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Abstract 
 Interaction between bubbles in cloud cavitation play an important role in cavitating flows. A 

numerical model was developed to study the internal structure and collapse of cloud cavitation. The 
model consists of : (1) an evolution model of bubble number density taking bubble breakup effects into 
account; (2) a modified cavitation model based on dynamics of bubble cluster; and (3) the multi-phase 
Reynolds Averaged Navier-Stokes equations (RANS) for background flow. The evolution model of 
bubble number density is governed by a transport type equation and the expression of source term is 
derived from a bubble breakup model. The condensation rate is constructed through dimension analysis 
and direct simulation of collapse of bubble cluster. The proposed model was tested by flows over a 
projectile. The results show that the evolution of internal structure of the cloud cavitation is closely related 
to the development of re-entrant jet. Moreover, the performance of proposed model and the effects of 
bubble number density on cavitating flows are discussed.  
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INTRODUCTION 

Cavitation is the key issue in the high-speed underwater 
propulsion, which can result in structure failure and 
acoustic. Cloud cavitation, as one of the most common 
type of cavitation for the marine vessels and projectile, is 
consists of a large amount of small bubbles. The 
pressure pulse generated by the bubble collapse in the 
cloud cavitation is usually considered to be the major 
cause of the structure failure and the noise radiation.  

Numerical simulations are commonly used to study 
cavitating flows in many applications, such as hydrofoils, 
projectiles, and turbo machines, etc. Most of the 
researches were focused on the homogeneous flow 
modelling which is based on the Navier-Stokes equations 
of mixture phase. Kubota [1]，Merkle [2], Kunz [3] and 
Singhal [4] proposed a number of cavitation models 
based on the phase-change method respectively. 
However, the limitation of the homogeneous cavitation 
modeling is apparent, since it is only capable of providing 
macro-solutions of vapor volume fraction while the micro 
mechanism of cavitation evolution remains unknown. 
The evolution of the cloud cavitation includes various 
micro-physical processes such as the bubble collapse 
and the development of the re-entrant jet, and is highly 
related to the distribution of bubbles in terms of the size 
and number. For example, bubble clusters with different 
distributions may lead to different collapse pressures due 
to the interaction of bubbles while the vapor volume 
fractions can be identical. Therefore, the numerical 
model taking account of the internal structure of cloud 
cavitation will be essential for the understanding of the 

bubble evolution, and is expected to improve the prediction 
of the bubble collapse pressure.  

Similar considerations of modeling small particle 
distributions can be found in many chemical engineering 
simulations. A statistical model of the dispersed phase is 
usually adopted in dispersed flows to describe the 
distribution of particle size [6]-[9], in which the evolution of 
the distribution function is governed by a Boltzmann-type 
equation. Unlike the chemical engineering applications, in 
which most of the models were based on the steady state 
condition and fully developed homogeneous turbulence, 
the cavitating flows with the evolution of cloud cavitation 
are highly unsteady and far more complex in terms of the 
flow physics.  

In the present paper, the evolution model of bubble 
number density is proposed to simulate the process of the 
bubble breakup and transportation. A condensation rate 
based on bubble cluster is deduced by dimensional 
analysis and direct simulation. A numerical strategy is 
established to solve the flow with cloud cavitation 
combining our model with the homogeneous cavitation 
model, and was applied to the simulation of the cavitating 
flow around a projectile. The solutions can predict the 
evolution of both the outline and the internal structure of 
the cloud cavitation, which are in good agreement with the 
experimental observations. 

1. Evolution model of the bubble number density

The original homogeneous cavitation models can provide 
the vapor volume fraction only, but the information of the 
internal structure of the cloud cavitation such as the bubble 
number density and the averaged bubble size remains 
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unknown. In the present work, we introduce a new 

transport equation of the bubble number density to the 

homogeneous cavitation model, so that the internal 

structure of cavitation can be solved. The transport 

equation of the bubble number density can be 

constructed as follows 
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where 
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        denotes the density of 

mixture phase. 
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 represents the averaged 

velocity of mixture phase. 

Sn  is the source term involving the bubble breakup 

and coalescence. In the present work, only the effect of 

bubble breakup is taken into account. 

Cavitation cloud is normally a bubble cluster which 

consists of large amounts of small bubbles with various 

sizes. Bubble-bubble interaction plays an essential role 

in the collapse of the bubble cluster, and will become 

stronger while the bubble cluster gets more compact. 

Given a homogeneous bubble cluster, the vapor volume 

fraction   can be related to the bubble number density 
n  and the averaged bubble size r  as: 

4 3

3
n r   (2)  

Assuming the vapor volume fraction being constant in 

the process of bubble breakup, the source term of Eq. (1) 

can be written as follows͹ 
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(3)  

The averaged bubble size is given by: 

( , )
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r f t r rdr

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(4)  

where ( , )f t r  is the probability density function of 

bubble size at time t . 

1.1 Bubble breakup model 
Bubbles break up in turbulent flows when the velocity of 

turbulent fluctuations exceeds a threshold value. In other 

word, the bubble breaks up in turbulent flows when the 

bubble size exceeds a critical value, which is related to 

the turbulent fluctuations and the surface tension. Refer 

to Sosinovich [10], the evolution equation of probability 

density function of bubble size can be written as:  
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(5)  

where ( )r  represents the breakup time of a bubble 

of radius r , and the breakup function ( , )r R  

represents the probability of a bubble of size R  

breaking into bubbles of size r . Neglecting the 

convection effect, the effects of bubble breakup on the 

time rate of probability density function can be divided into 

two parts: The first term on right hand side of Eq. (5) 

represents the decrease in probability function due to the 

bubbles of size r  breaking into smaller ones, the second 

term indicates the increase in probability function due to 

bubbles of radii 1r r  break into ones of size r .  

It is known that a bubble will break into two bubbles near 

the critical Weber number[11], based on which the breakup 

function can be given as follows:  

( , ) ( ) ( ) ( )
3 2

R
r R R r R a rcr        

(6)  

where ( )x  is the step function, and acr  is the 

critical size, which is determined by the following equation 

[11]: 
2
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0
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(7)  

where 0.5C f   is drag coefficient of a spherical bubble, 

0.074  is surface tension, l  and a  denote density 

of liquid and gas, respectively. ( , )P t r  is the turbulent 

kinetic energy distribution over length scales, which can be 

expressed as follows͹ 
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(8)  

where 
3 2k

L C 
 is the turbulence length scale which 

describes the size of large energy-containing eddies in 

turbulent flows. k  is the turbulent kinetic energy, and   

is the turbulent dissipation rate. 0.1C  is a constant, and 

=0.005p  represents the standard error. 

The bubble breakup time   is the key parameter in the 

bubble breakup model, which determines the speed of the 

bubble breakup process. Assuming that a bubble breakup 

along the midsection into  two bubbles, the breakup time 

can be written as : 

( )
r

r a
t k

   
(9)  

Considering that surface tension will impede the 

process of bubble breakup, an additional term 
1

a b
t t kr

 is 

introduced to model the effect of  surface tension and 

avoid divergence near r =0. So the breakup duration can 

be modeled as follows:  

1 1
( )r a r bt t

rk
    

 
 

(10)  

where r  and k  represent the characteristic length 

and characteristic velocity, respectively. at  and bt  are 

case dependent user defined constants . -4=5 10at   and 

-6=10bt  are suitable for this model. 
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substituting Eq.(6) into Eq.(5) we obtain : 
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Using Eqs. (4), (10), we can derive the evolution 

equation of the averaged bubble size: 
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Thus Eq. (11) can be rearranged as follows͹ 
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substituting Eqs. (14) and (4) into Eq.(3) we obtain the 

source term in the transport equation of the bubble 

number density: 
4
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(16)  

During the simulation, the probability density function 

of bubble size is given by: 
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(17)  

where f  is the standard error and set to be 

0.3rf  . 

The evolution of the bubble number density can be 

simulated by solving Eqs. (1), (16).  

2. Condensation rate based on bubble cluster 

In the present work, we are focusing on the bubble-bubble 

interaction in the collapse stage of cavitation cloud. A 

condensation rate based on bubble cluster will be 

constructed in this section. 

2.1  Dimension analysis of collapse of bubble 
cluster 

Consider a bubble cluster collapsing under pressure p  

(Figure 1). Assuming that all bubbles are spherical and in 

the state of equilibrium at the beginning.  

 
Figure 1 Schematic of bubble cluster 

 

The related parameters are listed as followed: 

Time: [ ]t T ; 

Characteristic length of bubble cluster: [ ]a L ; 

Initial bubble radii: [ ]0R L ; 

Population of bubbles per unit volume: 
1

[ ]
3

n
L

ͺ 

Material parameters: liquid density [ ]
3

M
L

L
 , liquid 

viscosity [ ]
M

L
LT

 , surface tension [ ]
2

M
S

T
, reference 

density of gas [ ]0 3

M
A

L
 , gas viscosity [ ]

M
A

LT
 , ratio of 

specific heats of gas [1] ; 

Surrounding pressure [ ]
2

M
p

LT
 , pressure inside 

bubbles [ ]
2

M
pB

LT
; 

The variation rate of volume of all bubbles can be 

expressed in a relationship: 

( ; , ; ; , , , , , ; , )0 0V f t R a n S p pL L A A B     0 0V f t R a n S p p( ; , ; ; , , , , , ; , )V f t R a n S p p( ; , ; ; , , , , , ; , )0 0V f t R a n S p p0 0( ; , ; ; , , , , , ; , )0 0( ; , ; ; , , , , , ; , )V f t R a n S p p( ; , ; ; , , , , , ; , )0 0( ; , ; ; , , , , , ; , )V f t R a n S p pV f t R a n S p p  (18)  

Taking  0t R L， ，  as a unit system produces 

dimensionless form: 
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where  
0

a

R
 can be rewritten as population of bubbles 

3
3 3( )
03

0

a
N nR a n

R
  , and 3

0
nR  can be converted to void 

fraction 
4 3

03
n R  . Taking collapse time of single bubble 

0.915 0
LT RC

p pB





 as characteristic time, the 

relationship becomes: 

 

p∞ 
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The collapse of bubbles is controlled by pressure 

difference and inertial force, so viscosity and surface 

tension can be neglected.  For given material 0A

L




 and 

  are constant. Thus, Equation can be reduced to: 

2
(  ; , )

4 23
03

pV t
f N

p p TBR T CC







V t
f N(  ; , )f N(  ; , )

V t
f N

V t
(  ; , )

V t
(  ; , )f N(  ; , )

V t
(  ; , )；  

(21)  

In Eq.(21) 
p

p pB




 can be replaced by 
p pBp

p




 

which represents non-dimensional driving pressure. 

Consider average variation rate of volume, the 

non-dimensional time will not appear in the formulation:  

(  ; )
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 represents volume variation rate 

of single bubble, therefore 0V V VV V VV V VV V VV V VV V VV V VV V V  is non-dimensional 

volume variation rate of bubble cluster. We can see from 

the Eq. (22) that three key parameters:  , N  and 

p ,To provide the specific relation, we can assume that: 

1 2 3k k kV c N p  k k k1 2 3k k k1 2 3V c N p1 2 3V c N p1 2 3k k kV c N pk k k1 2 3k k k1 2 3V c N p1 2 3k k k1 2 3V c N pV c N pk k kV c N pk k kk k kV c N pk k k k k k k k k1 2 3k k k1 2 3 1 2 3k k k1 2 3V c N p V c N pk k kV c N pk k k k k kV c N pk k k1 2 3k k k1 2 3V c N p1 2 3k k k1 2 3 1 2 3k k k1 2 3V c N p1 2 3k k k1 2 3V c N pV c N p V c N pV c N pk k kV c N pk k kk k kV c N pk k k k k kV c N pk k kk k kV c N pk k kV c N pV c N p  (23)  

The empirical parameters , , ,1 2 3c k k k  can be 

determined by direct simulation of collapse of bubble 

clusters. 

2.2  Direct simulation of collapse of bubble 
cluster 

Consider a cubic bubble cluster in which bubbles are 

arranged in n n n   order as shown in Figure 2. The initial 

pressure inside bubble cluster is set to be pB , and the 

pressure at boundary is p . 

 
Figure 2 Flow field and numerical model 

Volume of fraction (VOF) method and large eddy 

simulation (LES) are adopted in the numerical simulations. 

The parameters are listed as follows: 

Volume faction : 0.150, 0.268, 0.500  

Population of bubbles 3 3 3 3: 3 , 4 , 5 , 6N  

Non-dimensional pressure :0.6, 0.7, 0.8, 0.9p  

The volume variation rate of bubble cluster is recorded 

during the calculation and averaged by time. The following 

discussions are carried out around non-dimensional 

time-averaged volume variation rate. 

2.2.1. Influence of bubble population 

Table 1~ Table 3 give the V   under different bubble 

populations, where R
B  represents initial bubble radii, D

B  

is the distance between the centers of two neighbor bubbles.  

Table 1. V  corresponding to different bubble 

populations ( =0.150) 

Parameters 1 2 3 4 

N 3×3×3 4×4×4 5×5×5 6×6×6 

RBͧmmͨ 6.87 5.15 4.12 3.43 

DBͧmmͨ 20.8 15.6 12.5 10.4 

V   -10.7 -19.6 -31.4 -45.6

 
Table 2. V  corresponding to different bubble 

populations (=0.268) 
Parameters 1 2 3 4 

n 3×3×3 4×4×4 5×5×5 6×6×6 

RB˄mm˅ 8.33 6.25 5 .00 4.16 

DB˄mm˅ 20.8 15.6 12.5 10.4 

V   -9.97 -18.2 -29.0 -42.1 

 
Table 3. V  corresponding to different bubble 

populations˄=0.500˅ 

Parameters 1 2 3 4 

n 3×3×3 4×4×4 5×5×5 6×6×6 

RB˄mm˅ 10.3 7.69 6.15 5.13 

DB˄mm˅ 20.8 15.6 12.5 10.4 

V   -9.05 -16.4 -25.9 -37.3 

Curve fitting gives the power-law exponent 0.682k  .The 

power-law exponent of bubble population is close to 2 3 . It’s 
because bubble cluster is collapsing approximately layer by 

layer (Figure 3), and the number of bubbles outer is of the 

order 2 3( )O N . 

 
Figure 3 Collapse of bubble cluster ( =0.150, N=5

3
, 

p=0.8 ) 

   

t1 t2 t3 
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2.2.2. Influence of volume fraction 

Similarly, we can provide the power-law exponent of  using 

Table 4. V  corresponding to different volume 

fractions 
N 3×3×3 4×4×4 5×5×5 6×6×6

0.15 -10.7 -19.6 -31.4 -45.6

0.268 -9.97 -18.2 -29.0 -42.1

0.5 -9.05 -16.4 -25.9 -37.3

Curve fitting shows that the power-law exponent of   is 
0.1601k  . Higher   corresponds to a compacter bubble 

cluster. Therefore, the inner bubbles will reduce the collapse 

velocity of outer bubbles. On the contrary, the outer layer of 

bubbles will shield the inner bubbles from collapsing. As a 

result, the collapsing velocity will slow down with the rise of 

volume fraction.  

2.2.3. Influence of non-dimensional pressure 

Non-dimensional pressure represents the driving force for 

collapse of bubble cluster. With the increase of p , the

collapse will become more violent (Figure 4).

Figure 4 Curve of V   corresponding to p

Curve fitting gives the power-law exponent 0.6093k  .

p  represents the driving pressure of collapse of bubble 

cluster. It affects not only the collapse velocity but also the 

procedure of collapse.  

2.3 Condensation rate 

The constant coefficient c  is closed to 1, combined with

the influence of  , N and p , Eq. (23) becomes :
0.16 0.69 0.61V N p  0.16 0.69 0.61V N p0.16 0.69 0.61V N p0.16 0.69 0.61V N pV N p 0.16 0.69 0.61 0.16 0.69 0.61V N p V N p0.16 0.69 0.61V N p0.16 0.69 0.61 0.16 0.69 0.61V N p0.16 0.69 0.61V N pV N p V N pV N p V N pV N p (24)

Equation (24) gives the no-dimensional collapse 

velocity of bubble cluster. Then the change rate of void 

fraction can be given as: 

4 3
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(25)

The cavitation rate m  is related to   as [4]: 
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m
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l v (26)

substituting Equation (25) into Equation (26), we can get 

the condensation rate as follows: 
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(27)

where Vm  is the volume of a mesh cell, and 0.057Cc . 

According to Singhal model, the vaporation rate is set to 

be: 

2
(1 )

3

p pkl v vm Ce l g
l

   
  

  m Ce lm Ce lm Ce le lm Cm Cm Cm C
(28)

3. Numerical strategy

The basic approach for cavitating flows consists of unsteady 

Reynolds Averaged Navier-Stokes equations of the mixture 

phase and the continuity equation of the vapor phase. 

The numerical procedure of the cloud cavitation 

computation is demonstrated in Figure 5. 

Figure 5 Numerical procedure. 

Unsteady RANS equations combined with modified RNG

k- model [12] are solved by FLUENT using SIMPLEC 

algorithm to provide background flow information to the 

continuity equation of vapor phase and transport equation of 

bubble number density, which are computed in sequence. 

The calculation of additional transport equation of bubble 

number density and its source term consumes more 

computing power, which depends on the mesh size and the 

resolution of the bubble size distribution function. 

4. Validation

The simulation of the cavitating flow over a cylindrical body 

with 90° blunt conical head is presented in this section. The

diameter of cylinder is d=37.5mm, and the free-stream 

velocity is v=18m/s. The corresponding cavitation number and 

Reynolds number are =0.612, Re=6.75×105, respectively. 

The 2-D axisymmetric geometry is utilized in the simulation, 

with a 350×150 structural mesh, depicted in Figure 6. The 
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heigh of first grid layer is 2×10-4 mm，which makes sure that 
the wall y+ is of the order O(1). The numerical results are 
validated by the experimental data based on the Split 
Hopkins Pressure Bar (SHPB) launch system [13].  

 
Figure 6 Computational domain. 

Figure 7 ~ Figure 11 illustrate the evolution of the cloud 
cavitation. The yellow curves represent the iso-surface of 
vapor fraction with the value of 0.1, and the red zones in the 
cavitation indicate high bubble number density area ( 910n ) 
which can be seen as cloud cavitation. 
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Figure 7 The growth of the sheet cavitation Figure 8 The development of the re-entrant jet. 

 

 

 

 
Figure 9 The full cloud cavitation. Figure 10 The detachment of cloud cavitation. 

 

 
Figure 11 The collapse of the detached cavitation. 

 

The evolution of cavitation can be divided into four 
stages: the growth of the sheet cavitation, the development 
of re-entrant jet, the detachment of cavitation cloud, and the 
collapse of detached cavitation cloud. When the cavitation 
occurs, a transparent laminar void like a flat bubble starts to 
grow from the shoulder of the projectile (Figure 7).  

The bubbles then start to break up as the re-entrant jet 
develops, with a simultaneous increase of the bubble 
number density. The breakup process turns the sheet 
cavitation to the cloud cavitation (Figure 8).  

The whole cavitation area turns into a non-transparent 
cavitation cloud when re-entrant jet reaches the shoulder of 
the projectile (Figure 9), where the cavitation cloud detaches 
and rolls downstream with the mean flow until collapse 

(Figure 10, Figure 11). Meanwhile, new attached cavitation 
appears at the shoulder of projectile. The simulation results 
show that the formation of cloud cavitation is closely related to 
the re-entrant jet. 

 

Figure 12 Formation of cloud cavitation 

Figure 12 illustrates the outline of cavitation and the 
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distribution of bubble number density n . It can be seen that 

cloud cavitation area is consistent with the region swept by 

the re-entrant jet, which suggests that the re-entrant jet 

breaks bubbles into small ones, and forms the cavitation 

cloud.  

 

Figure 13 Distribution of the bubble number density in 
the cavitation. 

 

 
Figure 14 Distribution of the bubble size in the 

cavitation cloud. 

Figure 13 presents the distribution of the bubble number 

density in the cavitation region along the wall of projectile, 

and the origin of X axis represents the leading edge of 

cavitation. The cavitation can be divided by re-entrant jet 

into two parts: the transparent laminar cavitation and the 

nontransparent cloud cavitation. It is shown that the bubble 

number density increases rapidly at the front of re-entrant jet 

and decreases close to the cavitation closure. Bubble size is 

not uniform in the region of the cloud cavitation (Figure 14), 

the minimum value of r  is 0.202 mm, which corresponds 

to the maximum n of 3.06×10
10

. 

Good agreement with the experimental data suggests 

that our numerical strategy is capable of predicting the 

evolution of cavitation with high precision. In addition, the 

distribution of the bubble number density solved by the 

proposed model can help us better understand the internal 

structure of cloud cavitation.   

 

5. Disscussions 

The bubble number density plays an important role in 

cavitating flows, especially in collapse process of 

cavitation [14]-[16]. There is an important 

characteristic named geometry focusing of collapse 

pressure in the collapse process of bubble cluster. The 

pressure waves emitted by collapse bubbles will 

propagate inward which leads to a higher magnitude of 

collapse pressure [17]. In this paper, we compare the 

present model with Singhal model to test the ability of 

predicting pressure focusing effect.  

 

Figure 15 Comparation of condensation rates 

Figure 15 shows that present model presents a higher 

condensation rate than Singhal model. That means present 

model will predict a higher collapse pressure thant Singhla 

model (Figure 16). Further more, the condensation rate of 

Singhal model is quit smooth while present model shows 

local effects of collapse. The region of cavitation cloud with 

higher bubble number density collapse more fiercely than 

other else.  

 

Figure 16 Comparation of collapse pressure (at x/d=2) 

 

6. Conlusions  

Homogeneous cavitation models can only give volume 

fractions of different phases. It’s not enough for cavitating flow, 
especially for collapse of cloud cavitation. Different bubble 

sizes and bubble number density may be corresponding to 

the same vapor fraction. Cavitation cloud of different internal 

structure can result in different collapse pressure due to 

interaction between bubbles. Internal information of cloud 

cavitation is needed to predict collapse pressure more 

accurately.  

In the present work, a numerical model consists of 

modified homogenous cavitation model and evolution 

equation of bubble number density was proposed. The 

evolution model of bubble number density is governed by a 

transport type equation and takes account of bubble breakup 

effect. The condensation rate is constructed through 
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dimension analysis and direct simulation of collapse of 
bubble cluster. This model was implemented on cavitating 
flow over a projectile with blunt conical head and validated 
by the experiment base on SHPB launch system. The 
simulation results showed that present model can predict 
the evolution of cavitation and the distribution of bubble 
number density (or bubble size) well.  

The comparation of present model and Singhal modle 
was discussed. It is shown that the collapse pressure of 
detached cavitation cloud is strongly affected by bubble 
number density. Non-uniform distribution of bubble number 
density may lead to different collapse velocities. The region 
of cavitation cloud with higher bubble number density 
collapse more fiercely than other else. 

The proposed model can solve the distribution of the 
bubble number density and help us better understand the 
internal structure of cloud cavitation. But, continuous efforts 
should be made to improve this model. First, only bubble 
breakup was considered in present model, the effects of 
coalescence needs to be studied. Second, although the 
breakup model is simplified, the present model is still time 
consuming. Further optimization for the numerical method is 
needed to enhance the computational efficiency. 

REFERENCES 

[1] A. Kubota, H. Kato, Unsteady structure 
measurement of cloud cavitation on a foil section, 
Journal of Fluids Engineering, 111(3):204~210, 
1989. 

[2] C. L. Merkle, J. Feng, P. E. O. Buelow, 
Computational modeling of the dynamics of sheet 
cavitation, Proceedings of 3rd International 
Symposium on Cavitation, Grenoble, France, 
1998. 

[3] R. F. Kunz, D. A. Boger, D. R. Stinebring, T. S. 
Chyczewski, J. W. Lindau, H. J. Gibeling, S. 
Venkateswaran, T. R. Govindan, A preconditioned 
Navier-Stokes method for two-phase flows with 
application to cavitation prediction, Computers and 
Fluids, 29(8): 849-875, 2000. 

[4] A. K. Singhal, M. M. Athavale, H. Li, Y. Jiang, 
Mathematical Basis and Validation of the Full 
Cavitation Model, Journal of Fluids Engineering, 
124(3): 617-624, 2002. 

[5] J. C. Lasheras, C. Eastwood, C. Martínez-Bazán, J. 
L. Montañés, A review of statistical model for the 
break-up of an immiscible fluid immersed into a 
fully developed turbulent flow, International 
Journal of Multiphase Flow, 28: 247-278, 2002. 

[6] C. Martínez-Bazán, J. L. Montañés, J. C. Lasheras, 
On the breakup of an air bubble injected into a fully 
developed turbulent flow. Part 1: Breakup 
frequency, Journal of Fluid Mechanics, 401: 
157-182, 1999. 

[7] C. Martínez-Bazán, J. L. Montañés, J. C. Lasheras, 
On the breakup of an air bubble injected into a fully 
developed turbulent flow. Part 2: Size pdf of the 
resulting daughter bubbles, Journal of Fluid 
Mechanics, 401: 183-207, 1999. 

[8] G. M. Evans, P. M. Machniewski, A. K. Bin, Bubble 

size distribution and void faction in the wake region 
below a ventilated gas cavity in downward pipe flow, 
Chemical Engineering Research and Design, 
82(A9):1095-1104, 2004. 

[9] V. A. Sosinovich, V. A. Tsyganov, B. A. Kolovandin, 
B. I. Puris, V. A. Gertsovich, Modle of gas bubble 
breakup in turbulent liquid flow, Journal of 
Engineering Physics and Thermophysics, 68(2): 
164-175, 1995.  

[10] V. G. Levich, Physicochemical Hydrodynamics 
(English translation by Scripta Tchnica) [M], 
Prentice-Hall, Englewood Cliffs, USA, 1962. 

[11] V. A. Sosinovich, V. A. Tsyganov, B. I. Puris, V. A. 
Gertsovich, Model of fractionation and coalescence 
of gas bubbles in a turbulent liquid flow, Journal of 
Engineering Physics and Thermophysics, 70(6): 
918-926, 1997. 

[12] J. L. Reboud, B. Stutz, O. Coutier, Two-phase flow 
structure of cavitation: experiment and modeling of 
unsteady effects, 3rd International Symposium on 
Cavitation, Grenoble, France, 1998. 

[13] Y. P. Wei, Y. W. Wang, X. Fang, C. G. Huang, Z. P. 
Duan, A scaled underwater launch system 
accomplished by stress wave propagation 
technique, Chinese Physics Letters, 28(2): 024601, 
2011.  

[14] G. E. Reisman, C. E. Brennen, Shock wave 
measurements in cloud cavitation, Proceedings of 
21st International Symposium on Shock Waves, 
Paper 1570, 1997. 

[15] G. E. Reisman, Y. C. Wang, C. E. Brennen, 
Observations of shock waves in cloud cavitation, 
Journal of Fluid Mechanics, 355:255~283, 1998. 

[16] L. Zhang, Z. Wen, X. Shao, Investigation of 
bubble-bubble interaction effect during the collapse 
of multi-bubble system, Chinese Journal of 
Theoretical and Applied Mechanics, 45(6): 861-867, 
2013. 

[17] Y. C. Wang, Distribution on the dynamics of a 
spherical cloud of cavitation bubbles, Journal of 
Fluids Engineering, 121:881~886, 1999. 


