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Summary

Many efforts have been made to improve the accuracy of the conventional
weighted essentially nonoscillatory (WENO) scheme at transition points (con-
necting a smooth region and a discontinuity point). This paper analyzes these
works and further develops a more effective multistep WENO scheme. Theoret-
ical analysis and numerical results show that the new scheme not only improves
the accuracy by one order higher than the traditional fifth-order WENO schemes
at transition point but also maintains the fifth-order accuracy in smooth regions
even at critical point where the first derivative vanishes.
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1 INTRODUCTION

The weighted essentially nonoscillatory (WENO) schemes have been extensively studied and applied in computational
fluid dynamics since it was first proposed by Liu et al.1 The distinctive advantage of the WENO scheme is that it not
only can achieve uniform high-order accuracy in the smooth areas but can also robustly capture shock waves in the
discontinuous regions. Jiang and Shu2 proposed a classical smoothness indicator to calculate the nonlinear weights, with
which the WENO (WENO-JS) scheme constructed from the rth order essentially nonoscillatory (ENO) scheme can obtain
(2r − 1)th order accuracy. A class of WENO schemes higher than the fifth order is designed by Balsara and Shu3 and by
Gerolymos et al.4

Henrick et al5 derived the necessary and sufficient conditions (NSC) for fifth-order convergence of a fifth-order WENO
scheme and pointed out that the fifth-order WENO-JS scheme was reduced to the third-order accuracy at critical points
where the first derivative vanishes, and then, the WENO-M scheme was constructed by modifying the weights of
WENO-JS with a mapping function. Borges et al6 proposed the WENO-Z scheme by constructing a high-order smooth-
ness indicator to compute the nonlinear weights. Castro et al7 constructed higher order WENO-Z schemes. Ha et al8 and
Fan et al9 further improved the accuracy of WENO-Z by constructing higher order global smoothness indicators and devel-
oped the WENO-NS and WENO-Z𝜂 schemes, respectively. On the other hand, Levy et al10-12 presented a series of central
WENO schemes, in which a two-dimensional (2D) high-order interpolant is reconstructed from cell averages by taking a
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convex combination of building blocks. Martin et al13 proposed a symmetric WENO method by means of a new candidate
stencil. Balsara et al14 developed a new class of WENO schemes with adaptive order for hyperbolic conservation laws.

Different from improving the accuracy of fifth-order WENO schemes at critical points, Shen and Zha15 first pointed
out that the accuracy of the traditional fifth-order WENO schemes is of only second order at transition point (connecting
a smooth region and a discontinuity point) and then introduced two fourth-order fluxes combined with an estimation
of smoothness/nonsmoothness of two adjacent four-point stencils to improve the accuracy near discontinuities. Subse-
quently, Shen et al16 developed a multistep WENO scheme, which can improve the accuracy of the fifth-order WENO
schemes near discontinuities without reducing the accuracy in smooth regions even at critical points. Peng and Shen17

extended the multistep strategy to improve the accuracy of the compact reconstructed WENO (CRWENO) scheme18 at
transition points. However, in the multistep WENO scheme, six weights are calculated and the mapping function pro-
posed by Henrick et al5 is needed, which make the algorithm inefficient. In order to enhance the computational efficiency
of the multistep WENO scheme, Ma et al19 proposed an improved multistep WENO scheme and its extension to higher
orders of accuracy. Compared with the multistep WENO scheme, although the improved scheme can greatly improve the
computational efficiency, the numerical results show that it cannot effectively reduce the dissipation near the disconti-
nuities and its accuracy at critical point is of fourth order. Recently, van Lith et al20 developed a class of embedded WENO
scheme. The scheme is simple and provides a choice to improve the accuracy of the WENO-Z scheme at a transition point.
In fact, the corresponding embedded WENO-Z scheme is equivalent to multiplying local smoothness indicators by differ-
ent constants. However, this way, may make the unbalanced contribution of the three substencils of fifth-order WENO
scheme and hence results in accuracy decreased in smooth regions. How to develop high performance multistep WENO
schemes is still an open issue.

In this paper, based on the analysis of the existing WENO schemes, we further develop the multistep weighting method.
Analysis shows that the new method improves the accuracy at transition points, and the calculated weights satisfy the
NSCs for the fifth-order convergence in smooth regions even at critical points. Meanwhile, similar to the improved multi-
step WENO scheme proposed by Ma et al,19 the present method only needs to calculate three nonlinear weights and does
not require a mapping function, which makes the algorithm more efficient than the original multistep WENO scheme.

The rest of this paper is organized as follows: several conventional fifth-order WENO schemes and accuracy analysis of
transition point are briefly introduced in Section 2. The new scheme is proposed and a detailed analysis about its accuracy
at both critical and transition points is given in Section 3. In Section 4, several numerical examples are presented to
demonstrate the efficiency, robustness, and low dissipation properties of the proposed scheme. Some conclusions of this
paper are given in Section 5.

2 FIFTH- ORDER WENO SCHEMES

In this section, the one-dimensional hyperbolic conservation laws is used as a model equation to describe the numerical
method

𝜕u
𝜕t

+ 𝜕𝑓 (u)
𝜕x

= 0, (1)

where u(x, t) is the conservative variable, and f (u) is the flux function.
The semidiscretization form of Equation (1) can be written as

dui

dt
= −

𝑓i+1∕2 − 𝑓i−1∕2

Δx
, (2)

where Δ x is an uniform grid size, 𝑓i±1∕2 is the numerical flux.

2.1 The traditional fifth-order WENO schemes
The numerical flux of a fifth-order WENO scheme can be written as

𝑓i+ 1
2
=

2∑
k=0
𝜔k𝑓

k
i+ 1

2

, (3)
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where 𝑓 k
i+1∕2 is the third-order flux on the substencil Sk = {i + k − 2, i + k − 1, i + k}, and given by

⎧⎪⎪⎨⎪⎪⎩
𝑓 0

i+ 1
2

= 1
3
𝑓i−2 − 7

6
𝑓i−1 + 11

6
𝑓i,

𝑓 1
i+ 1

2

= − 1
6
𝑓i−1 + 5

6
𝑓i + 1

3
𝑓i+1,

𝑓 2
i+ 1

2

= 1
3
𝑓i + 5

6
𝑓i+1 − 1

6
𝑓i+2,

(4)

𝜔k is the nonlinear weights. In the work of Jiang and Shu,2 the weight function is defined as

𝜔k = 𝛼k

𝛼0 + 𝛼1 + 𝛼2
, 𝛼k = ck

(𝛽k + 𝜀)2 , k = 0, 1, 2, (5)

where c0 = 1
10
, c1 = 6

10
, c2 = 3

10
are the ideal weights. The parameter 𝜀 is introduced to avoid the division by zero. A

detailed analysis in the work of Henrick et al5 shows that the relatively large value for parameter 𝜀 has an influence on
the accuracy of the WENO scheme, especially near critical points. Henrick et al5 suggested a value of 𝜀 slightly larger
than the square root of the smallest positive number allowed for a particular machine. Even so, in order to achieve better
order of accuracy, in the more recent literatures,21-23 there have been a lot of improvements on the choice of 𝜀, for example,
the parameter 𝜀 is taken as a function of Δ x. 𝛽k is the smoothness indicator on substencil Sk. Jiang and Shu2 proposed a
classical formula for 𝛽k as follows:

𝛽k =
r−1∑
l=1

∫
xi+ 1

2

xi− 1
2

(Δx)2l−1
(

dl𝑓 k(x)
dxl

)2

dx. (6)

The explicit form of 𝛽k for the fifth-order WENO scheme (r = 3) can be expressed as

𝛽0 = 13
12

(𝑓i−2 − 2𝑓i−1 + 𝑓i)2 + 1
4
(𝑓i−2 − 4𝑓i−1 + 3𝑓i)2,

𝛽1 = 13
12

(𝑓i−1 − 2𝑓i + 𝑓i+1)2 + 1
4
(𝑓i+1 − 𝑓i−1)2,

𝛽2 = 13
12

(𝑓i − 2𝑓i+1 + 𝑓i+2)2 + 1
4
(3𝑓i − 4𝑓i+1 + 𝑓i+2)2,

(7)

and their Taylor series expansions at xi are

𝛽0 = 𝑓 ′2
i Δx2 +

(13
12
𝑓 ′′2

i − 2
3
𝑓 ′

i 𝑓
′′′
i

)
Δx4 +

(
−13

6
𝑓 ′′

i 𝑓
′′′
i + 1

2
𝑓 ′

i 𝑓
(4)
i

)
Δx5 + O(Δx6),

𝛽1 = 𝑓 ′2
i Δx2 +

(13
12
𝑓 ′′2

i + 1
3
𝑓 ′

i 𝑓
′′′
i

)
Δx4 + O(Δx6),

𝛽2 = 𝑓 ′2
i Δx2 +

(13
12
𝑓 ′′2

i − 2
3
𝑓 ′

i 𝑓
′′′
i

)
Δx4 +

(13
6
𝑓 ′′

i 𝑓
′′′
i − 1

2
𝑓 ′

i 𝑓
(4)
i

)
Δx5 + O(Δx6).

(8)

Henrick et al5 provided a detailed analysis about the accuracy of the fifth-order WENO scheme of Jiang and Shu
(WENO-JS) and derived the NSCs on the weights for fifth-order convergence as

2∑
k=0

Ak
(
𝜔+

k − 𝜔−
k
)
= O(Δx3), (9a)

𝜔
±
k − ck = O(Δx2), (9b)

and a simple sufficient condition, which is given as

𝜔
±
k − ck = O(Δx3), (10)

where the superscripts ± correspond to the numerical fluxes 𝑓i±1∕2, respectively. In order to satisfy the aforementioned
conditions, a mapping function is proposed in the work of Henrick et al5 as

gk(𝜔) =
𝜔
(

ck + c2
k − 3ck𝜔 + 𝜔2)

c2
k + 𝜔(1 − 2ck)

, (11)

and an improved WENO (WENO-M) scheme is developed by using gk(𝜔).
Borges et al6 proposed a simple way to calculate the weights as

𝜔k = 𝛼k

𝛼0 + 𝛼1 + 𝛼2
, 𝛼k = ck

(
1 +

(
𝜏5

𝛽k + 𝜀

)q)
, k = 0, 1, 2, (12)
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where 𝜏5 = |𝛽0 − 𝛽2| can be called as a high-order smoothness indicator. In smooth regions, the Taylor expansion of 𝜏5 at
xi gives

𝜏5 =
⎧⎪⎨⎪⎩
||| 13

3
𝑓 ′′

i 𝑓
′′′
i − 𝑓 ′

i 𝑓
(4)
i
|||Δx5 + O(Δx7), 𝑓 ′

i ≠ 0,||| 13
3
𝑓 ′′

i 𝑓
′′′
i
|||Δx5 + O(Δx7), 𝑓 ′

i = 0.
(13)

As analyzed by Borges et al,6 the convergence order of this new WENO (WENO-Z) scheme at critical points is fourth and
fifth orders if the power q takes the value of 1 and 2, respectively. However, for solutions containing the discontinuities,
increasing q makes the scheme more dissipative.

2.2 Accuracy analysis at transition point
Shen and Zha15 provided a detailed analysis about the accuracy of fifth-order WENO schemes near discontinuities and
found that they fail to get the optimal order at transition points (see Figure 1).

For completeness, we briefly analyze the accuracy of the transition point here. Without loss of generality, we assume that
a discontinuity is located at [xi+1, xi+2] (see Figure 1), ie, the rightmost stencil S2 = {xi, xi+1, xi+2} of the fifth-order WENO
scheme. In this situation, analysis in the work of Shen and Zha15 shows that the nonlinear weight 𝜔2 of the WENO-JS
or WENO-Z scheme decreases to an essentially zero value, whereas 𝜔0 and 𝜔1 approach 1

7
and 6

7
, respectively. Therefore,

applying Taylor series expansion, Equation (3) can be written as

𝑓i+ 1
2
= 1

7
𝑓 0

i+ 1
2

+ 6
7
𝑓 1

i+ 1
2

= 2𝑓i−2 − 13𝑓i−1 + 41𝑓i + 12𝑓i+1

42
= hi+ 1

2
+ O(Δx3). (14)

However, for calculating the flux 𝑓i− 1
2
, the stencil S5 = {xi−3, xi−2, … , xi+1} is smooth; hence, the fifth-order numerical

flux can be obtained as

𝑓i− 1
2
= 2𝑓i−3 − 13𝑓i−2 + 47𝑓i−1 + 27𝑓i − 3𝑓i+1

60
= hi− 1

2
+ O(Δx5). (15)

Subtracting Equation (14) from Equation (15) gives

𝑓i+ 1
2
− 𝑓i− 1

2

Δx
= 𝑓 ′

i + O(Δx2). (16)

From Equation (16), we can see that the accuracy of the WENO-JS and WENO-Z schemes at transition point is of only
second order. As pointed out in the work of Shen et al,16 a fourth-order numerical flux can be constructed by using a

u

i+1

i+4

i
i-4

i+2 i+3

i-2i-3 i-1

FIGURE 1 The sketch of transition point [Colour figure can be viewed at wileyonlinelibrary.com]
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smooth stencil with four points. That is to say, in the smooth stencil S4 = {xi−2, xi−1, xi, xi+1}, the numerical flux 𝑓i+ 1
2

can
be rewritten as

𝑓i+ 1
2
= c4,0

0 𝑓 0
i+ 1

2

+ c4,0
1 𝑓 1

i+ 1
2

= 𝑓i−2 − 5𝑓i−1 + 13𝑓i + 3𝑓i+1

12
= hi+ 1

2
+ O(Δx4), (17)

where c4,0
0 = 1

4
, c4,0

1 = 3
4

are the optimal weights.
Hence, subtracting Equation (17) from Equation (15) yields

𝑓i+ 1
2
− 𝑓i− 1

2

Δx
= 𝑓 ′

i + O(Δx3). (18)

Comparing Equation (16) with Equation (18), we can see that the accuracy at transition point is improved by one order.
A symmetric scenario, which the discontinuity is present at [xi−2, xi−1], ie, the leftmost stencil S0 = {xi−2, xi−1, xi} of the
fifth-order WENO scheme, can be analyzed similarly as above.

2.3 Improvements of the accuracy at transition point
2.3.1 Hybrid method
In the work of Shen and Zha,15 a new method is proposed to improve the accuracy at transition point and given as

𝑓i+ 1
2
=
⎧⎪⎨⎪⎩

h
4
0 , if 𝜏0

4 ≤ min(𝛽0, 𝛽1, 𝛽2) and 𝜏1
4 > min(𝛽0, 𝛽1, 𝛽2),

h
4
1 , if 𝜏0

4 > min(𝛽0, 𝛽1, 𝛽2) and 𝜏1
4 ≤ min(𝛽0, 𝛽1, 𝛽2),

hWENO-Z, otherwise,

(19)

where ⎧⎪⎨⎪⎩
h

4
0 = 1

12
(𝑓i−2 − 5𝑓i−1 + 13𝑓i + 3𝑓i+1) ,

h
4
1 = 1

12
(−𝑓i−1 + 7𝑓i + 7𝑓i+1 − 3𝑓i+2)

(20)

are two fourth-order fluxes. 𝜏0
4 and 𝜏1

4 are defined as 𝜏0
4 = |𝛽0 − 𝛽1| and 𝜏1

4 = |𝛽1 − 𝛽2|, respectively. hWENO-Z denotes the
flux of the WENO-Z scheme. Numerical results in the works of Shen and Zha15 demonstrate that the new method is more
accurate to resolve the flow solutions near discontinuities.

2.3.2 Multistep WENO scheme
In order to remove the logical statements and construct a better performance scheme, Shen et al16 developed a multistep
WENO scheme which synthetically improved the accuracy of the traditional fifth-order WENO schemes at both critical
and transition points. In the first step, two fourth-order fluxes are constructed as

⎧⎪⎨⎪⎩
h4

0 = 𝜔4,0
0 𝑓 0

i+ 1
2

+ 𝜔4,0
1 𝑓 1

i+ 1
2

,

h4
1 = 𝜔4,1

0 𝑓 1
i+ 1

2

+ 𝜔4,1
1 𝑓 2

i+ 1
2

,
(21)

where

𝜔4,l
k =

gk

(
𝜓4,l

k

)
∑

kgk

(
𝜓4,l

k

) , 𝜓4,l
k =

𝛼4,l
k∑

k𝛼
4,l
k

, 𝛼4,l
k = c4,l

k

(
1 + |𝛽l+1 − 𝛽l|

𝛽l+k + 𝜀

)
, k, l = 0, 1. (22)

c4,0
0 and c4,0

1 are defined in Equation (17); c4,1
0 = 1

2
, c4,1

1 = 1
2

are the optimal weights; gk(x) is a mapping function in
Equation (11). In the second step, the final fifth-order flux is obtained as

𝑓i+ 1
2
= 𝜔0h4

0 + 𝜔1h4
1, (23)
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where

𝜔k =
gk(𝜓k)∑
kgk(𝜓k)

, 𝜓k = 𝛼k∑
k𝛼k

, 𝛼k = dk

(
1 + 𝜏5

𝛽k + 𝜀

)
, k = 0, 1. (24)

d0 = 2
5
, d1 = 3

5
are the optimal weights; 𝜏5 is the global smoothness indicator of the WENO-Z scheme.

Referring to the work of Shen et al,16 it is easy to see that

𝜔4,l
k =

{
c4,l

k + O(Δx6), 𝑓 ′
i ≠ 0,

c4,l
k + O(Δx3), 𝑓 ′

i = 0,
(25)

and

𝜔k =

{
dk + O(Δx9), 𝑓 ′

i ≠ 0,
dk + O(Δx3), 𝑓 ′

i = 0.
(26)

Equation (25) shows that the flux of the multistep WENO scheme can approximate the flux h
4
0 and h

4
1 in Equation (20)

if a discontinuity is located at [xi+1, xi+2] and [xi−2, xi−1], respectively. Meanwhile, from Equation (26), we can see that the
weights of the multistep WENO scheme satisfy the sufficient condition for the fifth-order convergence in smooth regions
even at critical points.

2.3.3 Embedded WENO-Z scheme
Recently, van Lith et al20 proposed a new method to improve the WENO-Z scheme. Their formula for calculating the
weights is

𝜔k =
𝛼E

k

𝛼E
0 + 𝛼E

1 + 𝛼E
2
, 𝛼E

k = ck

(
1 + 𝜇c̃k

(
𝜏5

𝛽k + 𝜀

)q)
, k = 0, 1, 2, (27)

where parameters ck, 𝛽k, 𝜏5, and 𝜀 are the same to the ones of the WENO-Z scheme in Equation (12), 𝜇 = 1
4
, q = 2; c̃1 = 1,

c̃0 = c̃2 = 2 is based on the consideration of improving the accuracy at transition point. Equation (27) shows that the
embedded WENO-Z (E-WENO) scheme is equivalent to multiplying local smoothness indicators by different constants,
ie, 𝛽′k = 𝜇k𝛽k (𝜇0 = 𝜇2 =

√
2

2
, 𝜇1 = 1

2
).

2.3.4 Improved multistep WENO scheme
In order to reduce the computational cost of the multistep WENO scheme, Ma et al19 proposed an improved fifth-order
multistep WENO (IM-WENO) scheme, in which, the unnormalized weights are defined as

⎧⎪⎪⎨⎪⎪⎩
𝛼0 = c0

(
1 + 𝜏5

𝛽0+𝜀

)
,

𝛼1 = c1

(
1 + 𝜏5

𝛽0+𝛽1+𝜀
+ 𝜏5

𝛽1+𝛽2+𝜀

)
,

𝛼2 = c2

(
1 + 𝜏5

𝛽2+𝜀

)
,

(28)

where parameters ck, 𝛽k, 𝜏5, and 𝜀 are the same as the ones of the WENO-Z scheme in Equation (12)).

3 THE NEW WENO SCHEME

3.1 The accuracy of E-WENO and IM-WENO
For a smooth solution, by using the Taylor series expansion of 𝛽k (8) and 𝜏5 (13), the unnormalized weights of the WENO-Z
scheme in Equation (12) can be written as

𝛼k = ck(1 + BΔxr + O(Δxr+1)), (29)

where B is independent of k, and r = 3q and q for 𝑓 ′
i ≠ 0 and 𝑓 ′

i = 0, respectively.
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Hence, for the WENO-Z scheme, there is

𝜔k =
ck
(
1 + BΔxr + O(Δxr+1)

)
c0(1 + BΔxr + O(Δxr+1)) + c1 (1 + BΔxr + O(Δxr+1)) + c2 (1 + BΔxr + O(Δxr+1))

= ck + O(Δxr+1). (30)

After a simple derivation, it can be found that the Taylor series expansion of the unnormalized weights Equation (28)
of the IM-WENO scheme is the same as Equation (29) with q = 1. Hence, the IM-WENO scheme has the same order as
the WENO-Z scheme with q = 1.

For the E-WENO scheme, the unnormalized weights 𝛼E
k give

𝛼E
k = ck

(
1 + BkΔxr + O(Δxr+1)

)
, (31)

with the parameters 𝜇k given in the work of van Lith et al,20 there is

B0 = B2 ≠ B1; (32)

hence, we have

𝜔k = ck + O(Δxr). (33)

That means, compared with WENO-Z and IM-WENO, the E-WENO scheme decreases one order for the weights
approximating to the ideal weights.

For a solution that contains a discontinuity, for example, which is located at [xi+1, xi+2], we can analyze the properties
of E-WENO and IM-WENO at transition point xi. The E-WENO scheme is taken as an example and the parameter 𝜀 takes
0 (since the value of 𝜀 should not destroy the ENO property and in order to simplify the analysis).

Since the discontinuity is located at [xi+1, xi+2], we have

𝛽2 = O(1), 𝛽k =

{
𝑓 ′2

i Δx2 + O(Δx4), 𝑓 ′
i ≠ 0,

13
12
𝑓 ′′2

i Δx4 + O(Δx5), 𝑓 ′
i = 0,

k = 0, 1, and 𝜏5 = O(1), (34)

that means

𝛽2 >> 𝛽0, 𝛽1, (35)

and hence, 𝜔2 → 0.
Next, we analyze the weights 𝜔0. By using Equation (27), 𝜔0 is calculated as

𝜔0 =
c0

(
1 + 𝜇c̃0

(
𝜏5

𝛽0

)q)
1 + 𝜇c0c̃0

(
𝜏5

𝛽0

)q
+ 𝜇c1

(
𝜏5

𝛽1

)q
+ 𝜇c2c̃2

(
𝜏5

𝛽2

)q . (36)

Multiplying the numerator and denominator of the right-hand term of Equation (36) by 1∕(𝜇c̃0(
𝜏5

𝛽0
)q), it can be

simplified as

𝜔0 =
c0

(
1 + 1

𝜇c̃0

(
𝛽0
𝜏5

)q)
c0 + c1

c̃0

(
𝛽0
𝛽1

)q
+ 1

𝜇c̃0

(
𝛽0
𝜏5

)q
+ c2 c̃2

c̃0

(
𝛽0
𝛽2

)q . (37)

Substituting Equation (34) and c̃0 = 2 into Equation (37), we obtain

𝜔0 = c0 + O(Δxr1)
c0 + 1

2
c1 (1 + O(Δxr2)) + O(Δxr1)

, (38)

where, for analyzing convenience, we directly express 𝛽0∕𝛽1 as 1 + O(Δxr2) in Equation (38).
Since c0 = 1∕10, c1 = 6∕10, we have

𝜔0 = c4,0
0 + O(Δxr), (39)
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where c4,0
0 = 1∕4 and r = min(r1, r2). According to Equation (34), it is easy to find that

r1 =

{
2q, 𝑓 ′

i ≠ 0,
4q, 𝑓 ′

i = 0.
(40)

Clearly, q = 2 can improve the accuracy of the numerator. The key problem is how to improve the accuracy of the denom-
inator. Since 𝛽2 = O(1) and 𝜏5 = O(1), it is clear that r2 is decided by 𝛽0∕𝛽1. From Equation (8), for a smooth solution,
there is

𝛽k

𝛽𝑗
=

{
1 + O(Δx2), 𝑓 ′

i ≠ 0,
1 + O(Δx), 𝑓 ′

i = 0,
k ≠ 𝑗. (41)

A similar formula holds for the two smooth stencils at transition point. Hence, one has that

r2 =

{
2, 𝑓 ′

i ≠ 0,
1, 𝑓 ′

i = 0.
(42)

Similarly, we can analyze 𝜔1. Hence, we get

𝜔k =

{
c4,0

k + O(Δx2), 𝑓 ′
i ≠ 0,

c4,0
k + O(Δx), 𝑓 ′

i = 0,
k = 0, 1. (43)

The IM-WENO scheme can be analyzed similarly, and the same conclusion Equation (43) can be drawn. Please notice
that the formula equation (43) is independent of the power q.

Equation (43) indicates that both the E-WENO and IM-WENO schemes can theoretically approximate the fourth-order
flux h

4
0 in Equation (20) when the discontinuity is located at [xi+1, xi+2]. However, numerical results in the works of Ma

et al19 and van Lith et al20 and in this paper show that the E-WENO and IM-WENO schemes cannot effectively reduce
the dissipation of WENO-Z near the discontinuities. This paper will further develop multistep WENO scheme, which can
obtain high-order accuracy in smooth regions and can also decrease the dissipation near the discontinuities.

3.2 The new weighting method
As indicated above, theoretically, the idea of multistep weighting is helpful for improving the accuracy at transition point.
However, limited by the condition of (𝛽k∕𝛽 j, k ≠ j), the simple linear combination of different 𝛽, such as the formula of
Ma et al19 and van Lith et al,20 cannot achieve the expected effects. Hence, we propose a new method by using a function
h(𝛽 l, 𝛽1)(l = 0, 2) to replace 𝛽 l + 𝛽1 in Equation (28), and the function should satisfy

h(𝛽l, 𝛽1) =

{
2𝛽l + O(ΔxÑ), if Sl

4 is a smooth stencil,
∼ 𝛽1, 𝛽l ≪ 𝛽1,

(44)

where S0
4 = {xi−2, … , xi+1}, S2

4 = {xi−1, … , xi+2}, and larger Ñ gives better accuracy for solutions.
For this purpose, a function h(𝛽 l, 𝛽1) is suggested as

h(𝛽l, 𝛽1) = 2𝛽l +
(

𝛽l − 𝛽1

𝛽l + 𝛽1 + 𝜀

)2

𝛽1, l = 0, 2. (45)

Obviously, the new function equation (45) satisfies the requirements in Equation (44), and Ñ = 6 for both the cases of
𝑓 ′

i = 0 and 𝑓 ′
i ≠ 0. Then, using Equation (45), a new method for calculating the weights is proposed as

⎧⎪⎪⎨⎪⎪⎩
𝛼0 = c0

(
1 + 𝜏5

𝛽0+𝜀

)
,

𝛼1 = c1

(
1 + 𝜏5

h(𝛽0,𝛽1)+𝜀
+ 𝜏5

h(𝛽2,𝛽1)+𝜀

)
,

𝛼2 = c2

(
1 + 𝜏5

𝛽2+𝜀

)
,

(46)

where parameters ck, 𝛽k, 𝜏5, and 𝜀 are the same as the ones of the WENO-Z scheme in Equation (12).
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Similarly, for the case of the power parameter q = 2, the unnormalized weights can be defined as

⎧⎪⎪⎨⎪⎪⎩
𝛼0 = c0

(
1 + 𝜏2

5

𝛽2
0+𝜀

)
,

𝛼1 = c1

(
1 + 𝜏2

5

h(𝛽2
0 ,𝛽

2
1)+𝜀

+ 𝜏2
5

h(𝛽2
2 ,𝛽

2
1)+𝜀

)
,

𝛼2 = c2

(
1 + 𝜏2

5

𝛽2
2+𝜀

)
.

(47)

Alternatively, one can even use a simpler form

h
(
𝛽2

l , 𝛽
2
1
)
= 2𝛽2

l + (𝛽l − 𝛽1)2, l = 0, 2. (48)

3.3 Accuracy analysis of the new scheme
Assuming the solution is sufficiently smooth in all candidate stencils, and substituting Equations (8) and (13) into
Equation (46), we have

𝜔k =

{
ck + O(Δx5), 𝑓 ′

i ≠ 0,
ck + O(Δx2), 𝑓 ′

i = 0.
(49)

Equation (49) shows that the new weights satisfy the second term of the NSC Equation (9b) for fifth-order convergence
in smooth regions even at critical points. Similar to the analysis in the work of Borges et al,6 the first term in the NSC
Equation (9a) can be written as

2∑
k=0

Ak
(
𝜔+

k − 𝜔−
k
)
= N+D− − N−D+

D+D− = O(Δxs), (50)

where

N± = 𝜏
±
5

2∏
k=0

𝛽
±
k

2∑
k=0

A±k ck

𝛽
±
k

, D± =
2∏

k=0
𝛽
±
k + 𝜏±5

2∏
k=0
𝛽
±
k

2∑
k=0

ck

𝛽
±
k

. (51)

𝛽k denotes the modified smoothness indicators of the IM-WENO and present schemes. In the IM-WENO scheme,

𝛽0 = 𝛽0, 𝛽1 = (𝛽0 + 𝛽1)(𝛽1 + 𝛽2)
(𝛽0 + 𝛽1) + (𝛽1 + 𝛽2)

, 𝛽2 = 𝛽2. (52)

In the present scheme,

𝛽0 = 𝛽0, 𝛽1 = h(𝛽0, 𝛽1)h(𝛽2, 𝛽1)
h(𝛽0, 𝛽1) + h(𝛽2, 𝛽1)

, 𝛽2 = 𝛽2, (53)

where the function h is defined in Equation (45).
Thus, with the aid of a symbolic algebra program by substituting the Taylor series expansion of the smoothness indica-

tors 𝛽k Equation (8), Table 1 gives the value of s in Equation (50). In addition, the process for calculating these values is
given in the Appendix.

From Table 1, the first term of the NSC of the IM-WENO scheme is given by

2∑
k=0

Ak
(
𝜔+

k − 𝜔−
k
)
=

{
O(Δx6), 𝑓 ′

i ≠ 0,
O(Δx2), 𝑓 ′

i = 0.
(54)

TABLE 1 The value of s in Equation (50)

IM-WENO19 Present
f ′

i ≠ 𝟎 f ′
i = 𝟎 f ′

i ≠ 𝟎 f ′
i = 𝟎

N+D− − N−D+ O(Δx18) O(Δx26) O(Δx20) O(Δx27)
D+D− O(Δx12) O(Δx24) O(Δx12) O(Δx24)

s 6 2 8 3
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However, for the present scheme, there is

2∑
k=0

Ak
(
𝜔+

k − 𝜔−
k
)
=

{
O(Δx8), 𝑓 ′

i ≠ 0,
O(Δx3), 𝑓 ′

i = 0.
(55)

Equations (49) and (55) indicate that the weights of the present scheme satisfy the NSC for fifth-order convergence in
smooth regions including critical points where the first derivative vanishes but the high-order derivative does not, while
the weights of the IM-WENO scheme do not satisfy the NSC at critical points, as shown in Equations (30) and (54).

It should be pointed out that, in this paper, only the weighting method with a fixed value for 𝜀 (for example, 𝜀 = 10−40)
is applied, so the fifth-order accuracy can be achieved only for the case with the first critical point where f ′ = 0 and
f ′′ ≠ 0. For the higher order critical point, similar as the WENO-Z scheme,6,9 the new scheme has only second order. In
order to obtain high-order convergence rate, one feasible way is to set 𝜀 proportionally to Δx to some power22 or design
higher order global smoothness indicator.9

If the solution is discontinuous on the global stencil, without loss of generality, we assume that the discontinuity is
located at [xi+1, xi+2]. Similar to the analysis in Section 3.1, we can obtain the values of the parameters r1 and r2 in
Equation (38) as follows:

r1 =

{
2, 𝑓 ′

i ≠ 0,
4, 𝑓 ′

i = 0,
r2 =

{
4, 𝑓 ′

i ≠ 0,
2, 𝑓 ′

i = 0.
(56)

Compared with Equations (40) and (42), it is found that the value of r2 is doubled. Finally, we have

𝜔k =

{
c4,0

k + O(Δx2), 𝑓 ′
i ≠ 0,

c4,0
k + O(Δx2), 𝑓 ′

i = 0,
k = 0, 1, 𝜔2 → 0. (57)

Similarly, results can be obtained for the case of the discontinuity located at [xi−2, xi−1]. Numerical examples show that
this improvement can effectively reduce the dissipation near the discontinuities.

In addition, if the discontinuity is located at [xi−1, xi] and [xi, xi+1], the weights of the present scheme are approximated
by 𝜔0 → 0, 𝜔1 → 0, 𝜔2 → 1, and 𝜔0 → 1, 𝜔1 → 0, 𝜔2 → 0, respectively. Therefore, the new WENO scheme can keep the
ENO property near shock waves.

4 NUMERICAL EXAMPLES

In this section, several numerical examples are given to compare the following schemes:

(1) WENO-Z: Weighting method Equation (12) with q = 1 and 𝜀 = 10−40;
(2) WENO-Z2: Weighting method Equation (12) with q = 2 and 𝜀 = 10−40;
(3) WENO-Zdx322: Weighting method Equation (12) with q = 1 and 𝜀 = Δx3;
(4) WENO-Z2dx422: Weighting method Equation (12) with q = 2 and 𝜀 = Δx4;
(5) M-WENO: Multistep WENO scheme Equation (23) with 𝜀 = 10−40;
(6) E-WENO: Embedded WENO-Z scheme Equation (27) with 𝜀 = 10−40;
(7) IM-WENO: Improved multistep WENO scheme Equation (28) with 𝜀 = 10−40;
(8) IM-WENO-2: IM-WENO scheme with q = 2 and 𝜀 = 10−40;
(9) HM-WENO: New WENO scheme Equations (45) and (46) with 𝜀 = 10−40;

(10) HM-WENO-2: New WENO scheme Equations (47) and (48) with 𝜀 = 10−40.

The fourth-order Runge-Kutta method24 is used to approximate the time derivative, and the CFL number is set to be 0.5
for all examples in this paper.

4.1 The accuracy at critical point
Referring to the works of Castro et al7 and Fan et al,9 the function f (x) = x2e x, which has a critical point at x = 0 where
f ′(0) = 0 and f ′′(0) ≠ 0, is also used to measure the accuracy of the new scheme and several WENO schemes mentioned
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TABLE 2 Comparison of errors and convergence orders for different schemes at critical point

𝚫x WENO-Z WENO-Zdx3 M-WENO IM-WENO HM-WENO
Error order Error order Error order Error order Error order

2e−2 0.496e−06 – 0.844e−08 – 0.154e−08 – 0.286e−06 – 0.265e−07 –
1e−2 0.292e−07 4.09 0.192e−09 5.46 0.496e−10 4.95 0.159e−07 4.17 0.968e−09 4.78
5e−3 0.176e−08 4.05 0.411e−11 5.55 0.156e−11 4.99 0.923e−09 4.11 0.326e−10 4.89

2.5e−3 0.108e−09 4.03 0.915e−13 5.49 0.488e−13 5.00 0.552e−10 4.06 0.106e−11 4.94
1.25e−3 0.666e−11 4.02 0.222e−14 5.37 0.152e−14 5.00 0.337e−11 4.03 0.338e−13 4.97

𝚫x WENO-Z2 WENO-Z2dx4 E-WENO IM-WENO-2 HM-WENO-2
2e−2 0.256e−06 - 0.127e−06 - 0.138e−05 - 0.194e−06 - 0.461e−08 -
1e−2 0.579e−08 5.47 0.323e−08 5.30 0.817e−07 4.08 0.397e−08 5.61 0.613e−10 6.23
5e−3 0.144e−09 5.33 0.888e−10 5.19 0.500e−08 4.03 0.894e−10 5.47 0.157e−11 5.28

2.5e−3 0.392e−11 5.20 0.258e−11 5.10 0.310e−09 4.01 0.224e−11 5.32 0.482e−13 5.03
1.25e−3 0.113e−12 5.11 0.776e−13 5.06 0.193e−10 4.01 0.615e−13 5.19 0.151e−14 4.99

above. Meanwhile, in order to evaluate the influence of the value of 𝜀 on the accuracy of WENO scheme at critical point, 𝜀
is taken as the power of𝛥x employed in the work of Don and Borges22 and a fixed constant 10−40 recommended by Henrick
et al,5 respectively. Table 2 gives the comparison of the errors of the first derivative of the function f (x) at x = 0 and
convergence orders of different schemes. The critical point is set as a grid point xi and the flux 𝑓i+1∕2 is calculated by using
the five-point stencil of [xi−2, xi−1, … , xi+2], where, xi = 0, xi±n = xi±n𝛥x. From this table, we can see that WENO-Zdx3 and
WENO-Z2dx4,22 M-WENO,16 and HM-WENO achieve fifth-order accuracy at critical point. Hence, as analyzed in the work
of Don and Borges,22 the WENO-Z scheme can obtain the optimal convergence order at critical point if 𝜀 takes the power
of Δx. The IM-WENO scheme19 has the same fourth-order accuracy as the WENO-Z scheme (q = 1, 𝜀 = 10−40), although
its error is less than WENO-Z's. For the case of the power parameter q = 2, the E-WENO scheme is only fourth-order
accuracy. As analyzed in Section 3.1, the E-WENO scheme decreases the accuracy of the WENO-Z scheme (with q = 2).

4.2 The errors around transition point
In this subsection, the following function

𝑓 (x) =

{
A sin(k𝜋x), −1 ≤ x ≤ 0,
A sin(k𝜋x) + 1, 0 < x ≤ 1

(58)

is used to measure the performance of different schemes mentioned above around transition point, where A = 0.01, k = 6.
For this case, xi = 0 and the next point xi+1 are the discontinuity points. Hence, the points xi−1 and xi+3 are the transi-
tion points. Table 3 gives the comparison of errors of first-order derivative of f (x) in Equation (58) for different schemes
around the transition points with N = 80, N = 160, and N = 320, and the transition points are displayed in bold. It can be
seen that the errors of the multistep WENO-type schemes (M-WENO, IM-WENO, IM-WENO-2, E-WENO, HM-WENO,
HM-WENO-2) are less than those of WENO-Z–type schemes (WENO-Z, WENO-Z2, WENO-Zdx3, WENO-Z2dx4) at
transition points.

4.3 One-dimensional linear advection problems
The governing equation of linear advection problems is given by{

𝜕u
𝜕t

+ 𝜕u
𝜕x

= 0,
u(x, 0) = u0(x).

(59)

The periodic boundary condition is applied for this kind of problem.
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4.3.1 The first case of advection equation
The initial condition is given by

u0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
6
(G(x, 𝛽, z − 𝛿) + G(x, 𝛽, z + 𝛿) + 4G(x, 𝛽, z)) , −0.8 ⩽ x ⩽ −0.6

1, −0.4 ⩽ x ⩽ −0.2
1 − |10(x − 0.1)|, 0 ⩽ x ⩽ 0.2
1
6
(F(x, 𝛼, a − 𝛿) + F(x, 𝛼, a + 𝛿) + 4F(x, 𝛼, a)) , 0.4 ⩽ x ⩽ 0.6

0, otherwise,

(60)

with the computational domain [−1, 1], where G(x, 𝛽, z) = e−𝛽(x−z)2 ,F(x, 𝛼, a) =
√

max(1 − 𝛼2(x − a)2, 0), a = 0.5, z =
−0.7, 𝛿 = 0.005, 𝛼 = 10, and 𝛽 = log2∕36𝛿2. The solution contains a Gaussian, a square-wave, a triangle, and a semiellipse
wave. Figure 2 gives the numerical results of different schemes. From the enlarged part of this figure, we can find that the
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FIGURE 2 Linear advection problem with initial condition Equation (60) at t = 6, N = 200 [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 3 Linear advection problem with initial condition Equation (61) with N = 100 at (A) t = 960, (B) t = 400 [Colour figure can be
viewed at wileyonlinelibrary.com]

IM-WENO and E-WENO schemes even generate less accurate solution than WENO-Z with q = 1 and q = 2, respectively.
The HM-WENO and HM-WENO-2 schemes can effectively reduce the dissipation near the discontinuities, and they have
the best resolution for four kinds of waves.

Apparently, as shown in Section 4.1 and in the work of Don and Borges,22 the WENO-Z (with 𝜀 = Ω(Δxm)) scheme can
obtain the optimal convergence order at critical points (even at high-order critical points). However, as stated in the work
of Don and Borges,22 for q = 1, both the WENO-JS and WENO-Z schemes do not have sufficient numerical dissipation
to remove the numerical oscillations from the solution, regardless of the order of schemes and 𝜀 chosen. Since this paper
mainly focuses on the improvement at transition point, for the rest examples, only the case of 𝜀 = 10−40 is discussed and
compared, although the improvement strategy is still available for those WENO schemes with 𝜀 = Ω(Δxm).

4.3.2 The second case of advection equation
The initial condition is given by

u0(x) = e−(x−90)2∕400
(

cos
(
𝜋

8
(x − 90)

)
+ cos

(
𝜋

4
(x − 90)

))
, 50 ⩽ x ⩽ 130. (61)

Figure 3 gives the numerical results of different schemes. Similar to the above example, the HM-WENO and HM-WENO-2
schemes apparently improve the accuracy of the solution of the high-frequency wave problem.

Since the comparison and conclusion for those schemes with q = 2 are in agreement with those with q = 1, in the rest
of this paper, only the results of the WENO-Z, IM-WENO, and HM-WENO schemes are shown and discussed.

4.3.3 The third case of advection equation
The initial condition is given by5

u0(x) = sin
(
𝜋x − sin(𝜋x)

𝜋

)
,−1 ⩽ x ⩽ 1. (62)

This solution has two critical points, where u′(0) = 0 and u′′′(0) ≠ 0. As in the works of Jiang and Shu2 and Ha et al,8 the
time step is set to Δx5/4. The program with quadruple precision is performed on Intel Xeon E5-2640 v3. Table 4 gives the
errors, convergence orders, and CPU time of different schemes at t = 2. From this table, it can be seen that the HM-WENO
scheme gets the same fifth-order accuracy as the first multistep WENO (M-WENO) scheme. While the convergence orders
of the WENO-Z and IM-WENO schemes gradually decrease to fourth order with refined meshes. The comparisons of
computational efficiency are shown in Figure 4. As observed from this figure, the HM-WENO scheme greatly improves
the computational efficiency of the M-WENO scheme. It can be seen that HM-WENO costs about 30% and 15% CPU time
more than WENO-Z and IM-WENO, respectively; however, if a more accurate solution (with a refined mesh) is required,
the HM-WENO scheme is more efficient than both the WENO-Z and IM-WENO schemes.
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TABLE 4 Comparison of errors, convergence orders, and CPU time (in seconds) for different schemes

N WENO-Z IM-WENO M-WENO HM-WENO
L∞(order) CPU Time L∞(order) CPU time L∞(order) CPU Time L∞(order) CPU Time

160 0.21e−06(—) 7.0e−01 0.21e−06(—) 7.6e−01 0.21e−06 (—) 1.6e+00 0.21e−06(—) 8.9e−01
320 0.78e−08(4.76) 3.3e+00 0.66e−08(5.00) 3.5e+00 0.66e−08(5.00) 7.3e+00 0.66−08(5.00) 4.1e+00
640 0.36e−09(4.44) 1.5e+01 0.20e−09(5.00) 1.7e+01 0.20e−09(5.00) 3.5e+01 0.20e−09(5.00) 1.9e+01

1280 0.17e−10(4.37) 7.3e+01 0.84e−11(4.61) 7.8e+01 0.64e−11(5.00) 1.6e+02 0.64e−11(5.00) 9.1e+01
2560 0.82e−12(4.39) 3.4e+02 0.40e−12(4.39) 3.7e+02 0.20e−12(5.00) 7.7e+02 0.20e−12(5.00) 4.3e+02

CPU time
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10
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10
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FIGURE 4 Comparisons of computational efficiency [Colour figure can be viewed at wileyonlinelibrary.com]

4.4 One-dimensional Euler problems
The governing equation of one-dimensional Euler problems is given by

𝜕U
𝜕t

+ 𝜕F(U)
𝜕x

= 0, (63)

where U = (𝜌, 𝜌u,E)T,F(U) = (𝜌u, 𝜌u2 + p,u(E + p))T; 𝜌,u,E, p denote the density, velocity, total energy, and pressure,
respectively, and for ideal gas E = p

𝛾−1
+ 1

2
𝜌u2. 𝛾 = 1.4 is the ratio of specific heat. The global Lax-Friedrichs flux-splitting

method with local characteristic reconstruction is used for the inviscid flux.

4.4.1 Lax problem
The initial conditions of this problem are

(𝜌,u, p) =

{
(0.445, 0.698, 3.528), −5 ≤ x < 0
(0.5, 0, 0.571), 0 ≤ x ≤ 5,

(64)

with zero gradient boundary conditions at x = ±5. Figure 5 gives the numerical results with N = 200 at t = 1.3. The
reference result is obtained by the WENO-Z scheme with refined grids. From the enlarged part of this figure, we can see
that the present scheme is more accurate than the other schemes near shock waves.

4.4.2 Shock entropy wave interaction
The initial conditions of this problem25 are

(𝜌,u, p) =

{
(3.857143, 2.629369, 31∕3), −5 ≤ x < −4
(1 + 0.2 sin(5x), 0, 1), −4 ≤ x ≤ 5,

(65)
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FIGURE 5 Lax problem at t = 1.3, N = 200 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 Shock entropy wave interaction at t = 1.8, N = 200 [Colour figure can be viewed at wileyonlinelibrary.com]

with zero gradient boundary conditions at x = ±5. This case represents a Mach 3 shock wave interacting with a sine
entropy wave and is widely used for evaluating the resolution of the shock-capturing schemes. The numerical results of
different schemes with N = 200 at t = 1.8 are shown in Figure 6. This example shows that, for the high frequency waves,
the HM-WENO scheme can also obtain more accurate results than the WENO-Z and IM-WENO schemes.

4.4.3 Interacting blast waves
The initial conditions of this problem5,6 are

(𝜌,u, p) =
⎧⎪⎨⎪⎩
(1, 0, 1000), 0 ≤ x < 0.1
(1, 0, 0.01), 0.1 ≤ x < 0.9
(1, 0, 100), 0.9 ≤ x ≤ 1,

(66)

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


ZENG ET AL. 175

X
0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6
Reference
WENO-Z
IM-WENO
HM-WENO

X
0.65 0.7 0.75 0.8

4

5

Reference
WENO-Z
IM-WENO
HM-WENO

FIGURE 7 Interacting blast waves at t = 0.038, N = 400 [Colour figure can be viewed at wileyonlinelibrary.com]

with reflection boundary conditions at x = 0 and x = 1. This case is often used as a benchmark case to test the robustness
and the capability of shock-capturing for different schemes. Figure 7 gives the numerical results with N = 400 at t = 0.038.
It can be observed that the present scheme can capture the strong shock as well as the WENO-Z and IM-WENO schemes.

4.5 2D Euler problems
The governing equation of 2D Euler problems is given by

𝜕U
𝜕t

+ 𝜕F
𝜕x

+ 𝜕G
𝜕𝑦

= 0, (67)

where

U =
⎡⎢⎢⎢⎣
𝜌
𝜌u
𝜌v
E

⎤⎥⎥⎥⎦ , F =
⎡⎢⎢⎢⎣

𝜌u
𝜌u2 + p
𝜌uv

Eu + pu

⎤⎥⎥⎥⎦ , G =
⎡⎢⎢⎢⎣

𝜌v
𝜌uv

𝜌v2 + p
Ev + pv

⎤⎥⎥⎥⎦ . (68)

The specific total energy E is given by

E =
p

(𝛾 − 1)
+ 1

2
𝜌(u2 + v2). (69)

The Steger-Warming flux splitting method26 is used for the inviscid convective fluxes. The WENO reconstruction is carried
out for each component of the split fluxes. The time step is taken as27

Δt = CFL
ΔtxΔt𝑦

Δtx + Δt𝑦
, with Δtx =

Δx
max

i, 𝑗

(|ui, 𝑗| + ci, 𝑗
) and Δt𝑦 =

Δ𝑦
max

i, 𝑗

(|vi, 𝑗| + ci, 𝑗
) , (70)

where c is the speed of sound.

4.5.1 2D vortex evolution problem
The 2D vortex evolution problem28 is often used to evaluate the dissipation property of a scheme. It describes an isentropic
vortex moves across the computational domain periodically. The initial conditions of this problem are

⎧⎪⎪⎨⎪⎪⎩

u = 0.5 − 𝜀e(1−r2 )∕2

2𝜋
(𝑦 − 5),

v = 𝜀e(1−r2 )∕2

2𝜋
(x − 5),

T = 1 − (𝛾−1)𝜀2e(1−r2)

8𝛾𝜋2 ,

S = 1.

(71)
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UP5 WENO-Z

IM-WENO HM-WENO

FIGURE 8 Pressure contours of the vortex evolution problem, 30 contours from 0.9918 to 0.9998
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FIGURE 9 Integrated kinetic energy versus time [Colour figure can be viewed at wileyonlinelibrary.com]

The temperature T and entropy S are defined as follows:

T =
p
𝜌
, S =

p
𝜌𝛾
,

where r2 = (x−5)2 +(y−5)2, and vortex strength 𝜀 is 0.5. The computational domain is [0, 10]× [0, 10]. Periodic boundary
conditions are set for all boundaries. Figure 8 gives the pressure contours of different schemes with Nx × Ny = 50 × 50 at
t = 800. The evolution of the integrated kinetic energy (Ek =

∑
i, 𝑗𝜌i, 𝑗(u2

i, 𝑗 + v2
i, 𝑗)∕2) is shown in Figure 9. It can be seen

that the HM-WENO scheme maintains the symmetry of the vortex structure better than the WENO-Z and IM-WENO
schemes, and its results are close to those of the fifth-order upstream scheme (UP5).
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FIGURE 10 Two-dimensional Riemann problem, Nx × Ny = 400 × 400, 25 contours from 0.2 to 1.85 [Colour figure can be viewed at
wileyonlinelibrary.com]

4.5.2 2D Riemann problem
The initial conditions of this problem19,29 are

(𝜌,u, v, p) =

⎧⎪⎪⎨⎪⎪⎩

(1.5, 0, 0, 1.5), 0.8 ≤ x ≤ 1, 0.8 ≤ 𝑦 ≤ 1
(0.5323, 1.206, 0, 0.3), 0 ≤ x < 0.8, 0.8 ≤ 𝑦 ≤ 1
(0.138, 1.206, 1.206, 0.029), 0 ≤ x < 0.8, 0 ≤ 𝑦 < 0.8
(0.5323, 0, 1.206, 0.3), 0.8 ≤ x ≤ 1, 0 ≤ 𝑦 < 0.8,

(72)

with Dirichlet boundary conditions. The computational domain is [0, 1]× [0, 1]. Figure 10 gives the density contours with
Nx × Ny = 400 × 400 at t = 0.8. It can be found that all schemes can capture reflection shocks and contact discontinuities
well. Comparing the structures caused by Kelvin-Helmholtz instabilities, it can be seen that HM-WENO generates richer
structures than IM-WENO and WENO-Z, which means the new scheme has less numerical dissipation near contact
interfaces.

4.5.3 Double Mach reflection problem
This problem is proposed by Woodward and Colella30 and describes the reflection of a planar Mach shock in air hitting a
wedge. The initial conditions of this problem are

(𝜌,u, v, p) =
⎧⎪⎨⎪⎩
(8, 8.25 cos 𝜋

6
,−8.25 sin 𝜋

6
, 116.5), x < 1

6
+ 𝑦√

3

(1.4, 0, 0, 1.0), x ⩾ 1
6
+ 𝑦√

3
.

(73)

The computational domain is [0, 4] × [0, 1]. For the bottom boundary, the exact post-shock condition is imposed for the
interval [0, 0.6], and a reflective boundary condition is used for the rest. The top boundary is set to describe the exact
motion of a Mach 10 shock. Inflow and outflow boundary conditions are used for the left and right boundaries, respec-
tively. Figure 11 gives the density contours with Nx × Ny = 960 × 240 at t = 0.2. Meanwhile, the magnification of the
blow-up region around the double Mach stems of each plot is also shown in the picture. It can be found that all schemes
can capture shock structures well. However, from three enlarged plots, we can see that the HM-WENO scheme resolves
more instability structures than the other two schemes.

4.5.4 Forward-facing step problem
This problem is also originally from the work of Woodward and Colella.30 The setup of the problem is as follows: the
wind tunnel spans a domain of [0, 3] × [0, 1]. A forward-facing step is located at (0.6, 0.2). The problem is initialized by a
right-going Mach 3 flow with a density of 1.4 and a pressure of unity. Reflective boundary conditions are applied along
the walls of the tunnel. Inflow and outflow boundary conditions are used for the left and right boundaries, respectively.
The density contours with Nx × Ny = 600 × 200 at t = 4 is shown in Figure 12. All the schemes perform well with
good resolution. Carefully comparing these figures, it can be observed that the roll-up of the vortex sheet captured by
HM-WENO is more clear than the others.
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FIGURE 11 Double Mach reflection problem, Nx × Ny = 960 × 240, 30 contours from 1.2 to 24 [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 12 Forward-facing step problem, Nx × Ny = 600 × 200, 30 contours from 0.3 to 6.4 [Colour figure can be viewed at
wileyonlinelibrary.com]

4.5.5 2D Sedov blast wave problem
The 2D Sedov blast wave problem,31,32 which has an exact self-similar solution, is a well-known benchmark test to study
a strong explosion problem. The initial conditions of this problem are

(𝜌,u, v, p) =

{
(1, 0, 0, 10−12), if x > Δx, 𝑦 > Δ𝑦
(1, 0, 0, 0.244816

ΔxΔ𝑦
), else.

(74)

The computational domain is [0, 1.1] × [0, 1.1]. Reflective boundary conditions are applied along the bottom and left
boundaries and the outflow conditions are imposed on the top and right boundaries. Figure 13A gives the density contours
calculated by HM-WENO with Nx × Ny = 160 × 160 at t = 1, and the density profile along y = 0 is shown in Figure 13B.
The exact solution is specified in the work of Sedov.31 Numerical simulations show that all three schemes can solve this
problem. It also can be found that, from the density distribution shown in Figure 13B, HM-WENO can still improve the
solution near strong shock wave.
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FIGURE 13 2D Sedov blast wave problem: A, Contour of density; B, Density distribution along y = 0 [Colour figure can be viewed at
wileyonlinelibrary.com]

4.6 Shock wave impingement on a spatially evolving mixing layer
This problem describes an oblique shock with angle 𝛽 = 12◦ impacts on a Mach number of 0.6 shear layer and is reflected
by a wall at the lower boundary.33 The governing equation of this problem is 2D Navier-Stokes equations and is given by

𝜕U
𝜕t

+ 𝜕F
𝜕x

+ 𝜕G
𝜕𝑦

= 1
Re

(
𝜕Fv

𝜕x
+ 𝜕Gv

𝜕𝑦

)
, (75)

where U,F,G, vectors are the same as given in Equation (68), and Fv,Gv vectors are given by

Fv =
⎡⎢⎢⎢⎣

0
𝜏xx
𝜏x𝑦

u𝜏xx + v𝜏x𝑦 + qx

⎤⎥⎥⎥⎦ , Gv =
⎡⎢⎢⎢⎣

0
𝜏𝑦x
𝜏𝑦𝑦

u𝜏𝑦x + v𝜏𝑦𝑦 + q𝑦

⎤⎥⎥⎥⎦ , (76)

in which

𝜏xx = 𝜇

(
4
3
𝜕u
𝜕x

− 2
3
𝜕v
𝜕𝑦

)
, 𝜏x𝑦 = 𝜏𝑦x = 𝜇

(
𝜕u
𝜕𝑦

+ 𝜕v
𝜕x

)
, 𝜏𝑦𝑦 = 𝜇

(
4
3
𝜕v
𝜕𝑦

− 2
3
𝜕u
𝜕x

)
,

qx = 𝜇
1

(𝛾 − 1)M2Pr
𝜕T
𝜕x
, q𝑦 = 𝜇

1
(𝛾 − 1)M2Pr

𝜕T
𝜕𝑦
.

The computational domain is [0, 200] × [−20, 20]. The inflow is specified as

u = 2.5 + 0.5 tan h(2𝑦).

For the upper stream inflow (y > 0), 𝜌u = 1.6374, pu = 0.3327; and for the lower stream inflow ( y < 0), 𝜌l = 0.3626, pl =
0.3327. The upper boundary is set as post-shock wave conditions, and a slip wall condition is applied at the lower wall
boundary. Fluctuations are added to the vertical velocity component as

v′ =
2∑

k=1
ak cos(2𝜋kt∕T + 𝜙k) exp(−𝑦2∕b),

in which b = 10, a1 = a2 = 0.05, 𝜙1 = 0, 𝜙2 = 𝜋∕2, T = 𝜆∕uc, 𝜆 = 30,uc = 2.68. The Prandtl number Pr is set to 0.72,
and the Reynolds number Re is chosen to be 500. The Steger-Warming flux splitting method26 and WENO reconstruction
for each component of split fluxes are also used for the inviscid convective fluxes, and the viscous terms are discretized
with the fourth-order central difference scheme. Figure 14 gives the density contours with Nx × Ny = 320 × 80 at t = 120.
An apparent difference is that, in the region of x > 120, the present scheme obtains more clear vortex structures than the
WENO-Z and IM-WENO schemes.
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FIGURE 14 Shock/shear layer interaction problem, Nx × Ny = 320 × 80, 20 contours from 0.5 to 2.7 [Colour figure can be viewed at
wileyonlinelibrary.com]

5 CONCLUSION REMARKS

This paper analyzes the reason of several WENO schemes that failed to decrease the numerical dissipation near disconti-
nuities. Then, a high performance fifth-order multistep WENO scheme is proposed by using a nonlinear function of two
adjacent local smoothness indicators to replace previous linear combination. The function makes the calculated weights
more accurate approximating to the ideal intermediate weights and, hence, decreases the numerical dissipation at tran-
sition points. The new scheme has the similar formula as those of the improved multistep WENO scheme suggested by
Ma et al19; hence the resulted scheme is also more efficient than the original multistep WENO scheme of Shen et al.16

Meanwhile, theoretical analysis shows that the new scheme can improve the accuracy at transition points without reduc-
ing the accuracy in smooth regions including critical points. Various numerical examples are presented to demonstrate
the high performance of the new scheme, such as the efficiency, the robustness, the high resolution of discontinuities,
and the fifth-order accuracy in smooth regions.
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APPENDIX

The process for analyzing the accuracy of the IM-WENO and HM-WENO schemes in smooth regions including critical

points is presented here, where the symbols p and m represent + and −, respectively.


	A high performance fifth-order multistep WENO scheme
	Abstract
	INTRODUCTION
	FIFTH-ORDER WENO SCHEMES
	The traditional fifth-order WENO schemes
	Accuracy analysis at transition point
	Improvements of the accuracy at transition point
	Hybrid method
	Multistep WENO scheme
	Embedded WENO-Z scheme
	Improved multistep WENO scheme


	THE NEW WENO SCHEME
	The accuracy of E-WENO and IM-WENO
	The new weighting method
	Accuracy analysis of the new scheme

	NUMERICAL EXAMPLES
	The accuracy at critical point
	The errors around transition point
	One-dimensional linear advection problems
	The first case of advection equation
	The second case of advection equation
	The third case of advection equation

	One-dimensional Euler problems
	Lax problem
	Shock entropy wave interaction
	Interacting blast waves

	2D Euler problems
	2D vortex evolution problem
	2D Riemann problem
	Double Mach reflection problem
	Forward-facing step problem
	2D Sedov blast wave problem

	Shock wave impingement on a spatially evolving mixing layer

	CONCLUSION REMARKS
	REFERENCES


