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ABSTRACT 
 
This paper studies the effects of internal fluid on the stability of 
parametric vibration of a top-tensioned riser (TTR), where the effects 
of internal flow on the parametric instability charts are analyzed. 
Results show that both the internal flow density (mass per unit length) 
and velocity exert an influence on the instability charts. The internal 
flow density has more influence on the instability region. As the 
internal flow density changes, both the shape and the position of the 
instability charts will change. 
 
KEY WORDS:  top-tensioned riser; TTR; parametric vibration; 
internal flow; instability analysis; Hill equation. 
 
INTRODUCTION 
 
As the offshore oil and gas industry moves into deeper waters, where 
the difficulty of the exploration of oil and gas increases dramatically, it 
puts forward higher requirement for deep-water production equipment. 
As a key equipment linking the floater and subsea production system, 
the vibration characteristics of a top-tensioned riser (TTR) become a 
popular issue in engineering design. In the marine environment, a TTR 
is subjected to various loads including top floater motion, internal fluid, 
sea current and so on. Due to the large slenderness ratio, the riser may 
undergo large motions under the actions of adverse loads, even though 
a certain tension is applied at the top end of the riser. Therefore, it is 
essential to explore the vibration response analysis of the riser. 
 
The parametric vibration of a TTR will occur in the horizontal direction 
due to the effects of the platform’s heave motions, which will lead to 
the destruction of risers. Parametric resonance of marine cable was 
propose and analyzed for the first time by Hsu (1975), where the effects 
of the velocity square damping of the fluid to decrease the amplitude 
growth in unstable case are studied. Based on using a direct solution 
approach to solve the differential equations, Chung and Whitney (1981) 
studied the heave induced dynamic loads on an 18,000-Ft ocean mining 
pipe. And then they investigated the effect of axial deformation to 
deep-ocean pipe and found that it is significant to dynamic behavior of 

the low flexible riser (Chung et al. 1994a; Chung et al. 1994b). Patel 
and Park (1995) examined the combination of the forcing and 
parametric excitation for tethers of tensioned buoyant platforms, in 
different water depths. By using a numerical method, Chatjigeorgiou 
and Mavrakos (2002) researched vertical the non-linear dynamic 
response of marine risers, which are subjected to parametric excitation 
due to motions of marine structure. And then, effects of damping on 
riser stability for risers subjected to parametric excitation have been 
studied by their subsequent works (Chatjigeorgiou 2004; 
Chatjigeorgiou and Mavrakos, 2005). Based upon using finite element 
method, Park and Jung (2002) investigated the response of risers under 
combined parametric and forcing excitations. In their numerical works, 
the relative amplitudes of this kind of combination to an isolated 
forcing excitation for various water depths, environmental conditions 
and vessel motions are considered. Chandrasekaran et al. (2006) 
studied the dynamic response of tethers and TLPs, assuming that 
tension varies along the tether length. Aiming at deep-water risers, 
Brugmans (2005) compared the difference of the parametric vibration 
instability of three boundary models in detail, and developed simple 
formulae to predict platform heaving frequency corresponding to 
different instability regions p under parametric excitation of riser 
system. By using Floquet theory, Kuiper et al. (2008) investigated riser 
instability under parametric excitation and obtained instability 
mechanisms of two kinds of parametric vibrations. The first is induced 
by periodic time variation of the axial tensions. The another one is due 
to large motions of the platform. Xu et al. (2008) investigated the hill 
instability of TLP tethers by considering the coupled motion of surge 
and heave of TLPs. And then, they study parametric instability of long 
slender marine structures by using the Lyapunov-Poincareper method, 
the modified Lyapunov-Poincareper method and the harmonic balance 
method (Xu et al., 2011). Chung (2010) presented the full-scale 
measurements for 5,000-m-long hanging pipe and the theoretical 
prediction of its end’s dynamic behavior. Fujiwara et al. (2011) studied 
the response of riser Vortex-Induced Vibration under parametric 
excitation using experiment methods. By using a multi-frequency 
excitation, Yang et al. (2013) gave a prediction for the parametric 
instability of TTRs under the action of irregular waves. A frequency 
domain method was proposed by Lei et al. (2014) to investigate the 
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damping force suffered by the riser can be expressed as follows (see 
Chung et al. 1994a) 

0
1=
2w A F o Rw F o Ww D F Rw Rwf C A V A V C d V Vρ ρ ρ− + −  ,  (14) 

where VRw is the relative velocity, defined by VRw = VPw + VSw − VWw; 
VPw = ∂w/∂t is the riser velocity in transverse direction, VSw = ∂Y/∂t the 
transverse velocity at any position of the riser induced by the top 
platform motions and VWw the wave particle velocity in transverse 
direction. It should be noted that VRw, VPw, VSw, VWw, w and Y are 
functions of x, and Y is the displacement of the riser micro-element due 
to the surge motion of the top platform. And Vሶ Rw = Vሶ Pw +  Vሶ Sw − Vሶ Ww 
is the corresponding acceleration in transverse direction, each 
component of which is acceleration of the riser, top platform and wave 
particle, respectively. Here fw denotes the hydrodynamic force applied 
to the horizontal unit length of the riser, CA the added mass coefficients, 
CD the drag coefficients and d0 the external diameter of the riser.  
 
Assuming that the riser is simply supported at the both ends, the heave 
and surge motions of the platform affected by waves can be expressed 
as 

( )
( )

0 0

0

cos

sin

h t h s t

y t y t

ω
ω

 = +


=
,                                  (15) 

where s0 and y0 are amplitudes of platform heave and surge motions 
respectively, ω denotes the frequency of movement of the platform. 
According to the corresponding boundary conditions, the solutions of 
the riser vibration equation can be written as 

( ) ( ) ( )

( ) ( ) ( )

, sin

, sin

l

l

x l xu x t h t h t
L L
x l xw x t y t f t
L L

π

π

 = +

 = +
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


,  (16) 

where l = 0, 1, 2... 
 
Substituting Eqs. (14) ~ (16) into Eq. (13), and introducing dimension-
less quantities 

0 0 0 0

0 0 0

,      
,     

n nF f d Y y d
S s d X x L

= =
 = =

,                             (17) 

the nonlinear Hill equation describing the parametric excitation of riser 
can be obtained 

( )
2 1 1* *

2 0 0

d sin d sin dX
d

n
n

F F a P n X X c Q Q n Xδ η ς τ π π
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where 
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22EI nC
EA L

π =  
 

,                                      (23) 
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d

ll FP l X
L
π π
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( )0
d2 cos 2 sin
d

lFQ Y X l Xτ π
τ
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2 tτ ω= .                                             (28) 
Here, n, l = 0,1,2... and ma is the additional water mass. 
 
The Instability Region of Hill Equation 
 
The solutions of Hill’s equation will be stable or unstable depending on 
the combination of parameters δ*, η* and K. The unstable solutions will 
be limited and not grow endlessly in the instability regions, due to the 
nonlinear damping. The dynamic response amplitudes of the riser in the 
stability regions are significantly larger than that of instability regions, 
which will affect the security of riser. According to Eq. (19) and (21), 
the internal flow density M and internal flow velocity U0 are items in δ* 
and η*. The existence of internal flow will affect the stability of the 
parametric excitation of the TTR, and the change of internal flow 
density and velocity will also affect the stability. 
 
The Hill equation without damping terms can be written as 

( )
2

* *
2 0w t w

t
δ η ς∂  + + = ∂

.                              (29) 

By using Strained Parameter Method, the instability regions boundary 
of Hill equation can be obtained. We define 

( )* * *2
0 1 2
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0 1 2

,w t w w wη η η

δ δ η δ η δ

 = + + +

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


,                        (30) 

Substituting Eq. (30) into Eq. (29) and expanding by order, solutions of 
the equation for different orders can be obtained. The zero-order 
equation can be expressed as 

0 cos sinw a nt b nt= + ,         where n = 1,2,3... (31) 
Here, a and b are undetermined coefficients. According to Eq. (31), 
there is 𝛿଴∗ = 𝑛ଶ. 
 
For the purpose of studying the influence of internal flow (including the 
internal flow density M and internal flow velocity U0) on the instability 
regions of the riser, two parameters (δ and η) are introduced here to 
describe the parametric expression of Hill equation without internal 
flow. In the present paper, the boundary of the instability regions of 
Hill equation are deduced using δ, η and internal flow items as 
variables. The parameter expression of Hill equation without internal 
flow can be rewritten as 
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,  (32) 

 
For cases n = 0, 1, 2 and 3, the boundary equation of the instability 
regions of Hill equation are: 

1849



 

(Ⅰ) n = 0 
Using parameters  δ* and η* for expressing the boundary equation of 
the instability regions of Hill equation, the boundary equation can be 
expressed as 

( ) ( )
2

* 2 *2 *31 1
8 32
C

Kδ η η
 −

= − + + Ο 
  

.  (33) 

Multiplying both sides of Eq. (33) by δ*/δ, the boundary equation of the 
instability regions of Hill equation which uses δ and η to denote can be 
written as 
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The derivations of other cases are similar to Eqs. (33) and (34). 
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For case b = 0, *
1δ = K/2, 
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(Ⅲ) n = 2 
For case a = 0, *

1δ = −K/2, 
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For case b = 0, *
1δ = K/2, 
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(Ⅳ) n = 3 
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The boundary expressions of the instability regions of Hill equation 
with internal flow are determined by Eqs. (34) ~ (40). Further, we plot 
the instability regions of the Hill equation, and the boundary of the 
instability regions will be some curved surfaces. It needs to be 
emphasized that the purpose of deriving the instability regions of the 
Hill equation by using parameters δ and η , which are independent of 
the internal flow term, is to reflect the effect of the internal flow 
(internal flow density M and internal flow velocity U0). If we use the 
traditional parameters δ* and η* to deduce, the instability boundary will 
be the same as the previous works, and the effect of internal flow terms 
will not be reflected. 
 
ANALYSIS OF INTERNAL FLOW EFFECTS 
 
Based on the boundary equations of the instability regions of Hill 
equation established above, the effect of internal flow terms (internal 
flow density M and internal flow velocity U0) on instability region is 
analyzed, and the instability regions of Hill equation under different 
parameters combination are plotted. The work has concentrated on a 
1000 m water depth case, and the parameters combination are shown in 
Table 1. 
 
Effects of Internal Flow Velocity U0 on Instability Regions 
 
In this section, some cases for different internal flow velocity are used 
to calculate, where the internal flow volume density is set as ρL = 800 
kg/m3. Fig. 3 shows the instability region curved surfaces calculated by 
Eqs. (34) ~ (40), with the internal flow velocity varying from 0 m/s ~ 4 
m/s. In order to investigate the effect of internal flow velocity U0 on the 
instability regions, boundaries of instability region for cases of the 
internal flow velocity U0 = 0 m/s, 0.5 m/s, 1 m/s, 2 m/s, 3 m/s and 4 m/s 
are shown in Fig. 4. Furthermore, the boundaries of the first and second 
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Dn, n+1
M  for a certain internal flow density M (i.e. the distance between 

the second and the third instability region curves along the δ-axis is 
D1, 215  when internal flow density M = 15 kg/m). When the internal flow  
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Fig. 7 Boundary curves of instability regions for different internal flow 
density, where U0 = 0 m/s. 
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Fig. 8 Boundary curves of instability regions for different internal flow 
density, where U0 = 1.5 m/s. 
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Fig. 9 Boundary curves of the first and second instability regions for 
different internal flow density. (a) U0 = 0 m/s; (b) U0 = 1.5 m/s. 
 
density M = 0 kg/m, we take the distances, D0,1

0 , D1,2
0 and D2,3

0  of the 
boundary curves of adjacent instability regions along the δ-axis as 
benchmarks, as shown in Fig. 7(a). For a certain internal flow density 
M, the rate of change of the distance between adjacent instability region 
boundaries along the δ-axis can be written as 

0
, 1 , 1

, 1 0
, 1

100%
M
n n n nM

n n
n n

D D
D
+ +

+
+

−
Δ = × .                           (41) 

Eq. (41) represents the influences of the internal flow density M on the 
location of the instability region. Table 2 shows the rate of change of 
the distances for case M = 0 kg/m, 15 kg/m, 20 kg/m, 25 kg/m and 35 
kg/m.  
 
As we can see from Table 2, with the increase of the internal flow 
density M, the distance between adjacent two instability region 
boundaries along the δ-axis increases constantly. For a certain internal 
flow density, rates for distances of different boundaries are nearly equal.  
 
It is found that the change rate of the distance between adjacent 
instability region boundaries along the δ-axis is linearly related to the 
internal flow density M. There is 

, 1 100%M
n n

p a

M
m m+Δ = ×

+
,             for arbitrary n. (42) 

 
Table 2. Rates of change of the distances between adjacent instability 
region boundaries on the δ-axis for different internal flow densitiy M, 
where U0 = 1.5 m/s. 
 

M 0,1
MD  0,1

MΔ  1,2
MD  1,2

MS  2,3
MD  2,3

MΔ  

0 kg/m 1 − 3 − 5 − 
15 kg/m 1.1102 11.02% 3.3285 10.95% 5.5489 10.98%
20 kg/m 1.1468 14.68% 3.4382 14.61% 5.7318 14.64%
25 kg/m 1.1834 18.34% 3.5479 18.26% 5.9147 18.29%
35 kg/m 1.2565 25.65% 3.7674 25.58% 6.2805 25.61%
 
With our previous discussion, it can be seen that the internal flow 
density has influences both on the shape and position of the instability 
regions. But the effects of the internal flow density on the position of 
instability regions can be negligible because [MU0

2(nπ/L)2]/[(mp + 
ma)ω2] is small for usual liquid flow velocity. As the internal flow 
density increases, the rate of change of the distance between adjacent 
instability region boundaries along the δ-axis increases linearly. 
 
CONCLUSIONS 
 
This paper studies the parametric excitation problem of a top-tensioned 
riser (TTR) with internal fluid subjected to combined platform surge 
and heave motions. Considering the surge and heave motions of the 
platform, the internal fluid density and velocity, and the hydrodynamic 
force on the riser, the nonlinear vibration model of the TTR is 
established. The nonlinear Hill equation describing the parametric 
excitation of the TTR and its instability region boundary are obtained. 
This paper studies the effects of the internal fluid velocity U0 and the 
internal fluid density M on instability regions of the Hill equation. The 
shape of the instability region does not change with the internal fluid 
velocity U0 in the riser, and the horizontal translations of the instability 
regions caused by the internal fluid velocity U0 can also be negligible 
for usual liquid flow velocity. In contrast, the shape and position of the 
instability region of the riser parametric excitation change with the 
internal flow density M, and the rate of change of the distance between 
two adjacent instability region boundaries along the δ-axis increases 
linearly. The relative position of the boundary of two adjacent 
instability regions is independent of the internal flow velocity U0. 
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