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The microdefects in a material responsible for fracture initiation in particle breakage may not always have a
uniform spatial distribution. This work applies the power-law spatial flaw distribution based weakest link for-
mulation of cumulative failure probability for statistical size scaling of breakage strength of irregularly-shaped
particles. Four sets of published breakage strength data of different sized grains made of different materials
including rock, basalt, sugar, and potash are adopted to validate the power-law spatial flaw distribution based
weakest link model. Since the power-law spatial flaw distribution based weakest link model encompasses the

uniform spatial flaw distribution based weakest link model as its subordinate member, while the Weibull sta-
tistical strength theory is a special case of the uniform spatial flaw distribution based weakest link model, this
work extends the capability to investigate size scaling of particle breakage strength.

1. Introduction

Particle size reduction via breakage and fragmentation is an ele-
mentary physical event in particle comminution and powder granula-
tion processes. The resistance to particle size reduction via breakage
and fragmentation is usually measured by particle breakage strength.
For brittle and quasi-brittle breakage of particles, the particle breakage
strength features both random variation and particle size effect. The
random variation of breakage strength is observed in a same com-
pression experiment of particles with nominally the same geometrical
shape and dimension. The size effect of particle strength refers to the
inverse dependence of (average) particle strength on particle size. Both
characteristics result from the random distribution of microdefects in
particles with respect to their spatial location, orientation, size and
shape. The effect of particle size lies in a change in the number of these
microdefects in different sized particles. The random variation of
strength calls for statistical assessment of the breakage strength of
particles, especially irregularly-shaped particles. The statistical eva-
luation of particle strength falls into two methods, namely the empirical
data fitting and the weakest link statistics, as summarized in Fig. 1.

e Empirical data fitting. So far, a variety of cumulative distribution

functions (CDFs) has been adopted to describe the statistical beha-
vior of breakage strength or energy of individual particles [1-7]. For
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example, recently, Cavalcanti and Tavares [7] used 12 CDFs for
statistical analysis of fracture strength data of 5 industrial iron ore
pellets in 5 size ranges: normal distribution, Gumbel distribution,
logistic distribution, two- and three- parameter Weibull distribu-
tions, two- and three- parameter Gamma distributions, two- and
three- parameter log-logistic distributions, log-normal distributions
without truncation and with either lower or upper truncations.
Some of the frequently used CDFs are listed below:
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Nomenclature dv differential volume element
Vo a reference volume
g(S) probability density function of microscopic cleavage ) local stress at any point inside V
strength (S) o threshold of breakage strength
m shape parameter Tp nominal particle breakage strength
n total number of samples in each group 01, O, 03 first, second, third principal stress
N(V) number of microcraks in a volume V 0y scale parameter
p (W) fracture probability of Vj oy scale parameter
P(ap) cumulative probability of failure ato, o mean stress value
PDF probability density function B and k constants
S fracture strength of V, r'(m) Gamma function,
\Y specimen volume uand § mean value and standard deviation

| Statistical approaches to particle breakage strength l
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Empirical data fitting using classical
empirical distribution functions, e.g.,
-Normal distribution

-Gumbel distribution

-Logistic distribution

-Weibull distribution

-Lognormal distribution

Weakest-link statistics

Conventional practice--
Weibull statistical fracture theory
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Validated in Ref. [12] for particle strength--

Weakest-link statistics of fracture with
uniform spatial distribution of microcracks:
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To be explored in this study--
Weakest-link statistics of fracture with
power-law spatial distribution of microcracks:
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Generalized Weakest-link statistics of fracture with
spatial distribution of microcracks N=N(V):

P=1—exp{f, In[1-p(c,Vy)]- 2D, av}

Fig. 1. Hierarchical relationships between Weibull statistical fracture theory and weakest-link statistics under different assumptions of spatial distribution of mi-

crodefects in a material.
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where P (o) is the cumulative probability of failure at the nominal
particle breakage strength o, oy, is the threshold of breakage strength, o,
is the scale parameter, m is the shape parameter, I'(m) is the Gamma
function, u and & are the mean value and standard deviation of the
absolute value or the logarithmic value of breakage strength o, re-
spectively.

Usually, the distribution parameters (m, oy, o, 4 and §) are esti-
mated by the least-squares and the maximum likelihood methods, while
the goodness-of-fit of probability distributions to data is analyzed by
some tests such as the Anderson-Darling (A-D) test and the
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Kolmogorov— Smirnov (K-S) test.

The empirical data fitting approach works well for strength data
collected from a group of nominally same sized particles. All the CDFs
in Egs. (1)-(7) do not contain specimen size as an explicit variable. As
particle size changes, empirical data fitting will be applied for each
group of particles with same size. The size effect is reflected on the
variation of the fitted distribution parameters with particle size. The
empirical fitting approach is of practical significance for statistical de-
scription of a given sized particle. However, since it is not based on
physical understanding of particle breakage processes, the obtained
empirical fitting formulae do not have prediction power for other dif-
ferent sized particles.

e Weakest link statistics. The weakest link statistics assumes that the
strength of a bulk solid is determined by its weakest volume ele-
ment. Initially, Weibull applied the weakest link assumption and
obtained the following expression [8]:

o—o \"dV
P=1-exp|- a
eXP[ /;( o ) Vo] ®

where o is the local stress at any point inside a specimen of volume V,
Vy is a reference volume, dV is a differential volume element, g, is a
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scale parameter. Under the uniform stress condition, o = g, Eq. (8)
reduces to

V(o —oa\" A
P=1- exp[——(u) 1=1- exp[—(u) ]
W\ %

u

©)

with gy = g, (Vp/ V)™,

According to Eq. (8), the weakest link assumption permits to re-
present both the random variation of nominal breakage strength (o)
and the size effect in the form of specimen volume (V) in the cumulative
failure probability formulation.

Note that Weibull statistics of strength obeys the weakest-link as-
sumption. In other words, Weibull statistics is only a subordinate
member of the weakest-link statistics, as shown in Fig. 1 [9-11].
Therefore, it makes sense to directly resort to the weakest-link statistics
for particle strength evaluation. According to [9,10], the explicit
weakest-link formulation for the cumulative probability of brittle
fracture under the assumption of uniform spatial distribution of mi-
crodefects is as follows:

dv
P(V)=1 - expl f/In[(1 — p(W)I 7] a0
where p(V;) is the fracture probability of an elemental volume Vj in-
duced by an embedded microcrack in a multiaxial stress state described
by the principal stresses (07, 03, 03) (07 = 0 = 03).
When the probability density function (PDF) with respect to the
fracture strength (S) of elemental volume V,, denoted as g(S), takes the
well-known three-parameter Weibull PDF as

g(S) = m[(S — a)" /0] -exp[—(S — o1)"/0}']  (m >0, 0, < S < o)

1)

under the maximum principal tensile stress criterion oy = o > S, there is

p(@, Vo) = [ g(8)dS =1 — exp[~(T— )]
o G (12)

Substitution of Eq. (12) in Eq. (10) leads to Eq. (8). This proves that
Weibull statistics is a subordinate member of weakest-link statistics.

Basically, depending on the specific material, p(V,), as the fracture
probability of an elemental volume V , can take any other distribution
function, such as the CDFs in Egs. (1)-(7). But in reality, the exact
strength distribution function g(S) and the pertinent microscopic frac-
ture criterion are unknown. Therefore, it is not sure which CDF best
represents p(V;) for a specific material. As an alternative solution, Eq.
(10) is rewritten as below due to the first mean value theorem for in-
tegrals,

g.m[ 1 ] _ 1,
|4 1-pP) Vo

where o is a mean stress value with o; < o < g. Therefore, in Eq. (13),

] = h(op)

Fran
1-p(o, o) (3

the compound parameter %ln [ﬁ] is also conceptually expressed as

function of particle strength h(cp). By evaluating the correlation be-
tween the compound parameter é-ln[ a 1 P)] and particle strength oy, the
twofold character of brittle failure strength o}, can be evaluated to-
gether.

The expected “master curve” for the %-ln[mi—m] ~ g, correlation in
Eq. (13) was validated by breakage strength data of granular particles
made of glass, soil, salt, and copper ores in [12].

However, it was found that for some quasi-brittle materials, Eq. (13)
does not work for their size scaling of strength. In principle, the basic
formulation for the weakest-link statistics of brittle fracture depends
primarily on the spatial distribution of microdefects in a material
among others. The real critical prerequisite for the spatial distribution
is the mutual independence of microdefects, which justifies the ap-
plicability of the Griffith law and weakest-link assumption at individual
microdefect and differential volume element scales. Therefore, it is
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unnecessary to confine our assumption to the uniform spatial dis-
tribution of flaws. So long as the principle of mutual independence of
microdefects is observed, other spatial distributions of flaws are al-
lowed. In view of these two aspects, the generalized weakest-link sta-
tistics was developed in [11], which encompasses the preceding uni-
form spatial microdefect distribution based weakest link formulation as
its subordinate member, as illustrated in Fig. 1. The generalized
weakest link statistics was validated for size scaling of strength of wood,
concrete, coal, gamma titanium aluminum alloy, nuclear-grade gra-
phite, and aluminum foam [11]. This work will evaluate the applic-
ability of generalized weakest link statistics for size scaling of particle
breakage strength. This will start with a brief description of the gen-
eralized weakest-link statistics. Then specific examples will be pre-
sented for size scaling of particle breakage strength according to the
generalized weakest-link statistics.

2. A description of the generalized weakest-link statistics for
brittle fracture

The reader is referred to [11] for a detailed derivation of the gen-
eralized weakest-link formulation for the cumulative probability of
brittle fracture. Assume that all the microcracks in a material are non-
interactive and N(V) is the number of microcraks in a volume V. Con-
sider a differential volume element 8V subjected to a homogeneous
stress state (07, 0», 03), where 0, 05, and 03 are the three principal
stresses and 0; = 0y = 03. The number of microcracks inside 8V is
6N = (ON/dV)-8V.The assumption of mutual independence of all the
microcracks permits to apply the weakest-link postulate to an in-
dividual differential volume element scale. Under certain microscopic
fracture criterion such as the maximum principal stress criterion, the
failure probability of this differential volume element, §P(5V), follows:

SP(V)=1-[1-p(o, VoIV a4

Next, for a bulk solid subjected to heterogeneous multiaxial stresses
designated by (03, 02, 03), its total volume (V) is divided into many
small volume elements §V; (i = 1, 2, ...,n), each of which is in a quasi-
homogeneous stress state. Then the cumulative failure probability of
the solid, P, is

n n

P=1-J[-orEWI=1-]]0-pG %P

i=1 i=1 (15)
Eq. (15) is further written as
P=1- exp{z SNy In[1 — p(o, Vo)]}
i=1
n—co ON (V) }
> 1-— In[1 — , Vo)l 5V
exp{fv nll - p(o, - 16

Eq. (16) is the explicit expression of the cumulative failure prob-
ability P under the weakest-link postulate due to a population of mu-
tually independent microcracks. In principle, so long as the mutual
independence of microcracks is satisfied, Eq. (16) can adopt any spe-
cific distribution function of microcracks N(V). The following power
law is a relatively simple function to represent the spatial distribution of
microdefects:

B
N=N(V)=kV5=(K), -i,5>0
|1 vE a”n
where 8 and k are constants with 8, k > 0. k has the unit of V# for
dimensional consistency. Accordingly, the number of microcracks in-
side 8V will be,

B-1
v =N 5 kBVA-18V = ﬁ(%) (5—V)
0

v Vo (18)

Substitution of Eq. (18) in Eq. (16) gives
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Fig.2. Breakage strength (o,) of breakage strength of quartzite shale rock ag-
gregates of 3 different size ranges: (a).raw data [3]; (b) correlation between
ln[ ln[ ] and g.

] and op; (c). correlation between

a-pr) a- P)

P—l—exp{( ) flnl—p(cr%)]—}

Eq. (19) is the expression for the power-law spatial microdefect
distribution based weakest-link statistics.

Regardless of the complexity associated with the specific formula-
tion of p(o, V), which depends on the specific PDF for the strength or
size distribution of microdefects in a particle and the exact microscopic

19
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fracture criterion in addition to the stress state, our major interest here
is the statistical characterization of size effect. So, similar to the case of
uniform spatial distribution, according to the first mean value theorem
for integrals, Eq. (19) is rewritten as

h(@)
Vi

;ln[;]zi.l[ 1 ]
gveE Tl -P) vE [1-pE W)

Accordingly, both the nominal strength variation and the size effect

are now synchronized by the correlation between the compound
1

BV BV 1-P)
geometrically similar specimens of difference sizes under same loading
conditions, there exists a master curve to correlate the compound

parameter ln[ ac P)] and nominal strength op.

When the PDF with respect to the fracture strength (S) of elemental
volume V,, g(S),takes the well-known Weibull PDF in Eq. (11), the
corresponding formulation of p(o, V;) under the maximum principal
tensile stress criterion o; = o > S is given in Eq. (12). Substitution of Eq.
(12) in Eq. (19) leads to

v
Vo

p-1 m
el 2] 055

When 8 = 1, Egs. (19) and (20) reduce to Egs. (10) and (13) for uniform
spatial distribution of microcracks, respectively, while Eq. (21) reduces
to Weibull statistical fracture theory in Eq. (8). In other words, the
uniform spatial microdefect distribution based weakest link formula-
tion is a subordinate member of power-law spatial microdefect dis-
tribution based weakest link statistics, while it has Weibull statistical
fracture theory as its subset.

It is noted that the model is limited to brittle fracture and does not
include ductile fracture. Many advanced technological materials, such
as metallic alloys, are usually ductile under normal conditions, but
under extreme circumstances, including low temperature and dynamic
loading conditions, can exhibit macroscopically brittle fracture beha-
vior (with localized/microscopic plastic deformation). Ferritic steels
commonly used to manufacture nuclear reactor pressure vessels and
other engineering structures, can fail by cleavage fracture as a random
event. In this case, statistical models have also been developed. For
these technological materials, thanks to the significant progress in
metallurgical industry, defects initiating brittle fracture, such as car-
bides and other nonmetallic inclusions in ferritic steels and cast irons,
can be controlled to distribute uniformly in materials. Our studies have
validated the uniform defect distribution based statistical models for
cleavage fracture of ferritic steels. We believe and have also found that
brittle and quasi-brittle materials, particularly those naturally grown
materials, are more likely to have nonuniform spatial distribution of
defects. Specifically, in Lei [11], it was found that wood and coal as
natural materials, and gamma titanium aluminum alloy, aluminum
foam and nuclear grade graphite as technological materials, can be
better described with this nonuniform defection distribution based
statistical model. In Lei [13], it was reported that the statistical dis-
tribution of defects in different ceramic materials can fit either f = 1,
B>1lor0 <P <l

In the next section, Eq. (20) will be adopted to establish the corre-

(20)

parameter ln[ ] and nominal strength 0. It suggests that for

(21)

lation between the compound parameter — P ln[ ] and nominal

a-p)
breakage strength o, of different sized particles made of different ma-

terials.

3. Case studies on size dependence of particle breakage strength
in compression

In this section, we’ll evaluate the particle breakage strength of
several different materials.

The first example is about the strength of rock aggregates. Ovalle
et al. [3] studied size effect on the strength of quartzite shale rock
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aggregates. The nominal particle breakage strength o,was calculated as
follows:

F

»=E

(22)
where d is the mean value of the particle cross section diameter prior to
compression and F is the diametrical compression force at fracture with
the schematic illustration of experimental setup embedded in Fig. 2(a).
The rank probability is adopted to measure the cumulative failure
probability P = P(g,;) at the i-th nominal breakage strength o, ; by re-
arranging all the strength values in each group of nominally same sized
particles in an ascending order,

i—03

Pl = n+ 04

1<ign)

(23)

where n is the total number of samples in each group.

3.1. Quartzite shale rock aggregates

Fig. 2(a) shows the raw data of breakage strength of quartzite shale
rock aggregates of 3 different size ranges namely, 15-30mm,
30-40 mm, and 40-70 mm [3]. Fig. 2(b) shows the strength data re-
arranged according to Eq. (13), or Eq. (20) with 3 = 1, for the uniform
spatial flaw distribution based weakest link statistics. The three sets of
strength data do not fall onto a single “master curve” for the
%ln[ﬁ] ~ op correlation, indicating the invalidity of the assumption
of a uniform spatial distribution of flaws. Fig. 2(c) shows the strength
data rearranged according to Eq. (20) with f = 0.165. Now all the data
fall onto a single master curve. Despite that there is a relatively large
size interval of quartzite shale rock aggregates in each group, particu-
larly the group of 40-70 mm, the “master curve” behavior is very ob-

vious. The correlation between the compound parameter ﬁvln [ a ip)]

and nominal breakage strength o, fits well to a power law function
y = 8.19 x 1073 ¥1(R? = 0.944). In equivalence, it can be expressed as

0.165 o 1.81
P=1-—exp|—0.165 — (7b) (Vo=1 mmd)
Y 14.2MPa

This supports that the spatial distribution of microdefects in the rock
aggregates is non-uniform and can be approximately described by a
power law function N (V) = (V/V,)*165,

(24)

3.2. Basalt grains

Rozenblat et al. [2] studied the strength distributions of different
sized particles made of eight (8) different materials namely, salt, po-
tash, graphene nanoplatelets (GNP), glass spheres, sodium dodecyl
sulfate (Sds), sugar, basalt, and marble, with limited strength data re-
ported for Sds and marble. Except that glass spheres are regularly
shaped, all other seven (7) types of particles are irregularly shaped. In
their work [2], several tens of experiments were conducted for each
particle size range for each material. However, only ten data points for
each size range as the “diluted” experimental data but with actual
corresponding rank probabilities were provided in order for clear gra-
phical presentation. In the earlier work [12], the breakage strength data
of different sized glass spheres, salt grains and GNP particles were
analyzed to validate the expected “master curve” for the
&-ln[ﬁ] ~ op correlation according to Eq. (13) for the uniform spa-
tial flaw distribution based weakest link statistics. This work will ana-
lyze the breakage strength data of potash, sugar and basalt based on Eq.
(20).

The nominal breakage strength o, of a particle in diametrical com-
pression is calculated as follows in [2]:

4F
Op =

T nd? (25)
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Fig.3. Breakage strength (o) of breakage strength of basalt grains: (a) raw data

[2]; (b) correlation between %-In[ and o0,; (¢) correlation between
L[
BvF (1-P)

1
(I*P)]
] and op.

Fig. 3(a) shows the raw data of breakage strength of basalt grains of
5 different size ranges namely, 1-1.6mm, 1.6-2mm, 2-2.5mm,
3.15-4 mm, and 4-5mm [2]. First, the strength data are rearranged
according to Eq. (13), or Eq. (20) with § = 1, for the uniform spatial
flaw distribution based weakest link statistics, as shown in Fig. 3(b).
Obviously, a “master curve” for the é-ln[ﬁ] ~ g, correlation does
not exist. This suggests that the assumption of a uniform spatial dis-
tribution of flaws is inappropriate for basalt. Now the strength data are
rearranged according to Eq. (20) with B = 0.6, as shown in Fig. 3(c).
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The correlation between the compound parameter ﬁ-ln[ﬁ] and
nominal breakage strength o, fits well to a power law function

¥y = 3.03 x 10~*177(R? = 0.940). In equivalence, it can be expressed as

v 0.6 o 1.77
P=1—exp|—06|— (7") (Vo =1 mm3)
A 97.2 MPa (26)

This supports that the spatial distribution of microdefects in basalt
grains is non-uniform and can be approximately described by a power
law function N (V) = (V/V})°0.

3.3. Sugar grains

Fig. 4(a) shows the raw data of breakage strength of sugar grains of
4 different size ranges namely, 1.6-2 mm, 2.5-3.15mm, 3.15-4 mm,
and 4-5mm [2]. Fig. 4(b) and (c) show the strength data rearranged
according to Eq. (20) with f =1 for the uniform spatial flaw dis-
tribution based weakest link statistics and 3 = 0.4 for the power law
spatial flaw distribution based weakest link statistics. Again, a “master
curve” for the é-ln [(li—m] ~ g correlation does not exist, suggesting the
inappropriate assumption of a uniform spatial distribution of flaws for
sugar. Instead, the correlation between the compound parameter

ﬁ-ln [ﬁ] and nominal breakage strength o, fits well to a power law

function y = 0.0203x!8881(R? = 0.9344). In equivalence, it can be ex-
pressed as

v 04 % 1.89
P=1-exp|—-04| — (7) (Vo =1 mm?)
Vo) \2.33 MPa @7

This supports that the spatial distribution of microdefects in sugar
grains is non-uniform and can be approximately described by a power
law function N (V) = (V/1;)%4.

3.4. Potash grains

Fig. 5(a) shows the raw data of breakage strength of potash grains of
4 different size ranges namely, 1.4-2 mm, 2-2.36 mm, 2.36-3.35mm,
and 3.35-4 mm [2]. Fig. 5(b) and (c) show the strength data rearranged
according to Eq. (20) with B =1 and 3 = 0.53, respectively. The uni-
form spatial distribution of flaws is an inappropriate assumption for
potash. Instead, the correlation between the compound parameter

ﬁln [ﬁ] and nominal breakage strength o, fits well to a power law

function y = 0.0012x>!32(R?> = 0.941). In equivalence, it can be ex-
pressed as

0.53 - 3.15
P=1—exp|—053 — (71’) Vo=1 mmd)
o 8.45 MPa (28)

This supports that the spatial distribution of microdefects in potash
grains is non-uniform and can be approximately described by a power
law function N (V) = (V/V;)*5.

4. Discussions

The effect of particle size on particle breakage strength is of interest
to many industrial processes. For regularly shaped spherical particles,
analytical solutions to the elastic stress field inside a spherical body are
available, which greatly help to understand their mechanistic breakage
processes. However, for various irregularly shaped particles commonly
encountered in different industries, analytical solutions to the elastic
stress field inside them are unavailable. Empirical data accumulation
and analysis becomes the major avenue to characterize their breakage
strength. In this regard, the Discrete Element Method (DEM) enables to
simulate the evolution process of defects in a granular object with
strictly predefined geometry in terms of shape and size in a determi-
nistic way. When the size and shape of a particle changes, a dedicated
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round of DEM simulation is needed. Therefore, statistical approaches
are very attractive to characterize the size effect on breakage strength of
irregularly shaped particles with various complexity of sphericity and
roundness [6]. While the continued adoption of the classical empirical
statistical distribution functions (e.g., Egs. (1)-(7)) is expected for the
empirical data fitting of breakage strength at each size range as a
conventional practice, the physically justified weakest-link statistical
approach has demonstrated its superior advantages in the aspect of size
scaling. The [3 parameter describes the degree of deviation of the spatial
distribution of defects from the idealized uniform spatial distribution
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condition. If § = 1, it is a perfect uniform distribution; if 0 < f < 1,
defects are less dense than uniform distribution and are nonuniform; if
B > 1, defects are more dense than uniform distribution and are
nonuniform. Combining the 4 materials in this study which are irre-
gular shaped, and other materials investigated in Lei [11,13,14], the
following observations can be made: (1) Nonuniform spatial defect
distributions are more often found in natural materials such as sugar,
wood, coal, rocks and other mineral materials than in modern
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technological materials; Modern technological materials such as steels
and classical concrete materials have been developed with a special
focus on eliminating all nonuniform types for desired performance. (2)
Porous structures are more susceptible to nonuniform defect distribu-
tion, such as wood, aluminum foam and some ceramics; (3) Materials
easier to take inter-granular fracture than transgranular fracture, such
as sugar, inter-metallics. It is interesting to note that wood present
B < 1 in tension along wood fiber direction but B > 1 for tension
normal to fiber direction. This means different types of defects play a
role in each case. Right now, we are still in the early phase of accu-
mulating “observations” on different materials [15-17]. In general,
while it adds the complexity of problem solving, we do believe a non-
uniform spatial distribution of defects in materials is a more realistic
situation while a uniform spatial distribution is an idealized scenario;
although an idealized distribution simplifies our effort to solve the
problem, care should be taken that at some point we may hit the wall
and have to take a major change of the uniform distribution based
models. So, at this early phase, we would suggest to use the best fitting
approach to determine 3 value. As for the range of diameter or size, we
believe for samples with larger diameter than those being considered
here, the model should be still valid; however, for samples with much
smaller size, fracture may involve some mechanism at a different size
scale, the validity of the proposed approach has to be examined. As
shown in Fig. 1, chronologically, the Weibull statistical strength theory
was first adopted for size scaling of strength. Since Weibull statistical
strength theory is a subordinate member of the uniform spatial flaw
distribution based weakest link statistics, the work [12] applied the
uniform spatial flaw distribution based weakest link statistics to study
the size effect on particle breakage strength. For real materials, it is a
more practical assumption that the spatial distribution of flaws can be
uniform or non-uniform. The recent work [11] expanded the weakest
link statistics to the more generic scenario in which the spatial flaw
distribution in a material may be either uniform or non-uniform. This
work collectively presents some examples to validate the applicability
of power law spatial flaw distribution based weakest link model in
particle breakage strength statistics. The contribution of this work lies
in that it expands our capability to evaluate size scaling of particle
breakage strength.

It is noted that for the 4 case studies presented in this work, the size
dependence and the random variation of the breakage strength of a
single particle are collectively represented by the following expression,
which can be called as the generalized 2-parameter Weibull statistics:

B m
P(V,a) =1~ exp[—ﬁ(Z) (%) ]
0 0

However, at this point, we would not claim that Eq. (29) is ap-
plicable for all kinds of materials. The major purpose of this work is to

(29)

verify and validate if the expected “master curve” for the ﬁln [ a i P)]
~ o, correlation exists or not. We expect that with rigorous statistical
analysis, it is possible that either a generalized three-parameter Weibull
distribution or other type of distribution functions may better fit the
data for a specific material. The main limitation of the proposed pro-
cedure is for different materials, how to determine the fracture dis-
tribution of an element volume V,, p(Vo), which affects the final ex-
pression of the cumulative probability P (V). In this study, if g(S), which
is the PDF of fracture strength S of elemental volume V,, takes the
Weibull PDF, an evident analytical solution of the cumulative prob-
ability P(V) can be obtained. However, one would argue that it is not
necessary for all different materials the Weibull type PDF for g(S) al-
ways works.

5. Conclusions

(1) The weakest link statistics based on the assumption of a power-law
spatial distribution of flaws is validated for the size effect on
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(2)

breakage strength of rock aggregates, basalt, sugar and potash
grains in diametrical compression. For each material, all the
strength data of different sized particles fall onto the “master curve”
for the Blw-ln[ﬁ] ~ g, correlation.

For the four materials evaluated in this study, the value of  ranges
from 0.165 to 0.6 for the spatial flaw distribution function
V)= (V/IVp)F .
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