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ABSTRACT

This paper studies the effects of internal fluid on the stability of
parametric vibration of a top-tensioned riser (TTR), where the effects
of internal flow on the parametric instability charts are analyzed.
Results show that both the internal flow density (mass per unit length)
and velocity exert an influence on the instability charts. The internal
flow density has more influence on the instability region. As the
internal flow density changes, both the shape and the position of the
instability charts will change.

KEY WORDS: top-tensioned riser; TTR; parametric vibration;
internal flow; instability analysis; Hill equation.

INTRODUCTION

As the offshore oil and gas industry moves into deeper waters, where
the difficulty of the exploration of oil and gas increases dramatically, it
puts forward higher requirement for deep-water production equipment.
As a key equipment linking the floater and subsea production system,
the vibration characteristics of a top-tensioned riser (TTR) become a
popular issue in engineering design. In the marine environment, a TTR
is subjected to various loads including top floater motion, internal fluid,
sea current and so on. Due to the large slenderness ratio, the riser may
undergo large motions under the actions of adverse loads, even though
a certain tension is applied at the top end of the riser. Therefore, it is
essential to explore the vibration response analysis of the riser.

The parametric vibration of a TTR will occur in the horizontal direction
due to the effects of the platform’s heave motions, which will lead to
the destruction of risers. Parametric resonance of marine cable was
propose and analyzed for the first time by Hsu (1975), where the effects
of the velocity square damping of the fluid to decrease the amplitude
growth in unstable case are studied. Based on using a direct solution
approach to solve the differential equations, Chung and Whitney (1981)
studied the heave induced dynamic loads on an 18,000-Ft ocean mining
pipe. And then they investigated the effect of axial deformation to
deep-ocean pipe and found that it is significant to dynamic behavior of
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the low flexible riser (Chung et al. 1994a; Chung et al. 1994b). Patel
and Park (1995) examined the combination of the forcing and
parametric excitation for tethers of tensioned buoyant platforms, in
different water depths. By using a numerical method, Chatjigeorgiou
and Mavrakos (2002) researched vertical the non-linear dynamic
response of marine risers, which are subjected to parametric excitation
due to motions of marine structure. And then, effects of damping on
riser stability for risers subjected to parametric excitation have been
studied by their subsequent works (Chatjigeorgiou 2004;
Chatjigeorgiou and Mavrakos, 2005). Based upon using finite element
method, Park and Jung (2002) investigated the response of risers under
combined parametric and forcing excitations. In their numerical works,
the relative amplitudes of this kind of combination to an isolated
forcing excitation for various water depths, environmental conditions
and vessel motions are considered. Chandrasekaran et al. (2006)
studied the dynamic response of tethers and TLPs, assuming that
tension varies along the tether length. Aiming at deep-water risers,
Brugmans (2005) compared the difference of the parametric vibration
instability of three boundary models in detail, and developed simple
formulae to predict platform heaving frequency corresponding to
different instability regions p under parametric excitation of riser
system. By using Floquet theory, Kuiper et al. (2008) investigated riser
instability under parametric excitation and obtained instability
mechanisms of two kinds of parametric vibrations. The first is induced
by periodic time variation of the axial tensions. The another one is due
to large motions of the platform. Xu et al. (2008) investigated the hill
instability of TLP tethers by considering the coupled motion of surge
and heave of TLPs. And then, they study parametric instability of long
slender marine structures by using the Lyapunov-Poincareper method,
the modified Lyapunov-Poincareper method and the harmonic balance
method (Xu et al., 2011). Chung (2010) presented the full-scale
measurements for 5,000-m-long hanging pipe and the theoretical
prediction of its end’s dynamic behavior. Fujiwara et al. (2011) studied
the response of riser Vortex-Induced Vibration under parametric
excitation using experiment methods. By using a multi-frequency
excitation, Yang et al. (2013) gave a prediction for the parametric
instability of TTRs under the action of irregular waves. A frequency
domain method was proposed by Lei et al. (2014) to investigate the



effect of the parametric excitation on the frequency domain responses
of the riser. Under combined forcing excitation and parametric
excitation, a coupled dynamic analysis of a marine riser is investigated
by Wang et al. (2015). A vertical linear model to simulate the dynamic
tension force is also used in their work. Zhang and Tang (2015) studied
the parametric instability analysis of TTRs considering the linearly
varying tension along the length. The governing equation is solved by
using the Galerkin method. Lei et al. (2017) applied extended precise
integration method (EPIM) to research the dynamic instability of deep-
water TTRs under the fluctuating axial tension. Li and Chen (2018)
studied the parametric vibration instability of a riser by considering the
pre-stress. They investigated the influence of complex pre-stress on
frequency, mode shapes, and instability characteristics of the
parametric vibration for TTR.

The deep-water riser is a marine structure with large slenderness ratio,
and the internal flow will have significant effect on the vibration and
stability of deep-water riser due to the large slenderness ratio increases.
Much recent works have studied the internal flow effect of marine riser
conveying flowing fluid (Atadan et al., 1997; Keber and Wiercigroch,
2008; Chatjigeorgiou, 2010). By using the singular perturbation
technique, Wu and Lou (1991) researched the effect of the internal flow
for the lateral motion of a marine riser. They found that the internal
flow can reduce the effect of the top tension. Guo and Lou (2008)
investigated the internal flow effect on the Vortex-Induced Vibration of
risers. They found that internal flow will aggravate riser vibration. And
then, much works focus on research the internal flow Vortex-Induced
Vibration of flexible marine risers (Meng and Chen, 2012; Meng et al.,
2017a; Meng et al., 2017b). Meng et al. (2018) studied the effects of
centrifugal force and Coriolis force on the parametric instability, which
are introduced by internal flow in deep-water drilling risers.

These studies add to our understanding of internal flow and riser
parametric vibration. Researches on the parametric vibration of risers
are mostly limited to the influence of transverse displacement caused
by platform heave motion. But for harsh ocean conditions, the platform
will produce large surge motions, which will also have unwanted
impacts on the parametric vibration of risers. This point was deeply
studied by Xu et al. (2008), but they did not consider the internal flow
effect. In the current studies, the researches about internal flow effect
on risers’ vibration are mainly focused on the vortex-induced vibration,
while studies about the internal flow density and the internal flow
velocity on the parameter vibration of risers is relatively few. The
internal flow effect and the coupling of the surge and heave motions of
the top platform are simultaneously taken into account in the present
paper and the axial and transverse coupled vibration equations of the
TTR are established. Due to the axial nonlinear resonance response will
not be excited in general, the axial motion can be ignored and only the
transverse motion of the riser is considered. The transverse motion
equation is further degraded to the nonlinear Hill equation describing
the parametric vibration of the riser. The paper mainly studies the effect
of internal flow density (mass per unit length) and internal flow
velocity on the parametric instability of a TTR, respectively.

The structure of this paper is as follows. Some related formula
derivation is listed in§2, where the governing equation of transverse
vibration of the TTR is derived in §2.1 and the derivation of instability
regions of the nonlinear Hill equation considering the internal flow
parameters (including internal flow density and internal flow velocity)
is listed in §2.2. In §3, we discussed the effect of internal flow on
instability regions, where the effect of internal flow velocity is
discussed in §3.1 and the effect of internal flow density is discussed in
§3.2. §4 is the conclusion.
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FORMULATION
Mathematical Calculation Model

In general, the combined axial and transverse vibration of the TTR is
such significant due to its large slenderness ratio, thus, the vibration of
the TTR can be analyzed by using the nonlinear vibration theory of
beam. Based on using the nonlinear vibration analysis theory of pipe
conveying fluid of Paidoussis (1998), the governing equation is
obtained. To simplify the analysis, we consider the riser as an Euler—
Bernoulli beam simply supported at both ends and only its axial
vibrations and transverse vibrations perpendicular to the current
direction are considered. Fig. 1(a) is the structure and vibration
schematic diagram of a TTR, where a Cartesian coordinate system is
established and its origin is at the bottom of the riser. The positive ox
axis is located on the axis of the riser and points vertically upwards. L
is the length of the riser, u(x, f) the axial displacement of the riser, w(x,
t) the transverse displacement of the riser, 4(f) the displacement of
platform heave motion and y(f) the displacement of platform surge
motion.
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Fig. 1 Schematic diagram of vibration and stress of the TTR.

Under the action of internal pressure, external pressure, and the external
force, the cross-sectional area of riser will have great change, which
will affect the internal flow velocity. Fig. 1(b) is schematic diagram of
radial and axial section stress of the TTR, where p; is the internal
pressure, p, the external pressure, 4; the area of the inner diameter and
Ay the area of the external diameter. Hence the cross-sectional area of
riser can be defined as 4 = 4y — 4;. m, and M are mass per unit length
of riser wall and internal flow density (mass per unit length of internal
flow), respectively. T is the tension exerted by the platform on the riser,
U, the internal flow velocity for static riser. Assuming that the state of
the riser is from completely free of load to multiple loads of axial force
and internal and external pressure, the internal area of riser changes to
Aj, which can be written as

2
A;:Ai{l+%[(l—,u)o;—;10'2+(1+,u)1]} ,  where r=r,. (1)

Here £ and u are Young's modulus and the Poisson’s ratio of riser
material. ¢, and o, are radial and z-direction stress of the riser,
respectively. 7is the shear stress of riser and 7; the inner radius of riser.
According to the conservation of flow, the internal flow velocity of
vibrating riser after deformation can be obtained
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Here & is the strain caused by internal and external pressure of the riser
and ¢ the strain due to riser deformation.

Based on using the separation body method, coupled equations
combined axial and transverse vibrations of a TTR with internal flow
are established. Assuming that the length of a certain micro-segment of
the riser does not change before and after the riser deformation, as
shown in Fig. 2, we discuss a certain micro-segment of the riser. Q; is
the axial force exerted on the micro-segment, O, the shear force applied
to the micro-segment and M, the bending moment on the micro-
segment.
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Fig. 2 Schematic diagram of riser micro-segment.

The force balance equation of the micro-segment can be expressed as
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Here @ is the angle between x-axis and the axis of the riser and g the
gravitational acceleration.

Considering the strain due to pressure of internal and external fluids
and the strain caused by axial and transverse vibration of the riser, it
gives:
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Here T} is the axial force variation caused by internal and external fluid
pressure, / the polar moment of inertia for riser and 7, the additional
tension. p; and pf are internal and external fluid density respectively.
Substituting Eq. (4) and Egs. (7) ~ (12) into Egs. (5) and (6), the
governing equations for the coupled axial and transverse vibration of
the riser can be obtained. Given that the axial natural frequency of the
top tension riser is much higher than the excitation frequency of the
wave load, the axial nonlinear resonance response will not be excited
and then the axial motion can be ignored. Reserved to third order small
quantity, the governing equation of transverse vibration of the riser can
be expressed as follows:

o’w

Jtox

9*w T
(M+mp)?+2MU0[l+gI +2,ug+2,uﬂ](l—e)

o*w

ox®

T 2
+MU,’ (l+e] +2ﬂg+2,uaj (1-2¢)
+M{dU0

dt
’u  ow d'w ow
Uyr(l—€)—
’ ”{axar o 3xat} "}( ox

T 2
+MU,’ (l+£] +2ﬂ€+2ﬂaj{7(l+ﬂ)Ai(pLg - prg)

T
1+¢& +2ue+2Uu—
( | T 2H 'UEAJ

EA
— — 2 2
+(2 4‘u)(pLAig pFA”g)+2u o’u ou 87W81;V
EA ox*  ox ox
dU, ow
_Zu—{ & (M+mp)g+pFAog}}(l £)— w

du,
_{To+|: -M—2 O (M+m )g+pFAﬂg:|(L—x0)}

Sy Fude iy 3(on| 2y
ox*  ox* dx Ox ox’ ox

ox*
dU, ow duow 1{awY
My (m —pdg| oW 1 o
{ de +( +mp)g Pr Dg}{ax ox Ox Z[ij}
(

1—2/1)(pLA/.—pFAa)g(L—x)
{azw o*uow du d*w 3(8w]232w}

X

ox*>  ox* ox ox ox’ ox ) ox?
ow Ju ow owY
1=2u)(p,A — ppd, ) g| 22— 2L2Y_~
H1-20)(p,A - ped )2 Lx 2 2o (a]}
2 2 2 4
Y alal+auaw+3[awj d°w +E[aw
ox* ox  ox ox’ ox ) ox* ox*
S 9tw 4 4
BT 387148 N 8u8w+ 8u8w+auaw
ox® ox? ox? ox’ ox ox*  ox* ox

4 2.3 233
9 [Bw) J*'w 8Bwa wow Iw_, J*w -0 (13)
ox ) ox*  ox ox? ox’ ox’

Under the assumption of the flow velocity in the riser being constant
and regardless of the effect of internal and external pressure on cross-
section and additional tension, we set the Poisson’s ratio 4 = 0.5.
According to Morison formula, the additional inertial force and fluid



damping force suffered by the riser can be expressed as follows (see
Chung et al. 1994a)

1=

where V5, is the relative velocity, defined by Vg, = Ve, + Vs — Vs
Vp,, = ow/ot is the riser velocity in transverse direction, Vs, = dY/0t the
transverse velocity at any position of the riser induced by the top
platform motions and Vy, the wave particle velocity in transverse
direction. It should be noted that Vg,, Vp,, Vsw Vi, w and Y are
functions of x, and Y is the displacement of the riser micro-element due
to the surge motion of the top platform. And 7z, = Vp,, + Vs — Viprw
is the corresponding acceleration in transverse direction, each
component of which is acceleration of the riser, top platform and wave
particle, respectively. Here f,, denotes the hydrodynamic force applied
to the horizontal unit length of the riser, C, the added mass coefficients,
C)p the drag coefficients and d, the external diameter of the riser.

~Cpr AV, + Prd, (14)
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Assuming that the riser is simply supported at the both ends, the heave
and surge motions of the platform affected by waves can be expressed
as

h(t)=h, +s,cosar
y(t)=y,sinax

where sy and y, are amplitudes of platform heave and surge motions

respectively, @ denotes the frequency of movement of the platform.

According to the corresponding boundary conditions, the solutions of
the riser vibration equation can be written as
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(16) into Eq. (13), and introducing dimension-
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the nonlinear Hill equation describing the parametric excitation of riser
can be obtained

2
- 2” +[5‘ +17'g(r }F +a_[ Psmn/ZXdX+cI |0|OsinnzXdX
=(-1)"" =2 8% gin27 - [1—(—1)"]Micoszr, (18)
n (M +m,+m,)oL nz
where
2 2 2
I S &[Ej +§(&) (Ej
(M +m,+m,)e i) 4\lL)lL
: * 2Emh (nr)
—MUUZ(EJ +EI(EJ M [L) , (19)
L L L L
¢(7)=(cos27 — K cos4r + Ccos27), (20)
4EAs, l(nﬂ'j 7 @1
(M+mp+m )a) L\ L
2
ER 22)
4 s,L
2E[
, 23
T EA ( L ] @)

1849

8MU,

a=—, 24
(M +m,+m,)o @9
c= CDdeO s (25)
M+m,+m,
Iz dF,
P=> ——lcos(irX 26
L dr ( ) (26)
drF, .
0=2Y,Xcos27r + Zd—sm(lﬂX) , 27)
T
2r=wt . (28)
Here, n, [=0,1,2... and m, is the additional water mass.

The Instability Region of Hill Equation

The solutions of Hill’s equation will be stable or unstable depending on
the combination of parameters &, 77" and K. The unstable solutions will
be limited and not grow endlessly in the instability regions, due to the
nonlinear damping. The dynamic response amplitudes of the riser in the
stability regions are significantly larger than that of instability regions,
which will affect the security of riser. According to Eq. (19) and (21),
the internal flow density M and internal flow velocity U, are items in &
and 77", The existence of internal flow will affect the stability of the
parametric excitation of the TTR, and the change of internal flow
density and velocity will also affect the stability.

The Hill equation without damping terms can be written as

az [5”-5—779‘( ):|

By using Strained Parameter Method, the instability regions boundary
of Hill equation can be obtained. We define

w(t")=wy+ 1w + 17w, +
8 =8 +n8 +n76, +-
Substituting Eq. (30) into Eq. (29) and expanding by order, solutions of
the equation for different orders can be obtained. The zero-order

equation can be expressed as
w, =acosnt+bsinnt ,

29

(30)

where n=1,2,3...

(€29
Here, a and b are undetermined coefficients. According to Eq. (31),

there is 85 = n?.

For the purpose of studying the influence of internal flow (including the
internal flow density M and internal flow velocity Up) on the instability
regions of the riser, two parameters (0 and 77) are introduced here to
describe the parametric expression of Hill equation without internal
flow. In the present paper, the boundary of the instability regions of
Hill equation are deduced using &, 77 and internal flow items as
variables. The parameter expression of Hill equation without internal
flow can be rewritten as

P S P 1[”]+3(y](”]
(m, +m,) ‘t\L) alr)\L
+EI(EJ —2E1h02[nfj} , (32)
__ 4E4s, 1[;17:]
(mp+m )a)ZL

For cases n = 0, 1, 2 and 3, the boundary equation of the instability
regions of Hill equation are:



Mn=0

Using parameters & and 77" for expressing the boundary equation of
the instability regions of Hill equation, the boundary equation can be
expressed as

2
5 ={(1_C) +Lg

7 +0(n"). (33)

8 32

Multiplying both sides of Eq. (33) by 87/4, the boundary equation of the
instability regions of Hill equation which uses dand 7 to denote can be

written as
2
MUz ™%
(1—C)2 1, m, +m, s O[L)
O=———+—K n+
8 32 M+m,+m, (m +m )af
p T,
+0(77°) . (34)
The derivations of other cases are similar to Eqs. (33) and (34).
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The boundary expressions of the instability regions of Hill equation
with internal flow are determined by Egs. (34) ~ (40). Further, we plot
the instability regions of the Hill equation, and the boundary of the
instability regions will be some curved surfaces. It needs to be
emphasized that the purpose of deriving the instability regions of the
Hill equation by using parameters ¢ and 77, which are independent of
the internal flow term, is to reflect the effect of the internal flow
(internal flow density M and internal flow velocity Up). If we use the
traditional parameters & and 77" to deduce, the instability boundary will
be the same as the previous works, and the effect of internal flow terms
will not be reflected.

ANALYSIS OF INTERNAL FLOW EFFECTS

Based on the boundary equations of the instability regions of Hill
equation established above, the effect of internal flow terms (internal
flow density M and internal flow velocity U,) on instability region is
analyzed, and the instability regions of Hill equation under different
parameters combination are plotted. The work has concentrated on a
1000 m water depth case, and the parameters combination are shown in
Table 1.

Effects of Internal Flow Velocity U, on Instability Regions

In this section, some cases for different internal flow velocity are used
to calculate, where the internal flow volume density is set as p; = 800
kg/m®. Fig. 3 shows the instability region curved surfaces calculated by
Egs. (34) ~ (40), with the internal flow velocity varying from 0 m/s ~ 4
m/s. In order to investigate the effect of internal flow velocity U, on the
instability regions, boundaries of instability region for cases of the
internal flow velocity Uy = 0 m/s, 0.5 m/s, 1 m/s, 2 m/s, 3 m/s and 4 m/s
are shown in Fig. 4. Furthermore, the boundaries of the first and second



instability regions under different internal flow velocities (Uy = 0 m/s, 2
m/s and 4 m/s) are shown in Fig. 5. As the internal flow velocity
changes, the instability regions are almost the same, as shown in Figs. 4
~ 5. As we can see from the instability regions boundary Eqgs. (34) ~
(40), the internal flow velocity U, only exists in the constant term
MU (nx/LY*)/ [(m, +m,) @] , which will lead to horizontal translations
of the instability regions boundary. For usual liquid flow velocity, the
horizontal translations of the instability regions boundary can be
negligible because the term [M Uoz(mr/L)z]/[(mp +my) ] is small.

Table 1. Parameters combination of TTR.

Parameter Name Parameter Unit Parameter value
Length L (m) 1000
External diameter dy (m) 0.25
Internal diameter d; (m) 0.22
Material density Pr (kg/m?) 7800
Young's modulus E (Pa) 2.04E11
K - 0.1875
Platform period Tp (5) 8
Seawater density pr (kgim®) 1025
Platform amplitude of
heave motion " 0.1
Platt:)geaﬁggglde of m 5.0

T Ty
Uy 1 4

Fig. 3 The 3D surface of the boundaries of instability regions changing
with internal flow velocity Uj,.
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Fig.4 Boundary curves of instability regions for different internal flow
velocity. (a) Uy =0 m/s; (b) Uy= 0.5 m/s; (c¢) Uy=1 m/s; (d) Uy =2 mls;
(e) Uy=3 m/s; (f) Uy=4 m/s.
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Fig. 5 Boundary curves of the first and second instability regions for
different internal flow velocity.

Effects of Internal Flow Density M on Instability Regions

In this section, some cases for different internal flow density are used to
calculate, where the internal flow velocities are constant (Uy = 0 m/s
and 1.5m/s). Fig. 6 shows the instability region curved surfaces
calculated by Egs. (34) ~ (40) under two internal flow velocities (Uy= 0
m/s and 1.5m/s), with the internal flow density varying from 0 kg/m ~
40 kg/m. For the purpose of studying the effect of internal flow density
M, boundaries of instability region for cases of the internal flow density
M =0 kg/m, 15 kg/m and 30 kg/m for Uy= 0 m/s and 1.5m/s are shown
in Fig. 7 and Fig. 8, respectively. Fig. 7 and Fig. 8 show that, the shape
of the instability regions will change, as the internal flow density M
increases. The boundaries of the first and second instability regions
under different internal flow density (M = 0 kg/m, 15 kg/m, and 30 kg/m)
are shown in Fig. 9. The shape and position of the instability regions
will both change with the internal flow density M. As we can see from
instability regions boundaries Egs. (34) ~ (40), the internal flow density
M exists in both constant term [MUoz(nn'/L)z]/[(mp + m,)a#] which is
related to the position of the instability regions and the high order terms
related to the shape of the instability regions. Therefore, it is
understandable that the internal flow density M both has effects on the
shape and position of the instability regions. But it should be noted that
the internal flow density M mainly affects the shape due to term [MU,’*
(nw/LY*)/ [(m, + m,) ] is small for usual liquid flow velocity.

(a) U, = 0m/s

(b) Uy=1.5m/s
Fig. 6 The 3D surface of the boundaries of instability regions changing
with internal flow density M. (@) Uy = 0 m/s; (b) Uy = 1.5 m/s.

Our calculation also shows that arbitrary points on the boundary of the
instability region are shifted by different distances for different internal
flow density M, which indicates that the internal flow density M will
both change the shape and position of the instability regions. Here we
study the change of points on the Jaxis. We define the distance
between two adjacent instability region curves along the J-axis as



Dﬁ/{ «+1 for a certain internal flow density M (i.e. the distance between
the second and the third instability region curves along the J-axis is
D%?z when internal flow density M = 15 kg/m). When the internal flow
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Fig. 7 Boundary curves of instability regions for different internal flow

density, where Uy = 0 m/s.
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Fig. 8 Boundary curves of instability regions for different internal flow
density, where Uy = 1.5 m/s.

0

Fig. 9 Boundary curves of the first and second instability regions for
different internal flow density. (@) Uy = 0 m/s; (b) Uy = 1.5 m/s.

density M = 0 kg/m, we take the distances, ngl, D?,zand Dg,3 of the
boundary curves of adjacent instability regions along the J-axis as
benchmarks, as shown in Fig. 7(a). For a certain internal flow density
M, the rate of change of the distance between adjacent instability region
boundaries along the J-axis can be written as
D;ynﬂ - DS n+l

. % 100% .

-
nn+l T

@1
n,n+1

Eq. (41) represents the influences of the internal flow density M on the

location of the instability region. Table 2 shows the rate of change of

the distances for case M = 0 kg/m, 15 kg/m, 20 kg/m, 25 kg/m and 35

kg/m.

As we can see from Table 2, with the increase of the internal flow
density M, the distance between adjacent two instability region
boundaries along the J-axis increases constantly. For a certain internal

flow density, rates for distances of different boundaries are nearly equal.

It is found that the change rate of the distance between adjacent
instability region boundaries along the J-axis is linearly related to the
internal flow density M. There is

LxlOO%,

+m

a

A, =

non+l T

for arbitrary n. 42)

Table 2. Rates of change of the distances between adjacent instability
region boundaries on the J-axis for different internal flow densitiy M,
where Uy = 1.5 m/s.

M Dy Ay | DE | Sy | Db | AL
0 kg/m 1 - 3 - 5 -
15 kg/m | 1.1102 | 11.02% | 3.3285 | 10.95% | 5.5489 | 10.98%
20 kg/m | 1.1468 | 14.68% | 3.4382 | 14.61% | 5.7318 | 14.64%
25 kg/m | 1.1834 | 18.34% | 3.5479 | 18.26% | 5.9147 | 18.29%
35 kgim | 12565 | 25.65% | 3.7674 | 25.58% | 6.2805 | 25.61%
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With our previous discussion, it can be seen that the internal flow
density has influences both on the shape and position of the instability
regions. But the effects of the internal flow density on the position of
instability regions can be negligible because [MUoz(nn/L)z]/[(mp +
my)a?] is small for usual liquid flow velocity. As the internal flow
density increases, the rate of change of the distance between adjacent
instability region boundaries along the J-axis increases linearly.

CONCLUSIONS

This paper studies the parametric excitation problem of a top-tensioned
riser (TTR) with internal fluid subjected to combined platform surge
and heave motions. Considering the surge and heave motions of the
platform, the internal fluid density and velocity, and the hydrodynamic
force on the riser, the nonlinear vibration model of the TTR is
established. The nonlinear Hill equation describing the parametric
excitation of the TTR and its instability region boundary are obtained.
This paper studies the effects of the internal fluid velocity U, and the
internal fluid density M on instability regions of the Hill equation. The
shape of the instability region does not change with the internal fluid
velocity U in the riser, and the horizontal translations of the instability
regions caused by the internal fluid velocity U, can also be negligible
for usual liquid flow velocity. In contrast, the shape and position of the
instability region of the riser parametric excitation change with the
internal flow density M, and the rate of change of the distance between
two adjacent instability region boundaries along the J-axis increases
linearly. The relative position of the boundary of two adjacent
instability regions is independent of the internal flow velocity Uj.
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