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a b s t r a c t

We numerically investigated the interactions of a laminar boundary layer flow with
both single and dual wall-mounted 2D flexible filaments. The influences of various
parameters, including bending rigidity, mass ratio, Reynolds number and interspace
between two filaments, on the dynamics of the systems were explored systematically.
Different modes of dynamic behavior in the single-filament and dual-filament systems
were identified. The wake structures associated with different modes of dynamic
behavior were compared. The physical mechanisms underlying the frequency lock-in
phenomena observed in the flow-induced oscillations were also elucidated.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Interactions between wall-mounted flexible structures and a transverse flow are widely seen in nature and engineering.
For example, such interactions can be found in terrestrial and aquatic plants (Py et al., 2006; De Langre, 2008; Gosselin
et al., 2010; Luhar and Nepf, 2011; Nepf, 2012; Gosselin, 2019; Huai et al., 2019), bio-inspired structures designed for
flow control (Pinelli et al., 2016), energy harvesting (Nové-Josserand et al., 2018), and flow sensing (Tao and Yu, 2012).
The research in this area is not only of fundamental importance in fluid mechanics, but is also potentially applicable to
a wide variety of disciplines. Understanding the physical mechanisms that underlie the fluid–structure interaction (FSI)
process is among the most challenging tasks in multiphysics analysis. In the past, substantial efforts have been put on
flexible structures exposed to a spatially uniform flow (either axial or transverse) and abundant literature can be found
in this area. The stability and flapping dynamics of a single filament facing an axial flow, clamped at either the leading
edge (Zhang et al., 2002; Zhu and Peskin, 2002; Shelley et al., 2005; Huang et al., 2007; Connell and Yue, 2007; Alben and
Shelley, 2008) or the trailing edge (Kim et al., 2013; Ryu et al., 2015; Shoele and Mittal, 2016; Sader et al., 2016) have
been extensively studied. The coupling dynamics of multiple filaments in tandem and side-by-side arrangements (while
facing an axial flow) were also studied (Zhu and Peskin, 2003; Ristroph and Zhang, 2008; Zhu, 2009; Kim et al., 2010;
Tian et al., 2011; Uddin et al., 2013; Huang et al., 2017; Ryu et al., 2018). In the case of a transverse incoming flow, the
static reconfiguration in a steady flow and the dynamic reconfiguration in a steady or an oscillatory flow (Alben et al.,
2002; Zhu, 2007; Yang and Liu, 2016; Leclercq and De Langre, 2018; Leclercq et al., 2018) have been explored. For a more
comprehensive literature review, please refer to Shelley and Zhang (2011) and Yu et al. (2019).
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Fig. 1. A schematic diagram of the model problem. F1 and F2 denote the two filaments in the dual-filament system. L is the length of each filament.
D1 is the distance from the entrance to the first filament. D is the interspace between the two filaments. θ1 and θ2 represent the inclination angles
of the chord lines (connecting the tip and the root) with the horizontal, for the two filaments, respectively. U∞ denotes the velocity of the free
stream. θ∗ denotes the momentum thickness of the boundary layer.

In comparison with the FSI in open space, the FSI of wall-mounted flexible structures involves two additional
complexities. First, the structures are actually exposed to a nonuniform incoming flow due to the existence of a boundary
layer. Second, the solid boundary also causes some hindrances to the motion of the structures (through direct contact or
flow-mediated interaction). The literature on this research topic is quite limited. The influence of a sheared incoming flow
on the reconfiguration of a flexible plate have been explored by Henriquez and Barrero-Gil (2014) and later by Leclercq
and De Langre (2016). In both works, a theoretical model with a prescribed nonuniform velocity profile was used to
calculate the fluid load on the structure. The interaction of a wall-mounted structure with a turbulent flow was studied
experimentally by Jin et al. (2018a,b, 2019). They focused on the influences of turbulent wake fluctuations, tip geometric
shapes and inclined incoming flows on the dynamic behaviors of the structure. The coupling dynamics of two tandem
wall-mounted flexible structures facing a turbulent flow were also studied by Jin et al. (2018c). It was found that the
dynamics of the upstream structure was dominated by the vibration at its first natural frequency, whereas the dynamics
of the downstream one were significantly modulated. Recently, some numerical simulations were also conducted to study
the interaction between an array of wall-mounted flexible filaments and a unidirectional channel flow (Poiseuille flow)
or an oscillating channel flow (Womersley flow) (O’Connor et al., 2016; Favier et al., 2017; O’Connor and Revell, 2019).

Despite of the useful insight gained in these studies, the understanding of the FSI mechanisms involving wall-mounted
flexible structures is still far from complete. For example, the FSI of such structures in a laminar boundary layer is
important to some applications (such as the design of bio-inspired flow sensors), but the systematic studies are still
lacking. Under such circumstances, a significant part of the structure is immersed in a thick layer of sheared flow. Thus,
there exists a tight two-way coupling between the boundary layer flow and the dynamics of the flexible structures. This
is in contrast to the situations considered by Jin et al. (2018a,b, 2019, 2018c), where a very thin boundary layer in the
Reynolds number range of 104

− 105 was supposed to have a negligible impact on the dynamics of the structures.
Motivated by the previous works on FSI of wall-mounted structures, we use high-fidelity numerical simulations to

investigate the flow-induced oscillations of such structures in a laminar boundary layer. Our emphases are placed on the
dynamic behaviors of a single 2D flexible filament and the couple dynamics of two tandem 2D flexible filaments. The
arrangement of the rest of the paper is as follows. The model problem is described in Section 2. The numerical methods
and settings are introduced in Section 3. The results are discussed in Section 4. Some conclusions are drawn in Section 5.

2. Model description

We consider single and dual wall-mounted 2D flexible filaments which interact with a 2D laminar boundary layer
flow. The schematic representation of the model is shown in Fig. 1. The filaments are of length L. The incoming flow is
from left to right and has a uniform velocity at the left entrance. The distance from the entrance to the leftest filament is
set to 15L. For the dual-filament system, the interspace between the two filaments is D.

The fluid flow is governed by the incompressible Navier–Stokes equations, which can be written in a dimensionless
form as

∂u
∂t

+ (u ·∇) u = −∇p +
1
Re

∇
2 u + f , (1a)

∇ · u = 0, (1b)

where u and p are the velocity and pressure, respectively, f is the force which represents the effect of immersed bodies
on the flow, and Re is the Reynolds number.

The governing equations for the motions of the flexible filaments can be written in a dimensionless form as

β
∂2X
∂t2

−
∂

∂s
(ζ

∂X
∂s

) +
∂2

∂2s
(γ

∂2X
∂s2

) = −F + F c , (2a)

∂X
∂s

·
∂X
∂s

= 1, (2b)
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where X is the position vector of a Lagrangian point on the filament and s is the Lagrangian coordinate along the arc.
F is the Lagrangian forcing that represents the interaction between the structure and the flow. The three dimensionless
quantities that appear in Eq. (2a) are: mass ratio β , dimensionless tension ζ , and dimensionless rigidity γ . Here we only
consider the situation in which the fluid load exerted on the structure is the dominant one. Thus, the influences of gravity
and buoyancy force are disregarded.

The dimensionless equations in Eq. (1) and Eq. (2) are obtained by scaling the governing equations for the fluid flow
and structure motion, by using L and LU−1

∞
as the reference length and reference time, respectively. The definitions of the

four dimensionless quantities in Eq. (1) and Eq. (2) are:

Re =
U∞L
ν

, β =
ρsδ

ρf L
, ζ =

T
ρfU2

∞
L
, γ =

B
ρfU2

∞
L3

, (3)

where ν is the kinematic viscosity, ρf and ρs are the densities of the fluid and the structure, respectively. δ, T and B are
the thickness, tension and bending rigidity of the structure, respectively. Please note that the dimensionless rigidity γ is
actually the inverse of Cauchy number, which has been widely used in some previous studies (De Langre, 2008; Gosselin
et al., 2010; Luhar and Nepf, 2011; Gosselin, 2019).

The model for the structure (Eq. (2)) is different from the classic or generalized nonlinear Euler–Bernoulli models that
are widely used in the literature. This model was first proposed by researchers at the Courant Institute of Mathematical
Sciences, New York University (Peskin and McQueen, 1993; Zhu and Peskin, 2002; Shelley and Zhang, 2011), and later
extensively used by other groups (Huang et al., 2007; Connell and Yue, 2007; Zhu et al., 2014b; Favier et al., 2017). The
geometric nonlinearity in this model is introduced by the inhomogeneous tension, which is also the Lagrange multiplier
that enforces the inextensibility condition (Eq. (2b)) (Shelley and Zhang, 2011). The inhomogeneous tension can be
determined by solving a linear boundary value problem, in which the governing equation for ζ is derived by rearranging
Eq. (2a) and Eq. (2b) (Huang et al., 2007; Belmonte et al., 2001).

On the right-hand side of Eq. (2a), F c is the short-range repulsive force that is added to avoid the tip-wall collision.
The repulsive force is computed by using the formula proposed by Huang et al. (2007):

F c (s, t) = c0 · β · δh(X(s, t) − X ′(s, t)) j, (0.1 ≤ s ≤ 1) (4)

where X ′ is the position vector of a point which is the projection of the Lagrangian point at X on the wall. j is the unit
vector in the positive y-direction. δh is the three-point discrete delta function (Wang and Zhang, 2011). c0 is an adjustable
constant. The value of this constant is determined such that minimal repulsive force is applied to prevent the tip from
penetrating into the wall. Through numerical experiments, it is found that c0 = 1.0 can yield satisfactory results by
avoiding direct contact and keeping the tip at least one grid width away from the wall. We also notice that the smallest
gap distance is insensitive to the value of c0, in the range of 1.0 ≤ c0 ≤ 10.0. The range of s ∈ [0.1, 1.0] specified in
Eq. (4) ensures that no repulsive force is applied to the Lagrangian points near the root.

3. Numerical methods and settings

3.1. Fluid and structure solvers

The fluid equations are solved by using the direct-forcing immersed boundary method based on the discrete stream-
function formulation (Wang and Zhang, 2011; Wang et al., 2013). The structural equations are solved by using the
numerical method proposed by Huang et al. (2007). The finite difference method is used for the spatial discretization.
A three-time-level scheme is used for the temporal advancement, in which the tension term is treated explicitly while
the bending term is treated implicitly. The FSI simulations are performed by loosely coupling the two different solvers,
i.e., sequentially advancing the fluid equations and structure equations. This FSI code has been thoroughly validated and
used in our previous studies on the free-swimming of a fish-like elastic filament (Zhu et al., 2014a,b; Dai et al., 2016,
2018a,b).

3.2. Numerical settings

The computational domain is a rectangular box of [0, 32L] × [0, 8L]. On the left boundary, a uniform velocity is
prescribed. On the right boundary, the outflow condition is implemented. The non-slip condition is imposed on the bottom
boundary while the slip-wall condition is prescribed on the top boundary. On the filaments, the non-slip condition is
enforced by using the direct-forcing immersed boundary technique (Wang and Zhang, 2011). Initially, the velocity of the
fluid is set to U∞, and all filaments stand upright and have zero velocity.

The boundary conditions for the wall-mounted flexible filaments are described as follows. At the fixed end (or root),
the filament is vertically orientated and the boundary conditions are:

X = (x0, 0)T ,
∂X
∂s

= (0, 1)T . (5)
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Fig. 2. Computational domain and multi-block Cartesian mesh used in the simulation. Please note that this is a schematic diagram in which the
grid widths are not drawn to scale.

Table 1
Values of control parameters used in the present study.
n† γ β Re d

1 10−4
∼ 101 0.01 ∼ 10 50 ∼ 800 −

2 10−4
∼ 101 1.0 400 0.5 ∼ 8.0

†n denotes the number of filaments.

At the free end (or tip), the boundary conditions are:

∂2X
∂s2

= (0, 0)T ,
∂3X
∂s3

= (0, 0)T . (6)

A multi-block Cartesian mesh is generated for the simulation (see Fig. 2). The grid width ranges from 0.02L to
0.08L in the regions that are far away from the filaments. In the vicinity of the filaments (a rectangular domain of
[14L, 26L] × [0, 2L]), the grid width is reduced to 0.01L for capturing the vortical structure in the near wake region.
The grid width for the spatial discretization of the structure equations is 0.01L, which is the same as that for discretizing
the N-S equations. The dimensionless time step used in the simulation is 0.002. At this time step size, the maximum
Courant–Friedrichs–Lewy (CFL) number never exceeds 0.1. The ratio of the time step to the typical period of structure
vibration lies in the range of 3×10−4

−8×10−4. Thus, this time step is also sufficiently small for resolving the oscillating
motions of the structure.

To ensure that the mesh resolution is sufficient for resolving the boundary layer flow, the velocity profiles at different
distances from the entrance are compared with the Blasius solution. Moreover, tests are also conducted to ensure that
solutions obtained are (almost) independent of the grid width, the time step size and the domain size. The details of the
aforementioned validations and tests are presented in Appendix.

3.3. Parameter space

There are four dimensionless control parameters in the system: mass ratio β , dimensionless rigidity γ , Reynolds
number Re, and dimensionless interspace d = D/L (only for the dual-filament system). The values of these control
parameters used in the present study are summarized in Table 1.

Based on the Blasius solution for a laminar flow past a flat plate, the momentum thickness of the boundary layer at
the distance x from the leading edge (left entrance) can be computed by

θ̄∗
=

0.664x̄
√
Rex

, (7)

where Rex represents the Reynolds number based on the distance from the entrance, and the variables with a bar over
them denote the dimensionless ones scaled by L. According to the values of control parameters listed in Table 1, the
momentum thickness at the position of the leftest filament (i.e., x̄ = 15) lies in the range of 0.1 to 0.36. This implies that
for all cases considered here, a significant part of the filament is immersed in the boundary layer.

4. Results and discussion

The inclination angle of the chord line (the straight line connecting the tip and root of the filament) with respect
to the horizontal direction is the key quantity that is used for describing the dynamics of the system (see Fig. 1). More
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Fig. 3. Dynamic behaviors of the single-filament system at different bending rigidities. (a) Mean inclination angle θ̄ and amplitude of angular
oscillation θA as a function of γ . (b) Amplitude envelops corresponding to the lodging (γ = 0.001), regular VIV (γ = 0.01) and static reconfiguration
(γ = 0.1) modes. The fixed control parameters are: β = 1.0, Re = 400. The circles, triangles and squares denote the lodging, regular VIV and static
reconfiguration modes, respectively. Within the regime of regular VIV mode, the semi-hollow and solid symbols represent the quasi-periodic and
periodic oscillations, respectively.

specifically speaking, we use the mean inclination angle (θ̄ ) and the amplitude of angular oscillation (θA) to characterize
the dynamic behaviors. The definitions of these two quantities are:

θ̄ =
1

t1 − t0

∫ t1

t0

θ (t)dt, (8a)

θA = {max [θ (t)] − min [θ (t)]}|t0≤t≤t1 , (8b)

where the starting time t0 is chosen such that the laminar boundary layer is fully developed and the periodicity in the
oscillations of the filaments is also fully established. The time interval (t1 − t0) is chosen to be 30, for the cases of periodic
oscillation or static deformation. For the cases of quasi-periodic oscillation, the time interval is set to 100.

4.1. Single-filament system

4.1.1. Influences of bending rigidity, mass ratio and Reynolds number
The influences of three dimensionless parameters, i.e., γ , β and Re on the dynamic behaviors are studied by only

varying one parameter while keeping the other two fixed.
We first explore the influence of rigidity on the dynamic behaviors. The mean inclination angle and the amplitude of

angular oscillation are plotted as a function of γ and shown in Fig. 3, for Re = 400 and β = 1.0. From this figure, three
distinct modes of dynamic behavior, namely, lodging, regular vortex-induced vibration (VIV) and static reconfiguration,
can be identified. At low bending rigidity (γ < 3×10−3), the lodging mode, in which the filament falls flat on the ground, is
exhibited. At intermediate bending rigidity (3×10−3

≤ γ ≤ 3×10−2), the regular VIV mode, in which sustained oscillation
is superimposed on the static deformation, emerges. In this mode, the mean inclination angle increases monotonically with
increasing rigidity. The amplitude of angular oscillation reaches the peak value of 30◦ at γ = 0.004 and then decreases
with increasing rigidity. At large bending rigidity (γ > 3 × 10−2), the static reconfiguration mode is observed. The trend
of the variation of mean inclination angle with increasing bending rigidity is the same as that in the regular VIV mode,
while the amplitude of angular oscillation reduces to zero.

For the regular VIV mode, the flow-induced oscillation can be further categorized into quasi-periodic (3 × 10−3
≤

γ ≤ 5 × 10−3) and periodic (5 × 10−3 < γ ≤ 3 × 10−2) sub-types. The difference between these two sub-types of
oscillation can be clearly seen in Fig. 4, in which the time history of θ , the phase diagram spanned by the instantaneous
inclination angle and angular velocity, and the normalized power spectra are shown. In the periodic sub-type, the angular
oscillation is slaved to a singular frequency, while multiple frequencies are observed in the quasi-periodic sub-type. The
frequency selection mechanism in the periodic oscillation will be addressed in Section 4.1.2. Since the rigidity range for
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Fig. 4. Time histories of the inclination angle, the phase diagram (angular velocity vs. inclination angle), and the normalized power spectra of angular
oscillations for the selected cases of (a) periodic oscillation (γ = 0.008) and (b) quasi-periodic oscillation (γ = 0.004). The fixed control parameters
are: β = 1.0, Re = 400.

Fig. 5. Representative wake structures of the single flexible filament with different rigidity: (a) γ = 0.001, (b) γ = 0.01, (c) γ = 0.1, (d) γ = 0.5.
The other control parameters are β = 1.0 and Re = 400. The contours of dimensionless vorticity and the streamlines are used to visualize the wake
structures. In (a), (b) and (d), one snapshot of the unsteady flow is displayed; while in (c), the steady state is displayed.

the quasi-periodic sub-type is much narrower than that for the periodic sub-type, we believe that the quasi-periodic
oscillation is a transitional state in between lodging and periodic oscillation states.

The wake structures corresponding to different bending rigidities are shown in Fig. 5. At γ = 0.001 (lodging mode), the
free end (almost) attaches the wall and a enclosed region bounded by the filament and the wall is formed (see Fig. 5(a)).
The exterior flow is steady and resembles that past a small bump (with the height of 0.2L). Due to the streamlined
shape of the bump, only minor separation in the exterior flow is observed near the trailing end (the tip of the filament).
Inside the enclosed region, a recirculating flow is observed. At the specific time corresponding to the snapshot shown in
Fig. 5(a) (i.e., the dimensionless time of 80), the velocity magnitude becomes rather small but the recirculating flow is
still decaying slowly. The reason that it takes a long time for the recirculating flow to die out can be explained as follows.
The decaying of the recirculating flow is dominated by diffusion and the characteristic decaying time scales as L2ν−1.
The dimensionless decaying time thus scales as (L2ν−1)/(LU−1

∞
) = Re = 400. At γ = 0.01 (regular VIV mode), vortices

shed periodically from the free end of the filament (see Fig. 5(b)). The dimensionless shedding frequency is about 0.2,
which is comparable with that in flows over bluff bodies. This frequency is also the same as the oscillation frequency
of the filament (since the vortex shedding acts as the excitation source). Moreover, the interaction between the vortex
shed from the free end and the bottom wall also induces a small secondary vortex. At γ = 0.1 (static reconfiguration
mode), a long shear layer remains attached to the free end of the highly deformed filament and the flow unsteadiness
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Fig. 6. Mean inclination angle θ̄ and amplitude of angular oscillation θA as a function of (a) β and (b) Re. The fixed control parameters are: (a)
γ = 0.01 and Re = 400, and (b) γ = 0.01 and β = 1.0. The symbols here are the same as those used in Fig. 3. The two insets in (b) show the
wake structures for the cases of Re = 100 and Re = 400, respectively.

is not observed (see Fig. 5(c)). At γ = 0.5 (static reconfiguration mode), the filament behaves practically like a rigid one
since the deformation is rather small (see Fig. 5(d)). However, due to the presence of the bottom wall, the flow is rather
different from that past a bluff body in open space. The vortex shedding is not initiated at the free end. Instead, it is
triggered by the shear layer instability at a position that is further downstream. By probing the flow field at a position
about half body length downstream of the tip, it is found that the vortex shedding frequency is roughly 80% of that in
the regular VIV mode. The vorticity fluctuation magnitude, however, is only about one third of that in the regular VIV
mode. Please note that the oscillation of the filament is undetected in this case. This is because the excitation source is
too remote from the filament and is also too weak.

The effect of mass ratio on the dynamic behaviors is shown in Fig. 6(a), for γ = 0.01 and Re = 400. As can be seen from
this figure, the static reconfiguration mode is observed at β < 0.5. Within this range of β , the mean inclination angle is
insensitive to the variation of β and reaches a constant of 32◦. With the increase of mass ratio beyond the value of 0.5, the
dynamic behavior transits from the static reconfiguration mode to the regular VIV mode. The periodic and quasi-periodic
oscillations are observed in the mass ratio ranges of 0.5 ≤ β < 4.0 and β ≥ 4.0, respectively. For the periodic oscillation,
θA increases monotonically with increasing β , while the opposite trend is found in θ̄ . For the quasi-periodic oscillation, θ̄
and θA only vary slightly with increasing β .

The effect of Re on the dynamic behaviors is shown in Fig. 6(b), for γ = 0.01 and β = 1.0. From this figure, it is seen
that for Re < 200, the static reconfiguration mode is observed and the flow around the filament is steady. When Re ≥ 200,
the filament transits to the regular VIV mode and the flow becomes unsteady with periodic vortex shedding at the free
end. This critical Reynolds number for initiating vortex shedding is much higher than that of the flows past bluff bodies
in open space (e.g. for flow past a circular cylinder this number is around 47). We believe that the presence of a solid wall
is the primary reason for the higher critical Reynolds number. In the case of the cylinder in open space, the interaction
between two shear layers eventually leads to instability and unsteadiness. In the case of the wall-mounted filament,
the interaction between one shear layer and the ground somehow inhibits the aforementioned instability. Besides, the
reconfiguration of the filament also plays a minor role in raising the critical Reynolds number, since a more streamlined
shape may suppress flow separation to some extent.

It should be noted that the ‘‘effect of Reynolds number’’ studied here is actually the combined effects of Re and
boundary layer thickness. The variation of Re unavoidably results in the change of boundary thickness (since the filament
is always placed at a fixed distance from the entrance). We conjecture that the dynamic behavior of the filament largely
depends on the value of Re, while the boundary layer thickness only plays a secondary role here. A more rigorous study
on the isolated effect of Re can be done by changing the position of the filament to offset the change of boundary layer
thickness. Such investigation has not been conducted in the present work.

We also perform parameter sweeps in the two-dimensional parameter space spanned by the bending rigidity and the
mass ratio at Re = 400. Different modes of dynamic behavior in the space of (γ , β) are displayed in Fig. 7. At low density
ratios (β < 0.2), the lodging mode and the static reconfiguration mode occupy the left half and right half, respectively.
The threshold value of γ for the mode transition is around 1.5 × 10−3. At high mass ratios (β > 0.2), the lodging mode,
the regular VIV mode and the static reconfiguration mode occupy the left, intermediate and right columns, respectively.
The threshold value of γ for the transition from the lodging mode to the regular VIV mode depends on the value of β . The
regions for the regular VIV and the static reconfiguration modes are separated (approximately) by a straight demarcation
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Fig. 7. A map for the modes of dynamic behavior in the two-dimensional space of (γ , β) at Re = 400. Circles, semi-hollow triangles, solid triangles
and squares denote the lodging mode, the regular VIV mode (quasi-periodic oscillation), the regular VIV mode (periodic oscillation), and the static
reconfiguration mode, respectively.

line with the slope of 1. The explanations on the demarcation lines that separate the two modes of dynamic behavior are
provided here in the context of the competitions among moments of elastic, pressure and inertial forces. The moments
(per unit span) of elastic, pressure and inertial forces scale as Me ∼ B/L, Mp ∼ ρfU2

∞
L2 and Mi ∼ ρsU2

∞
δL = βMp,

respectively. When β is relatively low, the transition from the lodging mode to the static reconfiguration mode occurs at
a threshold ratio of elastic moment to pressure moment (i.e., Me/Mp = B/ρfU2

∞
L3 = γ ). When β is relatively high, the

transition from the regular VIV mode to the static reconfiguration mode occurs at a threshold ratio of elastic moment to
inertia moment (i.e., Me/Mi = γ /β). The demarcation line that separates the lodging mode and the regular VIV mode at
relatively high mass ratios looks like a staircase. A physical interpretation on such separation boundary is still lacking.

4.1.2. Frequency lock-in phenomenon
In the studies of fluid-induced oscillation, the phenomenon that the vortex shedding frequency synchronizes with

the natural frequency of the structure is termed lock-in Kaneko et al. (2014). Here we explore whether the lock-in
phenomenon occurs in the single-filament system.

The natural frequencies of the present system are first estimated by those for a cantilever Euler–Bernoulli beam in
vacuum. The ith-order dimensionless natural frequency is given by:

fni =
f̃niL
U∞

=
k2i
2π

√
γ

β
, with cos ki cosh ki + 1 = 0. (9)

Here f̃ni is the dimensional natural frequency. The coefficients for the first and second natural frequencies are k1 = 1.875
and k2 = 4.694, respectively. For a cantilever beam immersed in the fluid, the natural frequencies are modulated by the
effect of added mass. The modulated ith-order dimensionless natural frequency can be written as:

f ∗

ni =
k2i
2π

√
γ

β + Cm · π/4
, (10)

where Cm = 1 (Luhar and Nepf, 2016).
Besides the added mass effect, three other effects can also lead to the deviation of the natural frequencies from fni. They

are the non-linear effect due to large-amplitude oscillation, the flow-induced damping effect due to drag, and the added
stiffness effect due to mean deflection (prestress). The influence of non-linear effect on the value of natural frequency
is very hard to analyze theoretically. The flow-induced damping effect tends to reduce the natural frequency, while the
added stiffness effect tends to increase the natural frequency (Heylen et al., 1998). Thus, the latter two effects may cancel
each other out to some extent. The flow-induced damping and added stiffness effects can be evaluated experimentally (Jin
et al., 2018c; Saiidi et al., 1994). However, the empirical expressions to account for these two effects are usually not valid
universally.
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Fig. 8. Frequency lock-in phenomenon in the regular VIV mode. The shaded region denotes the range of rigidity where periodic oscillation occurs.
The dash-dotted horizontal line represents the mean value of fs/f ∗

n2 .

Here we take f ∗

ni as the (approximate) natural frequencies and examine the closeness of the oscillation frequency with
the (first and second) natural frequencies. A series of periodic oscillation cases in the regular VIV mode are considered
here, with the bending rigidity ranging from 0.006 to 0.03. As shown in Fig. 8, the oscillation frequency fs is always
between 0.15 to 0.4. This observed range of dimensionless frequencies is in agreement with the typical Strouhal number
for vortex shedding over a bluff body (which is around 0.2). From this figure, it is also seen that the oscillation frequency
is close to the second natural frequency f ∗

n2 and the frequency ratio fs/f ∗

n2 is nearly a constant around 0.91.
Since the oscillation frequency is sufficiently close to f ∗

n2 within the entire range of bending rigidity, we are inclined to
believe that in the regular VIV mode it is locked onto the second natural frequency of the structure. This can be further
supported by the fact that the waveform of second bending mode is clearly exhibited in the oscillation (cf. Fig. 3(b)).
Such oscillation is superimposed on a highly deformed configuration in which the posterior part is almost in parallel with
the direction of the incoming flow. The shape of the oscillating filament found here is in agreement with that found in
the previous study on a flag placed in a transverse flow (Leclercq et al., 2018). However, owing to the inaccuracy in the
evaluation of natural frequency, whether the lock-in phenomenon indeed occurs is still contestable.

The lock-in phenomenon near the first natural frequency has not been observed in this study. This can be explained
by the fact that the vortex shedding becomes rather weak when the filament is less deformed with a nearly upright
orientation (cf. Fig. 5(d)). At much higher Reynolds numbers, however, the vortex shedding in such configuration can be
much stronger and the lock-in phenomenon near the first natural frequency may occur (Py et al., 2006; Jin et al., 2018c).

4.2. Dual-filament system

4.2.1. Influence of bending rigidity in the dual-filament system
The variations of the mean inclination angle and amplitude of angular oscillation with rigidity for the dual-filament

system are shown in Fig. 9. From this figure, four modes of the dynamic behaviors, namely, lodging, regular VIV, static
reconfiguration and cavity oscillation, can be identified. The amplitude envelopes corresponding to the four different
modes are displayed in Fig. 10. At low bending rigidity, both filaments fall flat on the ground and the lodging mode is
observed (see Fig. 10(a)). At intermediate bending rigidity, the regular VIV mode emerges with large static deformation
and large oscillation amplitude (see Fig. 10(b)). The static deformations and oscillation amplitudes in both filaments are
comparable, while the oscillation frequencies are identical. Similar to that observed in the single-filament system, the
oscillations can be further categorized into the periodic and the quasi-periodic sub-types. With the increase of bending
rigidity, the oscillations disappear and the static reconfiguration mode is observed. It is also observed that within certain
range of bending rigidity, the downstream filament bends towards the upstream direction (see Fig. 9(a) and Fig. 10(c)).
This interesting phenomenon will be further addressed later. When the bending rigidity increases further, a distinct mode
of the dual-filament system emerges. It is termed the ‘‘cavity oscillation" mode in this paper. An explanation on this name
will be provided later. It is worth noting that this mode does not exist in the single-filament system. In this oscillation
mode, the static deformations of both filaments are rather small. The oscillation amplitude of the upstream filament is
also small (less than 3◦). In contrast, the oscillation amplitude of the downstream filament is quite large (the amplitude
in this mode can reach up to 20◦, which is comparable to that in the regular VIV mode) (see Fig. 9(d)). At even higher
bending rigidity, the oscillations disappear again and the static reconfiguration mode reemerges (with very small static
deformations in both filaments).

The wake structures corresponding to different bending rigidities are shown in Fig. 11. The wake structures for the
lodging, regular VIV, and static reconfiguration modes are similar to those in the single-filament system (cf. Fig. 5).
For the regular VIV mode, it is seen that there exists a phase difference between the oscillations of the upstream and
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Fig. 9. Dynamic behaviors of the dual-filament system at different bending rigidities. (a) Mean inclination angles of the upstream and downstream
filament as a function of γ . (b) Amplitudes of angular oscillation of the upstream and downstream filament as a function of γ . (c) Time histories
of the inclination angles in the regular VIV mode. (d) Time histories of the inclination angles in the cavity oscillation mode. Circles, upward-facing
triangles, squares and downward-facing triangles represent the lodging, regular VIV, static reconfiguration and cavity oscillation modes, respectively.
Within the regular VIV regime, the semi-hollow and solid symbols represent the quasi-periodic and periodic oscillations, respectively. The subscripts
‘‘i’’, ‘‘u’’ and ‘‘d’’ in the variables denote the quantity of the filament in the single-filament system and the quantities of the upstream and downstream
filaments, respectively. The fixed control parameters are: β = 1.0, Re = 400, d = 1.0.

Fig. 10. Amplitude envelops at different rigidities corresponding to the (a) lodging (γ = 0.001), (b) regular VIV (γ = 0.01), (c) static reconfiguration
(γ = 0.1) and (d) cavity oscillation (γ = 1.0) modes. The fixed control parameters are: β = 1.0, Re = 400, d = 1.0.

downstream filaments (see Fig. 11(b) and also Fig. 9(c)). For the static reconfiguration mode, the wake structure hints
that the ‘‘abnormal’’ bending of the downstream filament is associated with the recirculating (inverse) flow induced
by the upstream filament (see Fig. 11(c)). As to the cavity oscillation mode, it is seen that the wake structure is very
different from that of the regular VIV mode (see Fig. 11(d)). In this mode, the vortex shedding pattern bears a remarkably
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Fig. 11. Representative wake structures of the two-filament system at different rigidities corresponding to the four different modes: (a) γ = 0.001
(lodging); (b) γ = 0.01 (regular VIV); (c) γ = 0.1 (static reconfiguration); (d) γ = 0.5 (cavity oscillation). The fixed control parameters are: β = 1.0,
Re = 400, d = 1.0. The contours of dimensionless vorticity and the streamlines are used to visualize the wake structures.

Fig. 12. A map for the modes of dynamic behavior in the two-dimensional parameter space of (γ , β) for the dual-filament system. Circles, semi-
hollow triangles, solid upward triangles, squares and solid downward triangles denote the lodging mode, the regular VIV mode (quasi-periodic
oscillation), the regular VIV mode (periodic oscillation), the static reconfiguration mode, and the cavity oscillation mode, respectively. The contours
which represent the first natural frequency in the range of 0.2 and 0.6 are plotted for illustration purpose. The fixed control parameters are: Re = 400
and d = 1.0.

close resemblance to that of the open-cavity flow, and is very dissimilar to that of flow over a bluff body (as that seen
in the regular VIV mode. This is the reason for naming it the ‘‘cavity oscillation" mode. Since the vortex shedding also
acts as the excitation source in this oscillation mode, it can be regarded as another case of VIV. Actually, the geometric
configuration of the dual-filament system is somewhat different from a standard open cavity. Instead, it can be regarded
as the combination of a forward-facing step, an open cavity and a backward-facing step.

A map for the modes of dynamic behavior of the dual-filament system in the two-dimensional parameter space of (γ ,
β) is shown in Fig. 12. In comparison with the map for the single-filament system, the regions occupied by the lodging
and regular VIV modes are almost unaffected by the addition of the second filament. The cavity oscillation mode occupies
a narrow banded region which is embedded into the region of the static reconfiguration mode. Further investigation
indicates that this banded region corresponds to a narrow range of first natural frequency in between 0.2 and 0.6. This
hints the occurrence of frequency lock-in phenomenon. The frequency lock-in phenomenon in the dual-filament system
will be further addressed in Section 4.2.3.
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Fig. 13. Effect of interspace on the mean inclination angles of the two filaments in the static reconfiguration mode. The subscripts ‘‘i’’, ‘‘u’’ and ‘‘d’’
in the variables denote the quantity of the filament in the single-filament system and the quantities of the upstream and downstream filaments,
respectively. The fixed control parameters are: β = 1.0, γ = 0.1, Re = 400.

Fig. 14. Profiles of streamwise velocity along a vertical line that is slightly upstream of the downstream filament: (a) d = 0.5; (b) d = 2.0. For
both cases, the distances from the vertical line to the tip of the downstream filament is 0.1L. The fixed control parameters are: β = 1.0, γ = 0.1,
Re = 400. The two insets in (a) and (b) show the wake structures for the cases of d = 0.5 and d = 2.0, respectively. The positions of the vertical
lines are also shown in the two insets.

4.2.2. Influences of interspace in the dual-filament system
In the coupled systems with two filaments, the interspace d also plays a critical role in determining the dynamic

behaviors. The static reconfiguration mode, the regular VIV mode, and the cavity oscillation mode will be addressed
separately.

For the static reconfiguration mode, the variations of mean inclination angles (θ̄ ) with d (for both filaments) are shown
in Fig. 13. It is seen that within the entire range of interspace considered here (0.5 ≤ d ≤ 4.0), the static deformation of
the upstream filament is very close to that of the filament in the single-filament system. Thus, the downstream filament
only has minor effect on the reconfiguration of the upstream one. The static deformation of the downstream filament is
much smaller, in comparison with that of the filament in the single-filament system. This can be explained intuitively by
the shielding effect from the upstream filament.

In the range of 0.8 ≤ d ≤ 4.0, the ‘‘abnormal’’ bending (i.e., bending towards the upstream direction) is observed in
the downstream filament. This can be explained by the recirculating (inverse) flow induced by the upstream filament.
To provide some quantitative support, the streamwise velocity profiles along one vertical line slightly upstream of the
downstream filament are plotted, for the cases of d = 0.5 and d = 2.0 (see Fig. 14). It turns out that the inverse flow in
front of the downstream filament is only evident in the case of d = 2.0 (the case with ‘‘abnormal" bending).

For the regular VIV mode, the variations of θ̄ and θA with d (for both filaments) are shown in Fig. 15(a). It is observed
that the mean inclination angles of both filaments undulate slightly with increasing d when the interspace is narrow and
level off when d > 2.5. The static deformation of the downstream filament is always smaller than that of the upstream
one due to the shielding effect. The oscillation amplitudes of both filaments also first undulate slightly with increasing d
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Fig. 15. Effect of interspace on the coupled behavior in the regular VIV mode (periodic oscillation). (a) Mean inclination angles and amplitudes of
angular oscillation as a function of d. The subscripts ‘‘i’’, ‘‘u’’ and ‘‘d’’ in the variables denote the filament in the single-filament system, the upstream
and downstream filaments in the dual-filament system, respectively. (b) The phase difference between the oscillations of the two filaments as a
function of d. In (a), the mean inclination angles and amplitudes of angular oscillations are represented by curves and histograms, respectively. The
inset in (b) shows the definition of the phase difference between the two filaments. The fixed control parameters are: β = 1.0, γ = 0.01, Re = 400.

and then level off. The oscillation amplitude of the downstream filament is always larger than that of the upstream one.
The amplification of the oscillation amplitude in the downstream filament is due to the periodic excitation generated by
the vortex shedding over the upstream one. The phase difference ∆ϕ between the oscillations of the two filaments as
a function of d is shown in Fig. 15(b). It is seen that a linear dependence exists between the phase difference and the
interspace. Thus, for the regular VIV mode, the variation of interspace only modulates the phase difference between the
oscillations of the two filaments, whereas the dynamic behavior of the system is not qualitatively changed.

Here we provide a physical explanation on the linear dependency between the phase difference and the interspace.
For an advection-dominated flow, it is reasonable to assume that the phase difference ∆ϕ between the oscillations of the
two filaments is caused by the time delay δt that scales as D/Uconv , where the convection velocity Uconv is proportional to
U∞. Thus, ∆ϕ ≈ 2π f δt ≈ a02π fD/U∞ = (a02πSt) · d, where both a0 and Strouhal number (St = fL/U∞) can be regarded
as constants.

For the cavity oscillation mode, the influence of interspace on the dynamic behavior becomes more complicated. The
variations of the mean inclination angles and amplitudes of angular oscillation with d are shown in Fig. 16(a). It is seen
the static deformation of the upstream filament is almost the same as that in the single-filament system, while the static
deformation of the downstream one is negligible. Thus, both filaments practically oscillate in the horizontal direction (if
such oscillations can be initiated). Actually, the oscillations can only be initiated if d lies in the ranges of 1.0 ≤ d ≤ 2.2
and 3.5 ≤ d ≤ 4.0, respectively. The oscillation amplitude of the downstream filament is always much larger than that
of the upstream one. When d lies out of the two ranges above, the amplitudes of oscillation are reduced to zero and the
static reconfiguration mode is observed. Thus, d is a key parameter which governs the mode switching between cavity
oscillation and static reconfiguration.

To further elucidate the role that the interspace plays in mode switching, we also perform parameter sweeps on the two
dimensional space of (γ , d). The map for the modes of dynamic behavior in the space of (γ , d) is displayed in Fig. 16(b).
It is seen that the cavity oscillation mode occupies two banded regions (branches) that are interspersed in the region
occupied by the static reconfiguration mode. The lower branch covers the entire parameter range, while the upper branch
only exists at relative wide interspaces (d > 2.5). A physical explanation of this finding will be provided in Section 4.2.3.

4.2.3. Frequency lock-in phenomenon in the dual-filament system
In Section 4.1.2, it is found that in the single-filament system, the oscillating frequency in the regular VIV mode is

always locked onto the second natural frequency. In this section, we explore whether the frequency lock-in phenomenon
also occurs in the dual-filament system. The regular VIV mode and the cavity oscillation mode will be addressed separately.

For the regular VIV mode (periodic oscillation), we consider two series of cases: (a) d = 1.0, with the bending rigidity
ranging from 0.003 to 0.02, and (b) γ = 0.01, with the interspace ranging from 0.5 to 5.0. All other control parameters such
as β and Re are fixed. We examine the closeness of the oscillation frequencies to the (first or second) natural frequency.
As shown in Fig. 17(a) and Fig. 17(b), the oscillation frequencies are always locked onto the second natural frequency
(in the entire ranges of rigidity and interspace studied here). This finding is in consistent with the frequency lock-in
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Fig. 16. Effect of interspace on the coupled behavior in the cavity oscillation mode. (a) Mean inclination angle and amplitude of angular oscillation
as a function of d. The subscripts ‘‘i’’, ‘‘u’’ and ‘‘d’’ in the variables denote the filament in the single-filament system, the upstream and downstream
filaments in the dual-filament system, respectively. The mean inclination angles and amplitudes of angular oscillation are represented by curves and
histograms, respectively. The fixed parameters are: β = 1.0, γ = 0.5, Re = 400. (b) The map for the modes of dynamic behavior in the space of (γ ,
d). Squares, solid triangles and semi-hollow triangles represent the static reconfiguration mode, the first and second Rossiter modes of the cavity
oscillation mode, respectively. The dash-dotted lines represent the frequency lock-in condition determined by using Rossiter’s formula. The fixed
control parameters are: β = 1.0, Re = 400.

Fig. 17. Frequency lock-in phenomenon in the dual-filament system: regular VIV mode (periodic oscillation) ((a)–(b)); cavity oscillation mode ((c)–
(d)). The oscillation frequency, the first and the second natural frequencies, and also the ratio of the oscillation frequency to the (second or first)
natural frequency are plotted as a function of the dimensionless rigidity (in (a) and (c)), or as a function of the interspace (in (b) and (d)). The fixed
parameters used are: β = 1.0, Re = 400.
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Fig. 18. Wake structures of the dual-filament system in the cavity oscillation mode at different interspaces: (a) d = 2.0 (first Rossiter mode), (b)
d = 4.0 (second Rossiter mode). The fixed control parameters are: β = 1.0, γ = 0.5, Re = 400. The contours of dimensionless vorticity and the
streamlines are used to visualize the wake structures.

phenomenon observed in the single-filament system (cf. Fig. 8). Therefore, for the regular VIV mode (periodic oscillation),
the flow-induced interaction between the two filaments does not qualitatively change the frequency lock-in phenomenon.

For the cavity oscillation mode, we consider two series of cases: (a) d = 1.0, with the rigidity ranging from 0.5 to 1.5,
and (b) γ = 0.5, with the interspace ranging from 0.5 to 5.0. We also examine the closeness of the oscillation frequencies
to the (first or second) natural frequency. Please note that for the cases in the cavity oscillation mode, the theoretical
expression of Eq. (10) may give a better prediction for the natural frequency (in comparison with the cases in the regular
VIV mode). This is because that in the cavity oscillation mode the oscillation amplitude is smaller and the mean deflection
is close to zero. As shown in Fig. 17(c) and Fig. 17(d), the oscillation frequencies are always locked onto the first natural
frequency. This phenomenon is very similar to the ‘‘fluid-elastic’’ cavity oscillation reported in some previous studies, in
which one or more walls of a open cavity underwent large elastic deformation (Rockwell and Naudascher, 1978).

The frequency selection mechanism in the cavity oscillation mode is further explained as follows. The dimensionless
frequency of the open-cavity flow can be estimated by using the following semi-empirical formula (i.e., Rossiter’s
formula) (Gloerfelt, 2009):

fc =
f̃cL
U∞

=
n − α

1/κ + M
U∞

D
·

L
U∞

=
n − α

1/κ + M
·
1
d
. (11)

Here f̃c is the dimensional oscillating frequency of the open-cavity flow. M is the Mach number (which is zero for
incompressible flows). n is an integer which represents the order of Rossiter mode (i.e., n = 1, 2, . . .). κ and α are two
empirical constants. By calibration using the experimental data, the values of κ = 0.57 and α = 0.25 are found to yield
satisfactory results (Gloerfelt, 2009).

The curves for the frequency lock-in condition in the space of (γ , d) can be obtained by setting fc = f ∗

n1. Two such
curves, which represent the lock-in condition for the first and second Rossiter modes (i.e., n = 1 and n = 2), are plotted
in Fig. 16(b). From this figure, it is seen that the two banded regions of the cavity oscillation mode are reasonably close to
the two curves signifying the frequency lock-in condition. The two possible reasons for the deviation are: (a) the difference
between the configurations of the dual-filament system and that of the standard open cavity, and (b) the uncertainty in
the values of the empirical constants. We believe that the deviation can be reduced if some modifications are made to the
Rossiter’s formula by taking these two factors into consideration. Some typical features of the open-cavity flow are also
exhibited in Fig. 16(b). For example, the coexistence of several Rossiter modes in a certain range of d and the existence
of a threshold value of d above which higher Rossiter mode emerges.

The wake structures associated with the first and second Rossiter modes are compared in Fig. 18. It is seen that the
number of large vortex structures trapped in the ‘‘cavity" formed by the two filaments is in consistent with the Rossiter
mode number.

5. Conclusions

We numerically studied the dynamics of both single and dual wall-mounted flexible filaments in a laminar boundary
layer. The dependence of dynamic behaviors on some control parameters (such as bending rigidity, mass ratio, Reynolds
number and interspace between the two filaments) were explored. For the single-filament system, three modes of dynamic
behavior, namely, lodging, regular VIV and static reconfiguration, have been identified. For the dual-filament system, in
addition to the three modes above, another distinct mode - cavity oscillation mode, was also identified.

The frequency lock-in phenomenon was observed in both the regular VIV mode and the cavity oscillation mode. For
the regular VIV mode, the oscillating frequency was always locked onto the second natural frequency. For the cavity
oscillation mode, the oscillating frequency was always locked onto the first natural frequency. For both oscillation modes,
the vortex shedding was found to be the excitation source. For the regular VIV mode, the wake pattern resembled that
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Fig. A.1. Dimensionless velocity profiles of (a) the undisturbed boundary layer and (b) the disturbed boundary layer (with a single wall-mounted
flexible filament at x̄ = 15), at different streamwise positions obtained from the numerical simulation. Here x̄ denotes the dimensionless distance
from the entrance. The solid lines denote the Blasius solution. For the case without the filament, the Reynolds number based on a distance of 15L
is 6000. For the case with a single filament, the Reynolds number based on L is 400. The mass ratio (β) and dimensionless bending rigidity (γ ) of
the filament are 1.0 and 0.01, respectively.

of the vortex shedding over a bluff-body. In contrast, for the cavity oscillation mode, the wake pattern resembled that of
the vortex shedding over an open cavity.

There are several interesting avenues for further research. First, the coherent waving interactions between the
boundary layer flow and a much larger array of flexible structures should be investigated. Second, the restriction to two
dimensions should be released by conducting three-dimensional simulations. Third, a more accurate model for predicting
the occurrence of cavity oscillation is needed.
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Appendix. Validation cases and grid, time step, and domain independence tests

To ensure that the mesh resolution in the present study is sufficient to resolve the boundary layer, the velocity profiles
for the undisturbed and disturbed boundary layer flows are compared with the Blasius solution. For the case without the
filament, the Reynolds number based on a distance of x = 15L is 6000. For the case with a single wall-mounted filament,
the Reynolds number based on L is 400. Fig. A.1(a) shows the dimensionless velocity profiles at different distances from the
entrance, for the case without the filament. A perfect match between the numerical and the Blasius solutions is seen at all
positions. For the case with one filament mounted on the bottom wall, the velocity profiles at various upstream positions
are also compared with the Blasius solution in Fig. A.1(b). Some deviations from the Blasius solution are found at the
positions very close to the filament. At the positions far enough away from the filament, the velocity profiles matches
the Blasius solution well. Moreover, we also conduct a domain-sensitivity test on the boundary layer flow (without the
filament) at the lowest Reynolds number considered in this work. The Reynolds number based on x = 15L is 750. It turns
out that the domain size used in the simulation is large enough for achieving a domain-independent solution, even for
the case with the thickest boundary layer. For brevity, the result of this test is not presented in the appendix.

To ensure that the results of FSI simulation are (almost) independent of the mesh resolution, a mesh convergence test
is conducted on a representative case of the single-filament system. The control parameters are: β = 1.0, γ = 0.01 and
Re = 800. The Reynolds number of 800 is the highest one that is considered in this study. Besides the original mesh that
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Fig. A.2. Results of the mesh and time step size independence tests. (a) Time histories of the inclination angle θ obtained by using three different
meshes. The dashed, solid and dash-dotted lines represent the results for the grid width of 0.02L, 0.01L and 0.005L, respectively. (b) Time histories
of the inclination angle θ obtained by using three different time step sizes. The dashed, solid and dash-dotted lines represent the results for the
time step of 0.004, 0.002 and 0.001, respectively.

Fig. A.3. Results of the test on the sensitivity of solution to domain size. Time histories of the inclination angle θ obtained by using two different
computational domains. The solid and the dash-dotted lines denote the results obtained by using the original domain and the enlarged domain,
respectively.

is used in the simulation, one coarse mesh and one refined mesh are also generated. The grid widths in the vicinity of the
filament are 0.02L, and 0.005L, for the coarse and refined meshes, respectively. (The resolutions in the regions far away
from the filament are also adjusted proportionally according to the setting of the original mesh.) The dimensionless time
step is fixed to 0.004 and 0.001 for the coarse and refined meshes, respectively. The time histories of the tip inclination
angle (θ ) obtained by using three different meshes are shown in Fig. A.2(a). The discrepancy between the results obtained
with the intermediate (original) mesh and the coarse mesh is clearly visible. The discrepancy between the results obtained
with the refined mesh and the intermediate (original) mesh becomes negligible. Thus, the intermediate mesh with the
grid width of 0.01L is used in the simulation of the present study.

Similarly, a time step independence test is conducted on the same case. The mesh with the grid width of 0.01L is
used. The time histories of the tip inclination angle (θ ) obtained by using three different time step sizes (∆t = 0.004,
∆t = 0.002 and ∆t = 0.001) are shown in Fig. A.2(b). The time step convergence behavior is clearly visible from this
figure. The solutions obtained with ∆t = 0.002 and ∆t = 0.001 are sufficiently close to each other in terms of oscillation
amplitude and period. A small phase difference between the two is originated from the slightly different time at which
the oscillation is triggered. Thus, the time step of ∆t = 0.002 is used in the simulation of the present study.
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In addition, the sensitivity of the FSI solution to the domain size is also tested on the same case. Both the original
computational domain of [0, 32L] × [0, 8L] and an enlarged domain of [0, 40L] × [0, 10L] are used for the test. It should
be noticed that for the two domains used, the distances from the entrance to the filament is fixed and thus the boundary
layer thickness at the position of the filament is the same. Fig. A.3 displays the time histories of θ obtained by using two
different computational domains. It is seen that the two results agree very well with each other. Again, a small phase
difference between the two is originated from the slightly different time at which the oscillation is triggered. Thus, the
original computational domain is sufficiently large for ensuring domain independence.
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