlinear equations. There is a vertical asymptote near Ω0 =−0.005 where hc
tends to infinity. As shown by Milewski et al. (2011), Guyenne & Părău (2012), Gao
et al. (2016), hydroelastic solitary waves do exist in deep water at finite amplitude
where the weakly nonlinear theory does not apply. In this regime, small-amplitude
‘dark’ solitary waves can also be found (Milewski et al. 2013).

Positive vorticity can decrease the depth at which the vor-NLS coefficient changes
sign (see figures 6c,d and 7g). As an example, coefficients of (4.1) for different values
of Ω0 are listed in table 1. We start with h= 500 (>hc), the case that the associated
NLS is defocussing at the minimum of the phase speed (denoted by cmin) in the
absence of vorticity. As listed in table 1, a negative vorticity may change the type of
the NLS. As a result, wavepacket solitary waves may bifurcate from zero amplitude at
cmin with a sufficiently large |Ω0|. This feature is confirmed by our numerical results
for Ω0 =−1 as shown in the speed–amplitude bifurcation diagram (figure 9a). If we
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FIGURE 9. (Colour online) Local bifurcation diagrams of hydroelastic solitary waves
for h = 500. The upward-pointing and downward-pointing triangles are for the elevation
and depression waves respectively. The minimum phase speeds are marked as the dotted
lines. (a) Ω0 =−1: the associated NLS is of focussing type when, and its leading-order
prediction is sketched as the dot-dashed curve. (b) Ω0 = 0.1: the associated NLS is of
defocussing type, and the solitary waves bifurcate at non-zero amplitude. Typical wave
profiles are presented in the physical space in both panels.

assume the phase speed attains its minimum at the wavenumber kc, then the leading
order of the NLS prediction for amplitude reads

‖η‖∞ ≈ 2ε

√
2C
γ
≈ (cmin − c)1/2

√
8kc

γ
. (6.3)

This relation is also sketched in figure 9 (dot-dashed line), which matches the
nonlinear results well in the vicinity of the minimum phase speed. It is noted that
the prediction for the elevation solitary waves can be improved by including a second
harmonic correction term which, on the contrary, generally worsens the prediction for
depression waves as explained in Wang & Milewski (2012) . Numerical computations
for Ω0 = 0.1 are performed and presented in figure 9(b). This speed–amplitude
diagram illustrates that the solitary waves bifurcate from non-zero amplitude. That
is because the vor-NLS is of defocussing type under these parameters and hence
small-amplitude wavepacket solitary waves are ruled out.

We then focus on the case of small depth (h= 10< hc). The vor-NLS is focussing
without vorticity, but a positive vorticity can change it to defocussing, as demonstrated
in table 1. This is again confirmed by our numerical simulations as shown in
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FIGURE 10. (Colour online) Local bifurcation diagrams of hydroelastic solitary waves for
h = 10. The upward-pointing and downward-pointing triangles are for the elevation and
depression waves respectively. The minimum phase speeds are marked as the dotted lines.
(a) Ω0 =−1: the associated NLS is of focussing type, and its leading-order prediction is
sketched as the dot-dashed curve. (b) Ω0 = 0.35: the associated NLS is of defocussing
type, and the solitary waves bifurcate at non-zero amplitude. Typical wave profiles are
presented in the physical space in both panels.

figure 10(b), which illustrates that, near cmin, solitary waves can only exist at finite
amplitude. The case for negative vorticity Ω0=−1 (corresponding to focussing NLS)
is also investigated. We present the detailed local bifurcation structure in figure 10(a)
together with the leading-order NLS prediction. The agreement between the nonlinear
results and the theoretical prediction is good especially for depression waves. Typical
wave profiles featuring oscillatory decaying tails are also shown for both elevation
and depression branches. The computations shown in figures 9 and 10 are carried out
with L= 200 and N = 4096. The maximal strains in the ice are calculated from the
numerical results with dimensions by using the physical parameters of sea ice. They
are at the level of 10−6 which is way below the critical value, i.e. no ice breaking
can take place.

6.2. Time-dependent simulations
It is well acknowledged (also shown in § 4) that a focussing NLS predicts the
modulational instability, which is also called the Benjamin–Feir (BF) instability in
water waves (Benjamin & Feir 1967). Choi (2009) investigated the BF instability for
pure gravity waves propagating on a linear shear current. Based on the assumptions
that the basic shear flow is u0 +Ω0y for −h < y < 0 and a wavetrain propagates at
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FIGURE 11. (a,d) Time evolution of a Stokes wave with h = 10, Ω0 = 0.35, a = 0.02,
c = 1.7560, l = 12, L = 192 and K = 0.0327 which is initially given a modulational
perturbation. A frame of reference moving with the undisturbed wave is chosen. The
snapshots are taken at t= 0 and 60 000. (b,e) Fourier spectrum of the wave at t= 0 and
60 000. (c) Graph of R versus t.

the speed u0, the author concluded that positive Ω0 enhances the BF instability while
the opposite is true for the negative Ω0. In the subsequent numerical experiments,
we perform fully nonlinear simulations to examine the modulational instability for
hydroelastic waves with linear shear currents. The equations (5.3) are simulated with
the initial condition, as in Tanaka (1990),

η(x, 0)=
[

1+ α cos K
(

x−
βλ

2π

)]
η0(x), (6.4)

where η0 is a Stokes wave (i.e. a nonlinear solution to the Euler equations),
β ∈ [0, 2π) is a relative phase between the carrier and the envelope. The modulational
wavenumber K is chosen to be k/m with m being a positive integer, i.e. m carrier
waves in one modulation. We restrict our focus to the case h = 10 and perform
experiments with different values of the vorticity Ω0.

6.2.1. NLS regime
The first numerical experiment is performed in the modulational stable regime by

using the following parameters: h = 10, Ω0 = 0.35, a = 0.05, c = 1.7560, l = 12
(we denote l by the wavelength of the carrier wave η0), m= 16, β = 0, α= 0.1, L=
192, K= 2π/L, N= 2048 and dt= 0.001. As shown in figure 11(a,d), the wave keeps
travelling in a moving frame of reference without losing its sinusoidal structure. The
Fourier spectrum barely changes as time evolves, therefore no modulational instability
has been detected, as predicted by the vor-NLS. We have computed the time evolution
of this wavetrain for many other values of K and β, and have obtained qualitatively
similar results that confirm the modulational stability predicted by the NLS. We denote
the amplification ratio by R(t): the ratio of the maximum wave amplitude at time t
divided by a (see Tanaka 1990). As can be seen from in figure 11(c), the amplification
parameter exhibits oscillatory behaviour of period approximately 6800 (the prediction
from NLS for this modulation–demodulation is Tm = 6558).
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FIGURE 12. Time evolution of a Stokes wave, which is initially given a modulational
perturbation, with h= 10, Ω0=−1, a= 0.02, c= 0.7694, l= 10.85 and β = 0 for different
values of modulational wavenumber. (a) Graph of R versus t for (E) K= 0.0386 (m= 15),
(A) K = 0.0290 (m= 20), (C) K = 0.0579 (m= 10) and (6) K = 0.1158 (m= 5) for 0 6
t 6 2000. (b) The snapshots of the wave profiles for β = 0 at t= 2000 in a large domain
[0, 651]. (c) The corresponding Fourier spectra of the waves at t= 2000.

The second experiment is made in the unstable regime for a wave travelling at a
speed close to cmin with parameters h= 10, Ω0 =−1, a= 0.02, c= 0.7694, l= 10.85,
α = 0.1, N = 2048 and dt = 0.001, for different values of K = k/m and L = ml
with m= 5, 10, 15 and 20, in which m= 15 is the optimal integer for the maximal
growth from (4.10). According to (4.11), the modulational instability is present for
m > 10, which is confirmed by the numerical results. The curve of R against t is
shown in figure 12(a) for shorter times 0 6 t 6 2000 alongside the snapshots of the
wave profile taken at t = 2000 in (b), and their associated Fourier spectra in (c).
Within this time range, R exhibits clear monotonic growth for unstable wavenumbers
and hence one may compare the values of R for various modulational wavenumbers.
Clearly m= 15 grows fastest, which confirms the prediction by the NLS. We continue
to compute R over a larger time domain [0, 8000] for m= 15 in figure 13. A snapshot
of the wave profile at maximum R is depicted on the right of the same figure. Next,
computations with various initial phases are carried out. The numerical results are
presented in figure 14 where R is plotted against β at t = 2000 in the left and, for
m= 15, at the maximum amplification Rmax on the right. The growth over this period
and the maximum growth over longer periods exhibit only weak β-dependency. There
is evidence in the literature that reduced models (Stiassnie & Kroszynski 1982) exhibit
specific phase values at which there may be no initial growth in the modulationally
unstable case due to a projection of the initial data onto the decaying mode only.
While we have not specifically sought to reproduce that, we still see some phase
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FIGURE 13. Same numerical experiment as in figure 12. (a) Graph of R versus t in a large
time domain [0, 8000] for K = 0.0386 (m= 15). (b) Snapshot of the associated maximum
modulation taken at t= 4080. The initial wave profile is shown by the dotted curve.
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FIGURE 14. Same numerical experiment as in figure 12 with various initial phases.
(a) Graph of R versus β at t = 2000 for (E) K = 0.0386 (m = 15), (A) K = 0.0290
(m= 20), (C) K= 0.0579 (m= 10) and (6) K= 0.1158 (m= 5). (b) Graph of the maximum
amplification Rmax versus β for K = 0.0386 (m= 15).

dependence in the amplification R(2000). Consistently with Stiassnie & Kroszynski
(1982) this phase dependence varies with m.

6.2.2. Highly nonlinear regime
In this subsection, we conduct numerical time-dependent simulations for highly

nonlinear waves where the vor-NLS is no longer appropriate.
The first experiment is performed in the stable NLS regime with the same

parameters from figure 11 except for a much larger amplitude a= 0.5 (the associated
wave speed c = 2.1273). The snapshots and the Fourier spectrum at two different
times are shown in figure 15, which indicate that large side-band modes grow in time
and the envelope breaks up at some point. This phenomenon is caused by a strong
modulational instability of the finite-amplitude wave.

The second experiment is conducted in the unstable NLS regime on the same
carrier wave from figure 12 but with a much larger amplitude a = 0.2. We select
β = 0 and m= 15 which is associated with the optimal value of K. As can be seen
from figure 16, the BF modulational instability occurs at first, but this is followed,
at a later stage, by a large depression wave structure, which is greater than twice
the amplitude of surrounding waves. This feature is different from the BF numerical
observations for small-amplitude pure gravity waves, where a significant elevation
structure is observed by Choi (2009). (Large water waves arising from modulational
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FIGURE 15. (a,c) Time evolution of a Stokes wave with h= 10, Ω0 = 0.35, c= 2.1273,
a=0.5, l=16, L=256 and K=0.0245 which is initially given a modulational perturbation.
The snapshots are taken at t = 0 and 2250. (b,d) Fourier spectrum of the wave at t = 0
and 2250.
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FIGURE 16. (a,c,e) Time evolution of a Stokes wave, which is initially given a
modulational perturbation, with h=10, Ω0=−1, a=0.2, c=0.7587, l=10.85, L=162.75
and K = 0.0386. The snapshots are taken at t= 0, 150 and 315. (b,d, f ) Fourier spectrum
of the wave at t= 0, 150 and 315.

instabilities are often given as a mechanism for the generation of ‘rogue waves’
Kharif & Pelinovsky (2003)). A similar computation is performed for a highly
nonlinear short wave with h = 10, Ω0 = −1, c = 5.2399, a = 0.1, l = 2, β = 0 and
K= 0.1963 as presented in figure 17. The wave forms an elevation structure at t= 5.2
and keeps travelling without breaking due to the presence of elasticity.

The next experiment is made in the unstable regime for a long wave h= 10, Ω0=

−1, a=0.04, c=0.9219, l=40π, m=16, L=640π, α=0.1, K=2π/L, N=2048 and
dt= 0.1. In this gravity dominated case, the instability occurs only after a long time
and leads to isolated solitary-like waves appearing as displayed in figure 18. These
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FIGURE 17. (a,c,e) Time evolution of a Stokes wave with h= 10, Ω0 =−1, c= 5.2399,
a=0.1, l=2, β=0, m=16,L=32 and K=0.1963 which is initially given a modulational
perturbation. The snapshots are taken at t = 0, 5.2 and 5.8. (b,d, f ) Fourier spectrum of
the wave at t= 0, 5.2 and 5.8.

waves are perturbations of the gravity shallow-water solitary wave, however, due to
the flexural terms one expects them to have oscillatory tails.

6.2.3. Resonant cases
The numerical framework described here is also useful in examining the

modulational stability of the Wilton solutions when the coefficient of the vor-NLS
becomes singular due to the second harmonic resonance. We select a fully nonlinear
Wilton solution with a=0.018, c=1.5193 and l=11.7322 for numerical computations
of instability. Two experiments are conducted with the following settings

(i) dt= 0.001, N = 1024, α = 0.1, L= 8l= 93.8574 and K = 0.0669,
(ii) dt= 0.001, N = 2048, α = 0.1, L= 16l= 187.7148 and K = 0.0335,

with an initial modulational perturbation (6.4) being imposed. The results are depicted
respectively in figures 19(a,c) and 19(b,d). It shows that, for a given solution, the
modulational stability of second harmonic resonant travelling wave depends on the
value of K as expected in standard BF instability. The precise stability condition for
this case is expected to have a similar form as (3.44) and will be investigated in future
work.

Finally, we examine numerically the modulational stability of a uniform wavetrain
when the short-wave/long-wave resonance takes place. By imposing h= 10, Ω0 = 0.1
and |A|= 0.02 in (3.44), we find the value of the threshold K∗= 0.066. Two numerical
experiments are conducted for a Stokes wave with l= 4.6124 (k= k‡), a= 0.02 and
c= 1.5176. We carry out two experiments where an initial modulational perturbation
(6.4) is imposed with the following parameters

(i) dt= 0.0002, N = 2048, α = 0.1, L= 16l= 73.7985 and K = 0.0851 (>K∗),
(ii) dt= 0.0002, N = 4096, α = 0.1, L= 32l= 147.5971 and K = 0.0426 (<K∗).
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FIGURE 18. (a,c,e) Time evolution of a Stokes wave with h = 10, Ω0 = −1, a = 0.04,
c = 0.9219, l = 40π, β = 0, m = 16, L = 640π and K = 0.0031 which is initially
given a modulational perturbation. The snapshots are taken at t= 0, 36 000 and 150 000.
(b,d, f ) Fourier spectrum of the wave at t= 0, 36 000 and 150 000.

In the first example, the modulational stability predicted by the theory due to
condition (3.44) is confirmed by the numerical results presented in figure 20(a,c)
whilst the instability is discovered in the second one as expected. Therefore analysis
from § 3.3 is verified by our numerical computations. Importantly we see the strong
generation of a long-wave component in the spectrum. This case is also the subject
of future investigations.

7. Discussion
In this work, we have considered the problem of hydroelastic waves on water

of finite depth interacting with a linear shear current within the framework of the
nonlinear Schödinger equation and its comparison to numerical solutions of the full
Euler equations. The main significance of the vor-NLS in this paper is twofold: to
predict the existence of wavepacket solitary waves bifurcating from the minimum of
the phase speed and to identify the region of the Benjamin–Feir instability. Direct
numerical simulations in the full Euler equations based on the conformal mapping
technique have been performed to verify the weakly nonlinear theory and further
explore the regime beyond validity of vor-NLS. It is found that the vorticity plays
an important role in determining the type of the vor-NLS. However, even when
small-amplitude solitary waves are not predicted by the weakly nonlinear theory
(namely, the vor-NLS is of defocussing type at the phase speed minimum), we can
numerically find large-amplitude solitary waves in the fully nonlinear equations.
Similarly, it is shown that large-amplitude wavetrains are unstable subject to
modulational perturbations even though their small-amplitude counterparts are in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

52
8

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 N

ot
tin

gh
am

 T
re

nt
 U

ni
ve

rs
ity

, o
n 

03
 A

ug
 2

01
9 

at
 0

6:
43

:5
6,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.

https://doi.org/10.1017/jfm.2019.528
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Rotational hydroelastic waves 81

0 50 100 150

0 20 40 60 80

0 16 32

0 8 16

k/K

0.02
0

0.001

0.001

0.001

0.001

-0.02
-0.04

0.02
0

-0.02
-0.04

0.04
0.02

0
-0.02

0.04
0.02

0
-0.02

x

y

y

y

y

a k
/l

a k
/l

a k
/l

a k
/l

t = 0

t = 5000

t = 0

t = 5000

t = 0

t = 5000

t = 0

t = 5000

(a)

(b)

(c)

(d)

FIGURE 19. (a,b) Time evolution of a Wilton solution with h = 10, Ω0 = 0.1, a =
0.018, c = 1.5193, l = 11.7322, L = 93.8574 and K = 0.0669 which is initially given
a modulational perturbation. The snapshots are taken at t = 0 and 5000. (c,d) Fourier
spectrum of the wave at t= 0 and 5000. (b,d) Same as (a,c) for the Wilton solution but
with L= 187.7148 and K = 0.0669.

the Benjamin–Feir stable regime. It is also worth mentioning that, in contrast to the
pure gravity case, the Benjamin–Feir instability is more complicated in hydroelastic
waves. Due to the competing effects of gravity and elastic bending, the wavenumbers
of carrier waves can be divided into three categories: a long-wavelength regime
where gravity dominates, short-wavelength regime where the elastic effect plays the
leading role and the third regime is in vicinity of the phase speed minimum where
the two effects are comparable. These different regimes have very different long-time
dynamics for modulated wavetrains subject to subharmonic perturbations. In addition,
the modulational instabilities of second harmonic resonant and short-wave/long-wave
resonant solutions were also investigated by fully nonlinear computations.

In wave–current interactions, the vertical velocity profile of the current is usually
nonlinear in practice (for example, when the shear results from bottom friction or
wind stress in water-wave problems). However, more general vorticity distributions
can be approximated by multi-layer models with linear shear current in each layer.
For instance, Milinazzo & Saffman (1990) computed the permanent profiles of gravity
and gravity–capillary waves in deep water in the presence of a thin layer of constant
vorticity mimicking the effect due to wind drift. It is of interest to generalise the
asymptotic and numerical results of the present paper to the case of piecewise linear
shear currents in future study. Finally we remark that internal waves can induce shear
currents, which may also interact with surface ice sheets or man-made very large
floating structures. Wang et al. (2014) recently numerically computed steady internal
gravity waves under a flexible elastic sheet, modelling ice cover. It is of particular
interest to further study the generation mechanism and the evolution of hydroelastic
waves when large-amplitude internal solitary waves propagate under the surface.
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FIGURE 20. (a,b) Time evolution of a uniform wavetrain with h= 10, Ω0= 0.1, a= 0.02,
c= 1.8432, l= 4.6124, L= 73.7985 and K= 0.0851 which is initially given a modulational
perturbation. The snapshots are taken at t = 0 and 2000. (c,d) Fourier spectrum of the
wave at t = 0 and 2000. (b,d) Same as (a,c) for the wavetrain with L = 147.5971 and
K = 0.0426.
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Appendix A

In the non-resonant case, we seek the solution in the form (3.5)–(3.6). In the
subsequent analysis, we sketch the derivation of the nonlinear Schrödinger equation.
One first solves the Laplace equation at each order n and for each harmonic mode j

(φnj)yy − ( jk)2φnj = Pnj, (φnj)y = 0 at y=−h, (A 1a,b)

where Pnj is made up of known lower-order terms. The solution to (A 1) has the form

φnj = ϕnj(X − cgT, τ ) cosh( jk(y+ h))+ φp
nj, (A 2)

where φp
nj is a particular solution arising from Pnj. Substituting this solution in the

surface boundary conditions (3.3)–(3.4) yields

−jiωAnj − jk sinh( jkh)ϕnj =Qnj, (A 3)
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jikgAnj +
D
ρ
( jik)5Anj + j2ωk cosh( jkh)ϕnj − jkΩ0 sinh( jkh)ϕnj = Rnj, (A 4)

where Qnj and Rnj are also lower-order terms. At the leading order, the system is
homogeneous, namely P11=Q11=R11= 0, the existence of non-trivial solution results
in the dispersion relation

ω2
−Ω0 tanh(kh)ω− k tanh(kh)

(
g+

D
ρ

k4

)
= 0, (A 5)

and the relation between A11 and ϕ11

ϕ11 =−
iω

k sinh(kh)
A11. (A 6)

At the next order, we retrieve the group speed cg which is defined by

cg =

Ω0ωh sech2(kh)+
(

g+
D
ρ

k4

)
kh sech2(kh)+

(
g+

5D
ρ

k4

)
tanh(kh)

2ω−Ω0 tanh(kh)
. (A 7)

It is not difficult to verify that cg ≡ ωk by directly differentiating (A 5) with respect
to k. In addition, we obtain the expressions of A22 and ϕ22 in terms of A2

11 as

A22 =
D1

D0
A2

11, ϕ22 =
D2

D0
A2

11, (A 8a,b)

where

D0 = 8ik cosh2(kh) tanh(kh)
[
ω2 tanh(kh)−

15D
ρ

k5

]
, (A 9)

D1 = 4ik2 cosh2(kh)
{
[3− tanh2(kh)]

[
gk+

D
ρ

k5

]
+Ω2

0 tanh(kh)
}
, (A 10)

D2 = 2k
[

3ω coth(kh)
(

gk+
11D
ρ

k5

)
− 3ω3

+Ω2
0ω−

15D
ρ
Ω0k5

]
. (A 11)

At the third order, Q30 = R30 = 0 gives the relation (3.10). Finally, a considerable
amount of algebra results in the solvability condition for the mode eiΘ and we
obtain the nonlinear Schrödinger equation (3.15). The explicit form of the dispersive
coefficient λ is

λ =
1

2ω−Ω0 tanh(kh)

[(
g+

5D
ρ

k4
+Ω0cg

)
h sech2(kh)

−

(
gk+

D
ρ

k5
+Ω0ω

)
h2 sech2(kh) tanh(kh)+

10D
ρ

k3 tanh(kh)− c2
g

]
. (A 12)
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PĂRĂU, E. I. & DIAS, F. 2002 Nonlinear effects in the response of a floating ice plate to a moving
load. J. Fluid Mech. 460, 281–305.

PEAKE, N. 2001 Nonlinear stability of a fluid-loaded elastic plate with mean flow. J. Fluid Mech.
434, 101–118.

PEAKE, N. 2004 On the unsteady motion of a long fluid-loaded elastic plate with mean flow. J. Fluid
Mech. 507, 335–366.

RIBEIRO, R., MILEWSKI, P. A. & NACHBIN, A. 2017 Flow structure beneath rotational water waves
with stagnation points. J. Fluid Mech. 812, 792–814.

SIMMEN, J. A. & SAFFMAN, P. G. 1985 Steady deep water waves on a linear shear current. Stud.
Appl. Maths 73, 35–57.

SIMMONS, W. F. 1969 A variational method for weak resonant wave interactions. Proc. R. Soc.
Lond. A 309, 551–579.

SHOELE, K. & MITTAL, R. 2016 Flutter instability of a thin flexible plate in a channel. J. Fluid
Mech. 786, 29–46.

SQUIRE, V., HOSKING, R. J., KERR, A. D. & LANGHORNE, P. J. 1996 Moving Loads on Ice
Plates, Solid Mechanics and its Applications. Kluwer.

SQUIRE, V., ROBINSON, W., LANGHORNE, P. & HASKELL, T. 1988 Vehicles and aircraft on floating
ice. Nature 333 (6169), 159–161.

STIASSNIE, M. & KROSZYNSKI, U. 1982 Long-time evolution of an unstable water-wave train.
J. Fluid Mech. 116, 207–225.

TAKIZAWA, T. 1985 Deflection of a floating sea ice sheet induced by a moving load. Cold Regions
Sci. Tech. 11, 171–180.

TAKIZAWA, T. 1988 Response of a floating sea ice sheet to a steadily moving load. J. Geophys.
Res. 93, 5100–5112.

TANAKA, M. 1990 Maximum amplitude of modulated wavetrain. Wave Motion 2 (6), 559–568.
TELES DA SILVA, A. F. & PEREGRINE, D. H. 1988 Steep, steady surface waves on water of finite

depth with constant vorticity. J. Fluid Mech. 195, 281–302.
THOMAS, R., KHARIF, C. & MANNA, M. 2012 A nonlinear Schrödinger equation for water waves

on finite depth with constant vorticity. Phys. Fluids 24, 127102.
TOLAND, J. F. 2007 Heavy hydroelastic travelling waves. Proc. R. Soc. Lond. A 463, 2371–2397.
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