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Dirac cones of an acoustic system are the foundation of most topological phase transitions and topo-

logical states and have recently become a research hotspot. Although the Dirac cones, Dirac-like

cones, double Dirac cones, and semi-Dirac points are all skillfully designed, it is still indispensable

to realize a tunable Dirac cone in a novel acoustic structure. This paper proposes two-dimensional

acoustic metamaterials with matryoshka structure to achieve tunable Dirac cones and topological

spin states. Dirac points can be obtained on the dispersion curves owing to the high symmetry. The

concentric circular scattering units of the matryoshka structure are arranged in honeycomb lattices.

By a rotating-scatterer mechanism to break the symmetry, the Dirac cone at K (K’) is split and the

topological spin states appear at the band valley. The existence of a topological transition with oppo-

site Chern numbers as the rotating angle varies is also verified, and helical edge states are obtained

along the interfaces separating the topologically opposite spin states insulators. Moreover, the

frequency of the Dirac cone is tuned by rotating the inner structure in a double-layer matryoshka

structure. VC 2019 Acoustical Society of America. https://doi.org/10.1121/1.5115007

[GH] Pages: 767–772

I. INTRODUCTION

In recent years, the topological states and the physical phe-

nomena of acoustic systems have gradually become research

hot spots (Ma and Sheng, 2016; Wu et al., 2018). Because the

acoustic topology protection of boundary state transmission

can effectively suppress backscattering and has a strong robust-

ness to defects (He et al., 2016; Lu et al., 2016; Wang et al.,
2015), it has great application prospects in acoustic communi-

cation, noise control, and so on. Analogous to electronic

systems, the topological phase transition and robust boundary

states in band gap structures can be excited by breaking the

time-reversal symmetry (Fleury et al., 2014; Khanikaev et al.,
2015; Yang et al., 2015), using temporal (or spatial) modula-

tion (Fleury et al., 2016) and coupling resonance (He et al.,
2016; Peng et al., 2016; Wei et al., 2017) or reducing the space

symmetry (Dai et al., 2017; Lu et al., 2014; Lu et al., 2016;

Wen et al., 2018; Xia et al., 2017; Xia et al., 2018; Xia et al.,
2019; Zhang et al., 2017) in artificial periodic structures, such

as sonic crystals. The key to realizing an acoustic topological

phase transition is to degrade the dispersion relation of Dirac

cones by introducing additional degrees of freedom, so as to

obtain the spin states and then construct the acoustic topolog-

ical insulator (Li et al., 2014). Therefore, the formation of

Dirac cones in a band structure is the foundation of most

topological phase transitions and topological states.

Dirac cones refer to the central point of the degeneracy

states with linear dispersion in momentum space at the high

symmetry point of a Brillouin zone (BZ) boundary, which

originates from the study of the band structure of monolayer

grapheme (H€ausler and Egger, 2009; Novoselov et al., 2005;

Zhang et al., 2005). The Dirac cone can be generated by

either deterministic degeneracy, arising from the conse-

quence of the high crystal symmetry, or accidental degener-

acy, owing to fine-tuning parameters (including external

fields or structure parameters) (Herring, 1937). Current stud-

ies show that Dirac cones in acoustic systems can be divided

into a Dirac cone (with twofold Dirac degeneracy) (Lu et al.,
2014; Malko et al., 2012; Torrent and S�anchez-Dehesa,

2012; Zhang et al., 2008), Dirac-like cone (with triple

degeneracy) (Lu et al., 2016), double Dirac cone (with qua-

druple degeneracy) (Chen et al., 2014; Li et al., 2014; Li and

Mei, 2015; Sakoda, 2012) and semi-Dirac points (Banerjee

et al., 2009; Zhai et al., 2011). When the scattering units are

arranged in triangular or honeycomb lattices, there usually

exists a Dirac cone with twofold degeneracies at the highly

symmetric corner in the Brillouin region (Lu et al., 2014;

Malko et al., 2012; Torrent and S�anchez-Dehesa, 2012;

Zhang et al., 2008) and double Dirac cone (Chen et al.,
2014; Li et al., 2014; Li and Mei, 2015; Sakoda, 2012) at the

center. Furthermore, Dirac-like cones with a three-fold

degeneracy of two linear dispersion bands and an additional

flat band were also observed in the hexagonal BZ center (Lu

et al., 2017). A semi-Dirac cone refers to a peculiar type of a

dispersion relation that is linear along the symmetry line but

quadratic in the perpendicular direction, and usually appears

in anisotropic phononic crystals (Banerjee et al., 2009; Zhai
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et al., 2011). Studies on Dirac cones have greatly promoted

the development of topological acoustic states and topologi-

cal insulators. However, it is noted that the frequencies of

Dirac cones are all fixed when the whole architecture is

determined. Although sub-wavelength and multiple Dirac

cones were developed recently (Dai et al., 2017; Yves et al.,
2017), their tunability remains unresolved. Therefore, it is

important to establish a novel system to realize a tunable

Dirac cone.

It is known that the band structure can be tuned by

changes of geometrical parameters via pattern transformations

such as induced instability and geometrical operations (Wang

et al., 2014; Yu et al., 2013). In this paper, we proposed two-

dimensional acoustic metamaterials with matryoshka structure

to achieve tunable Dirac cones and topological spin states both

via changing the microstructure with rotation of the scatterers.

The matryoshka structure is usually composed of concentric

circular scattering units, which can obtain multiple band gaps

owing to the local resonances (Elford et al., 2011). When we

arrange these concentric circular scattering units in honeycomb

lattices, Dirac points can be obtained on dispersion curves

owing to the high symmetry. By a rotating-scatterer mecha-

nism to break the symmetry, the Diarc cone is split and the

topological spin states appear at the band valley. We also dem-

onstrate the existence of a topological transition with opposite

Chern numbers as the rotating angle varies, and obtain heli-

cal edge states, which are along the interfaces separating the

topologically opposite spin states insulators. Moreover, the

frequency of the Dirac cone can also be tuned by rotating

the inner structure in a double-layer matryoshka structure.

II. RESULTS AND DISCUSSION

Figure 1(a) shows the schematic diagram of a unit cell

of the single-layer matryoshka structure, where the white

part is metal steel, which is considered as a rigid body in the

calculation process, and the other parts correspond to air.

The whole structure consists of a hexagonal array of slotted

cylinders with three splits and can be treated as a Helmholtz

resonator with three necks. The structural geometry can be

described by the lattice constant a (¼12 mm), the radius of

the slotted cylinders r (¼6 mm) and R (¼8 mm), and the split

width W (¼0.4 mm). Additionally, the orientation of the slot-

ted cylinder is characterized by the angle a (0 � a � p/3)

with respect to the vertical direction. In this paper, all calcu-

lations were carried out using COMSOL Multiphysics finite-

element method (FEM) software. During the calculations,

both the air and steel were considered, and their parameters

were density q¼ 1.25 kg/m3, sound velocity C¼ 343 m/s for

the air background, and density q¼ 7800 kg/m3, sound

velocity C¼ 5100 m/s for the steel structure. Owing to the

large difference between the acoustic impedance, the shear

deformation of steel was neglected. In calculations, the trian-

gle element mesh is used. It is worth noting that, in order

to ensure the accuracy of the calculation, the maximum

element size of the triangle mesh is far less than 1/6 of the

shortest wavelength in calculated rage of frequencies.

As shown in Fig. 1(a), it is noted that when a¼ p/6, the

whole structure has C3v symmetry consistent with a hexago-

nal lattice, which has both a threefold rotational symmetry

and three mirrors. When the internal steel structure rotates

by a certain angle, a is not equal to p/6, and the symmetry of

the whole structure reduces to C3 and only has threefold

rotational symmetry. The band structures of the single-layer

matryoshka structure with a¼p/6 (dash line) and a¼ p/9

(solid line) are shown in Fig. 1(b). A Dirac cone (at

16.924 kHz) appeared at the inequivalent hexagonal corners

K (K0) of the first BZ for the single-layer matryoshka struc-

ture with a¼p/6, owing to the mirror symmetry protection.

For a¼ p/9, the Dirac cone at point K (K0) splits and forms a

pair of frequency extrema in the band structure owing to a

symmetry mismatch between the steel structure and hexago-

nal lattice, as shown in Fig. 1(b). These two frequency

extrema are respectively marked with valley states K1 (at

16.924 kHz) and K2 (at 17.563 kHz), and form a complete

band gap.

Figure 2 shows the curves of two frequency extreme

points varying with angle a, where the blue line represents

valley states K1 and red line represents valley states K2. The

band gap structure around the Dirac cone went from open to

closed to open again when the rotating angle a was changed

FIG. 1. (Color online) (a) Layout of single-layer matryoshka structure. (b)

Calculated band structures, where the solid line refers to the dispersion rela-

tion of the structure with a¼p/9, and the dashed line refers to the dispersion

relation of the structure with a¼p/6. The insert small figure shows the

details of band structure near the Dirac cone.

FIG. 2. (Color online) Band-edge frequencies depicted for the acoustic

system with different rotation angle a, where the color illustrations show the

distribution of absolute sound pressure at the valley states K1 and K2 for

a¼p/9 and a¼ 2p/9.
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from 0 to p/3. For a¼p/6, the band gap was closed, and the

band gap was widest for a¼ 0 or p/3. The color illustrations

in Fig. 2 give the distribution of the absolute sound pressure

at the valley states K1 and K2 for a¼p/9 and a¼ 2p/9.

When the rotating angle a¼p/9, the Dirac cone split and

formed two valley states K1 and K2 owing to the loss of mir-

ror symmetry. The pressure distributions suggested that the

two valley states had an opposite vortex in the corner point

of hexagonal unit cell: the valley state K1 at the upper edge

of the band gap had a clockwise chiral vortex, and the valley

state K2 at the lower edge of the band gap had an anti-

clockwise chiral vortex. When the rotating angle a¼ 2p/9,

the two topological valley states exchanged their positions

at the edge of the band gap. For the upper edge of the band

gap, the valley state was occupied by K2 with an anti-

clockwise chiral vortex, and the valley state K1 with a clock-

wise chiral vortex appeared at the lower edge. The whole

band structure was reversed when the rotation angle a passed

through p/6, and this inversion process excited the topologi-

cal spin states and topological phase transitions.

To better understand these topological phase transitions,

a nonzero valley Chern number was introduced in this paper.

Using the k•p perturbation method, the topological phase

transition could be captured by the continuum Hamiltonian

(Lu et al., 2016),

HK dkð Þ ¼ VDdkxrx þ VDdkyry þ mV2
Drz; (1)

where VD is the Dirac velocity of the conical dispersion at

a¼ p/6. dk is the deviation of momentum from the valley

center K. ri are the Pauli matrices of the vortex pseudospins.

The effective mass characterizes two different valley Hall

insulators separated by the Dirac semimetal phase with

m¼ 0 in the phase diagram,

m ¼ ðxK1
� xK2

Þ
2V2

D

: (2)

The effective mass is related to the bandwidth, so the

effective Hamiltonian is strongly dependent on the rotation

angle a. Additionally, the nontrivial local Berry curvature

centered at the K valley can be calculated by using the eigen-

vector from the effective Hamiltonian (Zhang et al., 2011),

Xk dkð Þ ¼ mVD

2ðdk2 þ m2V2
DÞ

3=2
: (3)

The topological charges of the first band can be calcu-

lated by integrating the local Berry curvature (Martin et al.,
2008; Semenoff et al., 2008),

Ck ¼
1

2p

ð
Xk dkð Þds ¼ 1

2
sgnðmÞ: (4)

The Chern number of K0 can be derived from time-

reversal symmetry and has opposite signs,

Ck0 ¼ �Ck ¼
1

2
sgnðmÞ: (5)

The valley Chern number can be obtained as

Cv ¼ Ck � Ck0 : (6)

With the rotating angle 0 � a < p/6, the valley Chern

number is 1, and the Chern number is �1 for p/6 < a � p/3.

Thus, the topological phase transition occurs with the change

of the valley Chern number at the rotating angle a¼ p/6,

which predicts edge states propagating along the interface

between two hexagonal lattices with a symmetric rotating

angle.

To verify the edge states, a super cell structure was

built, as shown in Fig. 3. The super cell consisted of three

parts: I-II-I. Part I had units with the rotating angle a¼ p/9,

and part II had units with the rotating angle a¼ 2p/9. There

were two kinds of interfaces, I-II and II-I, in this super cell

structure. In the calculation process, a Floquent periodic

boundary condition was applied at the right and left bound-

aries of the super cell structure. Meanwhile, perfectly

matched layers (PML) were chosen at the upper and lower

edges of the structure to represent an infinite domain of air.

The band structure of the whole super cell and pressure

FIG. 3. (Color online) (a) Interface dispersions (dark lines) evaluated for I-II-I type superlattice structure, where the grey line corresponds to the bulk states

and the colored lines correspond to the edge states. (b) Pressure distributions of the four eigenstates marked with LI-II, RI-II, LII-I, RII-I.
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distributions at special frequencies are shown in Fig. 3. The

red and blue lines in Fig. 3(a) indicate the interface disper-

sions and the black lines correspond to the bulk states. The

pressure distributions of the four eigenstates as the edge

states [marked in Fig. 3(a)] indicated the one-way transmis-

sion at the interface between the different unit cells, as

shown in Fig. 3(b). The edge states existed in the super cell

system and were respectively marked as LI-II, RI-II, LII-I, RII-I,

where L and R represent two opposite propagation direc-

tions, and I-II and II-I represent two kinds of interfaces. For

instance, the sound wave of the RI-II state only transmits to

the right at the I-II interface. It is noted that the edge states

are helical edge modes owing to the valley pseudospin by

analogy with the electronic system (Bernevig et al., 2006).

The results suggested that the sound can efficiently transmit

along the topological interfaces owing to the helical edge

states, which is caused by the opposite Chern numbers and

topological spin states at the two sides of the interface. This

robust transmission was not disturbed by external defects and

disturbances.

Furthermore, a zigzag bending channel, which was sepa-

rated by part I with the rotating angle a¼ p/9, and part II with

the rotating angle a¼ 2p/9, was built to examine the transmis-

sion at the edge states as shown in Fig. 4. A point source at fre-

quency 17300 Hz was applied at the left boundary around the

interface between two parts, and the pressure distributions are

shown in Fig. 4(a). Figure 4(b) shows the pressure distribution

at the right boundary along the y axis and suggests that the

transmission wave at the exit was concentrated at the topologi-

cal interface between two parts. The sound travelled smoothly

along the zigzag path despite encountering two sharp corners.

The altitude maps [see inset of Fig. 4(a)] show that the trans-

mission was highly efficient and exhibited good immunity to

strong backscattering caused by bending in the transmission

path. From this, we observed that we could construct an arbi-

trary topological interface by rotating the internal scattering

units, and then realized the efficient transmission of sound

waves along arbitrary paths.

Based on a single-layer matryoshka structure, the topo-

logical spin states and topological insulators were designed

by rotating the scattering units. Subsequently, a double-layer

matryoshka structure was designed to obtain a tunable Dirac

cone. As shown in Fig. 5, the double-layer matryoshka struc-

ture had two layers of slotted cylinders. The whole geometry

could be described by the lattice constant a (¼12 mm), the

radius of the outer cylinders r1 (¼3 mm) and R1 (¼4 mm),

and the radius of the inner cylinders r2 (¼1.5 mm) and R2

(¼2.5 mm), and the split width W (¼0.8 mm). Orientation of

the outer and inner cylinder was characterized respectively

by the angle a (0 � a � p/3) and b (0 � a � p/3) with

respect to the vertical direction. The band structures of the

double-layer matryoshka structure with a¼p/6, b¼p/9

(dashed line) and a¼p/9, b¼ p/9 (solid line) are shown in

Fig. 5(b). Similar to single-layer structure with a¼p/6, the

double-layer matryoshka structure also exhibited a Dirac

cone at 15.306 kHz, and when the outer layer was rotated,

the Dirac cone at point K (K’) split and formed a pair of

topological spin states. It is also noted that the Dirac cone

still existed although the symmetry of the inner structure

was mismatched with the hexagonal lattice.

Figure 6(a) shows the curves of the frequencies of two

topological spin states varying with angle a. Compared with

a single layer, the band gap structures also changed from

open to closed to open again when angle a was varied from

0 to p/3, and the only difference was that the curves of

the double layer was asymmetrical owing to the mirror

FIG. 4. (Color online) (a) Pressure distributions of a zigzag bending channel at 17300 Hz, and the insert small figure shows the height map of sound pressure.

(b) Pressure distribution at the right boundary along the y axis.

FIG. 5. (Color online) (a) Layout of double-layer matryoshka structure. (b)

Calculated band structures. The solid line refers to dispersion relation of the

structure with a¼p/9, b¼p/9, and the dashed line refers to dispersion rela-

tion of the structure with a¼p/6, b¼p/9. The insert small figure shows the

details of band structure near the Dirac cone.
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symmetry mismatch between the inner and outer structures.

The frequencies at the Dirac cone with different b are given

in Fig. 6(a). A tunable Dirac cone was obtained when rotat-

ing the inner layer. All results suggested that the Dirac cone

only depended on the mirror symmetry of the outer structure.

Hence, no matter how the inner structure was rotated, the

band gap will close and form the Dirac cone when the sym-

metry of the outer structure matches with the hexagonal lat-

tice, and the band gap opens when the outer symmetry is

mismatched. Moreover, the frequency position of the Dirac

cone can be affected by b, and it can be tuned by rotating the

inner structure. When rotating the inner structure, the posi-

tion of Dirac cone will be tuned due to the change of cou-

pling between the inner and outer structure. It can be found

that the rotation operation is not only used to reduce symme-

try to achieve degeneracy of Dirac cone, but also can realize

tunable Dirac cones via changing the microstructure for

double-layer matryoshka structure. In addition, the tunable

frequency rage can also be widened by optimizing the struc-

ture parameters such as split width and interlayer spacing. If

the inner and outer structure are both made into moving

parts, the whole system is very practical in use.

III. CONCLUSIONS

In this paper, matryoshka structures are proposed to

achieve a Dirac cone and topological phase transitions. The

results suggest that a Dirac cone appears at the inequivalent

hexagonal corners K (K0) for the single-layer matryoshka

structure with a¼p/6, owing to the mirror symmetry protec-

tion. Additionally, the topological spin states and topological

phase transitions with opposite Chern numbers are achieved

by a rotating-scatterer mechanism to break the mirror sym-

metry. Movement of the acoustic edge states are further

observed along the interfaces separating the topologically

different valley insulators, and their transmission properties

are determined in a zigzag bending channel. Moreover, a

double-layer matryoshka structure is designed to obtain a

tunable Dirac cone by rotating the inner layer. When rotating

the inner structure, the position of Dirac cone will be tuned

due to the change of coupling between the inner and outer

structure. The results suggest these novel topological struc-

tures with a tunable Dirac cone offer the potential design of

novel tunable acoustic topological materials and devices for

practical applications in sound control fields.
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