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Abstract: Multi-sensor data fusion is a feasible technique to achieve accurate and robust results
in fault diagnosis of rotating machinery under complex conditions. However, the problem of
information losses is always ignored during the fusion process. To solve above problem, an ensemble
convolutional neural network model is proposed for bearing fault diagnosis. The framework of
the proposed model contains three convolutional neural network branches: one multi-channel
fusion convolutional neural network branch and two 1-D convolutional neural network branches.
The former branch extracts the coupling features based on multi-sensor data and the latter two
branches extract the inherent features based on single-sensor data, which can collect comprehensive
fault information and reduce information losses. Furthermore, the support vector machine ensemble
strategy is employed to fuse the results of multiple branches, which can improve the generalization
and robustness of the proposed model. The experiments show that the proposed can obtain more
effective and robust results than other methods.

Keywords: rotating machinery; fault diagnosis; multi-sensor fusion; convolutional neural network;
ensemble model

1. Introduction

Rotating machinery is widely used in modern industry. Due to long-time running under
complicated conditions such as high speed, heavy load and strong impact, rotating machinery will
inevitably have some faults, which can result in enormous losses and serious casualties [1]. Therefore,
the fault diagnosis of rotating machinery is necessary to ensure the safe and efficient operation of
machinery [2,3].

Traditional fault diagnosis methods are mainly based on model analysis or signal processing
techniques. The model-based diagnosis methods emphasize the deep understanding of the dynamic
characteristics of rotating machinery. Immovilli et al. [4] conduct a theoretical analysis based on the
vibration and current signals. Kerschen et al. [5] provide extensive reviews on model-based analysis of
vibrating systems. These methods usually require the design of the explicit mathematical model to
simulate the behavior of the machine, while the development of the mathematical model is almost
impossible when dealing with modern machines with very complex structures. The methods based
on signal processing techniques often utilize signal models, such as power spectrum [6], high order
spectrum [6–8], composite spectrum [9–11], to directly extract the fault features from the measured
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signals for the classification. Among the various measured signals, vibration signals [12,13] are most
popular due to the inclusion of more fault information. In addition to the vibration signals, magnetic
flux signals [14] are also used to fault diagnosis. Besides, some researchers have also applied these
methods for machine condition monitoring [15–17]. However, these methods still rely on the analysis
of the mechanical structure and extracting effective fault features is blind and difficult.

Different from traditional diagnosis methods, Intelligent fault diagnosis aims to effectively analyze
massive data and automatically provide diagnosis results, which has become a new trend in the field
of equipment condition monitoring [18]. Generally, traditional intelligent fault diagnosis of rotating
machinery can be regarded as a pattern recognition problem. It can be divided into two steps: feature
extraction and pattern classification [19], which can result in two inherent shortcomings—(1) The
feature extraction process is difficult in that it relies on advanced signal processing technology and
extensive engineering experience [20]. Moreover, the extracted features often do not fully reflect the
fault characteristics which limits the application. (2) Current pattern recognition methods in the fault
classification, such as artificial neural network (ANN) [21,22] and support vector machine (SVM) [23],
belong to the shallow learning model. Such model has no more than one nonlinear transformation [24].
Due to the complex non-linear characteristics of fault signals, the shallow learning model is difficult
to effectively learn representative features for fault diagnosis [25,26]. Consequently, it is necessary to
build deep-architecture learning model to achieve more efficient and automatic fault diagnosis.

In recent years, deep learning provides a new research hotspot for analyzing and processing the
big data, which has made great achievements in the fields of image, finance, meteorology, and natural
language [27]. As a typical model of deep learning, a convolutional neural network (CNN) [28]
can automatically learn more representative characteristics for fault diagnosis, thus overcoming the
inherent shortcomings of traditional intelligent diagnosis methods. CNN has been widely applied
in the field of fault diagnosis. However, in most studies [29–32], the input is only limited to the
single-sensor data, which greatly limits the further performance improvement of the CNN fault
diagnosis model. To overcome these drawbacks, a feasible method is using the information provided
by multi-sensor data.

According to the literature [33], multi-sensor data fusion of fault diagnosis can be divided into
three levels: data-level fusion, feature-level fusion and decision-level fusion. Data-level fusion is the
lowest level, including Kalman filtering [34], principal component analysis (PCA) [35] and independent
component analysis (ICA) [36], and so forth. This fusion methods directly takes data from different
sensors as new data sources, which ignores the inner relationship of different sensors [37]. For the
feature-level fusion, features from different sensors are extracted and selected by signal processing
techniques. The more abundant data from multiple sensors makes the selection of sensitive features
more difficult [38]. Decision-level fusion fuses the results of different classifiers to achieve a better
decision. Common fusion algorithms include the majority voting [39], SVM [40,41], dempster-shafer
(DS) evidence theory [42], random forest (RF) [43] and Bayesian estimation [44]. However, these
studies for different levels of fusion generally ignore the coupling relationship between multi-sensor
data, which causes information losses [37].

Recently, the CNN models based on multi-sensor data have been used for fault diagnosis.
Generally, multi-sensor signals are connected into long signals [38] or arranged into 2-D images [45]
as the input of CNN. Furthermore, Gong et al. [46] propose an improved CNN-SVM model by
usage of the 2-D signals from multi-sensor data. Chen et al. [47] compare different fusion methods
at the input layer of CNN by taking horizontal and vertical vibration signals. These models can
effectively extract the coupling features between different sensors, thus achieving better performance
than traditional methods based on multi-sensor data. However, on the one hand, they ignore the
inherent information of the single-sensor data and fail to effectively fuse the inherent information with
the coupling information acquired by the multi-sensor data, resulting in information losses. On the
other hand, the generalization of the model is important due to the large inter-class divergence and
small divergence between classes of the collected signals. But current research mainly focuses on
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the optimization of individual network, which limits the generalization of the model. In addition,
the splicing or arranging of massive time-domain data may lead to the problem of over-fitting.

To solve the above problems, a novel model named ensemble convolutional neural networks
(ECNN) using multi-sensor data is proposed for bearing fault diagnosis in this manuscript.
The proposed model, ECNN, can automatically and effectively extract features for classification
that gets rid of the dependence on signal processing techniques and diagnosis experience. Besides,
a multi-channel fusion convolutional neural network (MCF-CNN) and two 1-D CNNs are designed
to construct ensemble model. The coupling features between multi-sensor data are extracted by
the MCF-CNN model and the inherent features of the single-sensor data are extracted by 1-D CNN
model, overcoming the problem of information losses. Furthermore, to improve the generalization
and robustness of the proposed model, the SVM combination strategy is employed to integrate the
result of multiple CNN models. The proposed model uses frequency spectrum as the input of CNN,
verified based on two typical rolling bearing fault databases.

In Section 2, a brief theory of CNN is introduced. Section 3 describes the main framework of
ECNN in detail. In Section 4, the experimental results are analyzed and discussed based on the CWRU
database and the Paderborn University database. Finally, the conclusions and outlook are given in
Section 5.

2. The Standard Convolutional Neural Network

CNN is one of the most prevalent deep learning models in recent years. As shown in Figure 1,
CNN processes the input samples through multiple convolutional layers and pooling layers to obtain a
series of deep feature maps. Suppose the input of lth convolutional layer is x, which belongs to RA×B

and A and B are the dimensions of the input data. Then the output of the convolutional layer can be
calculated as follows:

ul
j = f (kl

j ∗ xl−1 + bl
j) (1)

f = max(0, x) (2)

where ul
j is the linear activation, kl

j is a set of kernels of lth convolutional layer, ∗ represents the

convolutional operation, xl−1 represents the feature maps in the previous layer l − 1, bl
j is the bias

vector and f is the Relu activation function. The output ul
j is conducted by the max pooling operation:

ul
j = up(ul

j) (3)

where ul
j is the output feature maps of pooling layer and up(·) represents the up-sampling function of

max pooling.
After several operations of convolution and pooling, deep feature maps are expanded into fully

connected layer:

xl = f (kl xl−1 + bl) (4)

where xl is the fully connected layer, kl is the weight, xl−1 represents the feature vector in the previous
layer l − 1, bl is the bias vector.

For the output x = {x1, x2, ..., xI} of last fully connected layer, softmax function achieves the
mapping between the fully connected layer and the target output:

yi =
exi

∑ ex (5)

where yi is the predicted probability belonging to the ith class, xi is the ith output neuron of last fully
connected layer.
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Figure 1. The standard convolutional neural network.

3. The Proposed Model

In this manuscript, a novel model, ECNN, is developed for bearing fault diagnosis. The input
of the model is the frequency spectrum of the collected signals so that we select the one-dimensional
convolutional neural network (1-D CNN) with the one-dimensional filter as the kernel of CNN. It is
clearly seen that the framework contains three CNN branches based on two-sensor data. Figure 2 shows
the overall framework of the proposed model. The MCF-CNN branch is used to extract the coupling
features between the two-sensor data and the two 1-D CNN branches focus on the contribution of the
single-sensor data. Thus, more comprehensive fault information can be collected for fault diagnosis,
overcoming the problem of information losses. The SVM combination strategy is employed to give the
final results by fusing three CNN branches. More details of the proposed model are described in the
following subsection.

Figure 2. The framework of the proposed model.

3.1. Multi-Channels Fusion Convolutional Neural Network

As shown in Figure 3, MCF-CNN has two independent channels at the input layer which process
multi-channel data separately. After multiple convolution and pooling operations, the deep features
from multi-sensor data are fused at the fully connected layer. The main idea is that the two independent
channels based on different sensors can extract the coupling features. Then the two channels are fused
to enhance the fault information that facilitates classification. Finally, the classification is accomplished
at the end of the network. It can be assumed that the MCF-CNN has better performance than the
CNN with single-channel input because the multi-channel inputs are simultaneously trained under
the same learning framework and the parameters of different channels can be jointly optimized during
the training process.
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Figure 4 shows the fusion layer of MCF-CNN. Each input channel of MCF-CNN processes the
input data through the convolution and pooling operations, calculating a number of feature maps.
The two channels are set at the same network structure. The number of convolutional layers, the size
of the kernel and the activation function are identical. At the end of each channel, the extracted feature
maps are expanded into a one-dimensional feature vector, which is flatten layer. Next, the fusion layer
combines the 1-D feature vector of the two channels. Denote the two feature vectors as v1 and v2.
The dimensions of v1 and v2 should be equal, then the fused feature vector z can be obtained

z = w1 · v1 + w2 · v2 (6)

where w1 and w2 are the fusion weight of the feature vectors v1 and v2, respectively, which are learned
during the training process. The dimension of the fusion weight is consistent with the dimension of the
feature vector. The relationship can be determined by the two weights, which is beneficial to extract
the coupling features.

Figure 3. Multi-channel convolutional fusion neural network.

Figure 4. Fusion layer to combine two feature vectors.

After the fusion layer, two fully connected layers are used to classify the input signals. The first
fully connected layer has hundreds of neurons and the number of neurons in the last fully connected
layer corresponds to the categories of classification tasks. The softmax function is used to convert the
vector of the last fully connected layer into a probability distribution form.

3.2. The Construction of Ensemble Convlutional Neural Networks

The traditional fault diagnosis methods based on multi-sensor data ignore the coupling
information between signals. The CNN fault diagnosis models based on multi-sensor data focuses on
the coupling information between the signals and ignores the inherent information of the single-channel
sensor. These methods all result in information losses. In addition, the performance of CNN fault
diagnosis model is often limited due to single network framework. Ensemble learning is a new
technique, which uses multiple individual learners and a certain combination strategy to get better
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results than each individual learner. Recently, a lot of ensemble learning methods have been applied
for machinery fault diagnosis. Thus, ensemble learning of ECNN is constructed for fault diagnosis.

To collect more comprehensive fault information, the 1-D CNN model and the MCF-CNN model
are used to construct ECNN. Since the databases contain the data from two sensors, two 1-D CNN
models and one MCF-CNN model can be obtained. The input of the 1-D CNN is single sensor data,
while the input of the MCF-CNN is the data from two sensors which are accepted by the two channel
of MCF-CNN respectively.

3.3. The Fusion Strategy

The next step is to design a fusion strategy to combine the results of three CNN branches. Among
the common fusion strategies, the majority voting is a widely used fusion method for ease of execution.
However, the majority voting treats each classifier equally, resulting in poor performance when there
are fewer classifiers. Obviously, it is not appropriate to use this method here because there are only
three classifiers. The SVM is a popular machine learning method for classification, regression because
of the small structural risk. In addition, the SVM model with kernel function can also learn the
non-learning relationship of the input data. Thus, The SVM model with RBF kernel is chosen as the
ensemble learning algorithm to fuse the results of three CNN branches.

For the nth samples, define the predicted probability that belong to the ith class of the mth CNN as
y(m)

in and m ∈ {1, 2, 3}, which can also be regarded as deep feature representations of the input sample.

The deep feature representations of y(1)in , y(2)in and y(3)in are employed as the input of the SVM ensemble
learning algorithm. The input can be expressed as follow:

yn = {y(1)1n , ..., y(1)In , ..., y(j)
in , ..., y(J)

1n , ...y(J)
In } (7)

where n ∈ N, N represents the number of the train samples. On the training set, we use the deep
feature representations yn−train of the nth training sample as the input and the real label ŷn−train of
the samples as the output to learn the SVM ensemble learning algorithm. On the testing set, the deep
feature representations yn−test are used as the input of the SVM ensemble learning algorithm and then
the prediction ỹn−test of the samples can be obtained. The accuracy of the classifier is can be expressed:

accuracy =
1
N

N

∑
n=1

I(ỹn−test = ŷn−test) (8)

where ŷn−test represents the real label of the n sample on the testing set and I(·) represents the
indicator function.

3.4. The General Procedure of the Proposed Model

This manuscript develops a new model called ECNN for bearing fault diagnosis. Figure 5 gives
the flowchart illustrating of the proposed model and the general procedure can be summarized:

Step 1: The signal acquisition devices collect data from multiple sensors.
Step 2: The collected data are divided into training and testing set and the raw signals are

divided into a series of segments. The frequency spectrum of the segment is used as the input of the
CNN model.

Step 3: The MCF-CNN based on multi-sensor data and two 1-D CNNs based on single-sensor
data are designed to construct ECNN based on training set.

Step 4: The SVM ensemble algorithm is employed to combine the results of three CNN branches.
Step 5: Validate the performance of the ECNN based on the testing set.
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Raw data
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Ensemble convolutional neural networks and fusion strategy

SVM

Output

The contruction of ECNN The fusion strategy

Application of the proposed model

Fault diagnosis result The confusion matrix

…

...

Figure 5. The flowchart illustrating of the proposed model (the test rig in the first frame is from
Paderborn University [48]).
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3.5. Discussion of the Proposed Model

Based on the typical model of deep learning, convolutional neural network, the proposed model
fuses the multi-sensors data as two level. The advantage of the proposed model is can be summarized
as follows:

1. The proposed model does not require complex mathematical models and does not rely
on signal processing techniques and expert experience compared with the traditional fault
diagnosis methods.

2. Compared with intelligent diagnosis methods, the proposed model does not require the process
of complex feature extraction and feature selection. Besides, the deep learning framework can
effectively extract more useful fault information for classification, which can further improve the
diagnostic accuracy. Similarly, the new network structure, MCF-CNN, has the better ability to
extract features.

3. The MCF-CNN model fuses multi-sensor data at the feature level and ECNN fuses the results of
three CNN branches at decision level, effectively overcoming the problem of information losses
during the fusion process.

4. Experiments

To demonstrate the effectiveness, the proposed model is tested based on two typical rolling bearing
databases. The CNN models are created based on the framework of TensorFlow 1.4. The Nesterov
Adam algorithm [49] is used to optimize the CNN models and the learning rate of the optimizer is
0.0005. All the experiments are carried out on a computer with Intel CPU E5-2680 and an NVIDIA
Tesla T4 GPU.

4.1. Data Processing

The input of current CNN fault diagnosis models is usually a short segment of raw signals and
the CNN models based on multi-sensor data fusion often directly combine segments from multiple
sensors to long sample or arrange the segments to a 2-D image as the input of CNN models. Obviously,
the length of segment has an impact on the performance of the CNN models. If the length of segment
is too long, the splicing or arranging of much time domain data can result in over-fitting and the waste
of resources and time. If the length is too short, the model appears to be under-fitting, which cannot
learn effective fault features.

According to the literature [50], in the collected signals of the rotating machine, information
about the fault characteristics often resides in the low frequency components and useless information
generally exists in the high frequency components. Thus, traditional fault diagnosis methods usually
convert time domain signals to the frequency domain through Fourier Transform (FT) and only the
frequency components under 1 kHz are used for fault diagnosis. Figure 6 gives the three steps of
data preprocessing. First, the raw signals are divided into several segments with a shift size. Second,
each segment is transformed into the frequency domain by Fast Fourier transform (FFT). Finally,
the frequency components under 1 kHz are kept and normalized as the input of CNN models.

The min-max normalization strategy is used to map each sample into [0, 1] interval. The equation
is as follows:

x̂ =
x−min(X)

max(X)−min(X)
(9)

where x represents the sample, x̂ represents the normalized result of x, max(·) and min(·) represent the
maximum and minimum function, respectively, and X represents the training set.
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Figure 6. The steps of data preprocessing.

4.2. Case 1: Experiment on CWRU Database

4.2.1. Dataset Description

In this subsection, the bearing data for experiment comes from the Bearing Data Center of Case
Western Reserve University [51]. The test rig is shown in Figure 7, which mainly consists of an
electric motor (Reliance Electric 2HP IQPreAlert motor), a torque transducer and a load motor. Each
test bearing is installed in the test motor and tested under four different loads (0, 1, 2 and 3 hp,
1 hp = 0.7355 kw). Two accelerometers are installed at the drive end (DE) and the fan end (FE) of
the motor casing to collect vibration signals at a sampling frequency of 12 kHz. Single point fault is
introduced to test bearings using electro-discharge machining with a diameter of 0.007, 0.014, 0.021
and 0.028 inches (1 inch. = 25.4 mm). More details of the database were described in Reference [52].

Figure 7. The test rig in the Case Western Reserve University lab [51].

As shown in Table 1, ten kinds of fault bearings are collected for fault classification, including
different fault types, fault severities and fault orientations. Based on the four different loads, for each
fault, bearing data of three loads are randomly selected as training data and the left for testing and ten
different datasets are collected. Bearing data of each load has approximately 12,000 points and each
segment has 1200 points. Therefore, each dataset contains 3000 training segments and 1000 testing
segments, whose low frequency components are used as the training and testing input.
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Table 1. Description of the bearing working condition in the case 1.

Condition Fault Diameter (Inches) Fault Orientation Loads Traing\Test Samples Number Label

Normal 0 - 0, 1, 2, 3 300\100 1
Ball 0.007 - 0, 1, 2, 3 300\100 2

Inner race 0.007 - 0, 1, 2, 3 300\100 3
Outer race 0.007 Centered @6:00 0, 1, 2, 3 300\100 4
Outer race 0.007 Orthogonal @3:00 0, 1, 2, 3 300\100 5
Outer race 0.007 Opposite @12:00 0, 1, 2, 3 300\100 6
Outer race 0.014 Centered @6:00 0, 1, 2, 3 300\100 7
Outer race 0.021 Centered @6:00 0, 1, 2, 3 300\100 8
Outer race 0.021 Orthogonal @3:00 0, 1, 2, 3 300\100 9
Outer race 0.021 Opposite @12:00 0, 1, 2, 3 300\100 10

4.2.2. Experiment and Analysis

The excellent performance of the proposed model is proved in comparison with traditional fault
diagnosis methods, including SVM, RF and AdaBoost algorithm. The input of traditional methods is
the connected frequency spectrum of the two-sensor signals. In addition, a multi-sensor data fusion
method based deep convolutional neural network (DCNN) [38] is also chosen for comparison and
the raw vibration data from the two sensors is connected as the input of the DCNN model. Based on
the deep CNN model, this method can learn features from raw data and optimize a combination of
different fusion levels adaptively to satisfy the requirements of any fault diagnosis task.

Ten trials are carried out based on the datasets mentioned in the previous subsection. Figure 8
shows the results of comparison and Table 2 gives the testing average accuracy in detail. It can be seen
that traditional fault diagnosis methods are not effective compared with the CNN models. The average
accuracy of RF, AdaBoost and SVM is only 69.2%, 68.23% and 77.25%, respectively, which is far from
the needs of the industrial application. Comparatively, the average accuracy of DCNN is 86.50%,
exhibiting an evident advantage over the traditional methods. However, the drawback is that the
standard deviation is large (8.47%), which shows that the generalization of the individual network
is limited. Among all the five methods, ECNN has the highest average accuracy (96.78%) and the
smallest standard deviation (2.93%).

Figure 8. Testing average accuracy of SVM, RF, Adaboost, DCNN and ECNN in case 1.

Table 2. Diagnosis results of different methods in case 1.

Methods Average Accuracy (%) Standard Deviation (%)

SVM 77.25 8.02
RF 69.20 6.76

AdaBoost 68.23 7.40
DCNN 86.50 8.47
ECNN 96.78 2.93
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Figure 9 gives the confusion matrix of different methods for the first trial. The ordinate axis of
the confusion matrix represents the actual label of each class and the horizontal axis represents the
predicted label. It can be seen from Figure 9a–c that SVM cannot distinguish the class of 2 and 4.
The class 2 is the ball fault and class 4 is the out race fault. In addition to the class 2 and 4, RF and
Adaboost cannot accurately identify other classes, which explains why the accuracy of the two methods
is lower than SVM. From Figure 9d,e, DCNN shows the low testing accuracy only in class 6 and 7,
both of two classes has the same fault types and fault orientations. However, ECNN can accurately
distinguish each class.

(a) SVM (b) RF

(c) Adaboost (d) DCNN

(e) ECNN

Figure 9. Confusion matrix of different methods in case 1.
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Through the above experiments, two conclusions can be made. On the one hand, the proposed
model has higher accuracy than traditional methods. The reason is that the CNN models can
automatically learn more effective features from the input data, while traditional methods rely heavily
on manual feature extraction. For traditional methods, the selection of sensitive features is generally
time-consuming, blind and subjective so that diagnosis results are generally poor. On the other hand,
compared with the direct decision of DCNN, three CNN branches of ECNN based on different sensors
and different networks can make joint decisions, which not only ensures the high diagnostic accuracy
but also has good generalization.

4.3. Case 2: Experiment on Paderborn Database

4.3.1. Dataset Description

The experimental data is from the Chair of Design and Drive Technology at Paderborn
University [48]. As shown in Figure 10, the test rig includes: (1) an electric motor (Hanning-Motor
SD4CDu8S-009/425W/Y230V), (2) a torque measurement module, (3) a rolling bearing test module,
(4) a flywheel and (5) a load motor (Siemens-Motor 1FT7062-1AF70-1DG1). The test bench is a modular
system and the current signals are collected at a sample rate of 64 kHz. Three health conditions of
ball bearings are provided: healthy, inner race fault and outer race fault. Both inner and outer race
fault in bearings contain two groups of damages: artificial and real damages. Bearings with real
damages are obtained by an accelerated lifetime test. The more details of the damages can be obtained
in Reference [53].

Figure 10. The test rig of the Paderborn database [48].

The test rig can be operated under different operating conditions. Bearings are run at a speed of
1500 r/min with a load torque of 0.1 N·m and a radial force on the bearing of 1000 N. In order to get
closer to industrial applications, the dataset in Table 3 of healthy bearings with real damages were
collected, including a total of 15 bearings. For each bearing, the current signals of two channels are
measured and each channel collects 20 samples. Therefore, there are a total of 100 samples for each
health condition and 80 samples of each are randomly selected as training data and the remaining
20 samples for testing. Ten combinations are chosen to test the model.

Table 3. Data sets for healthy bearings and bearings with real damages.

Healthy OR Damgae IR Damgae

K001 KA04 KI04
K002 KA15 KI14
K003 KA16 KI16
K004 KA22 KI18
K005 KA30 KI21

The sample is the raw current data of 256,000 points, which is sliced into 60 subsamples.
Each subsample has 5120 points with a shift size of 1024. The frequency spectrum of these subsamples
is the input of the CNN models. During the testing, the subsamples from the same raw data are voted
for the final result. The detailed situation of healthy, inner race fault and outer race fault bearings is



Sensors 2019, 19, 5300 13 of 20

shown in Tables 4–6. Therefore, a training set of 14,400 subsamples and a test set of 3600 subsamples
are obtained.

Table 4. Situation of healthy bearings.

Bearing Code K001 K002 K003 K004 K005

Run-in period >50 19 1 5 10
Radial load [N] 1000∼3000 3000 3000 3000 3000

Speed [rpm] 1500∼2000 2900 3000 3000 3000
Samples 20 20 20 20 20

Subsamples 1200 1200 1200 1200 1200

Table 5. Situation of outer race fault.

Bearing Code KA04 KA15 KA16 KA22 KA30

Type of damage Real Real Real Real Real
Extent of damage 1 1 2 1 1
Damage method Pitting Plastic deform Pitting Pitting Plastic deform
Samples 20 20 20 20 20
Subsamples 1200 1200 1200 1200 1200

Table 6. Situation of inner race fault.

Bearing Code KI04 KI14 KI16 KI18 KI21

Type of damage Real Real Real Real Real
Extent of damage 1 1 3 3 1
Damage method Pitting Pitting Pitting Pitting Pitting
Samples 20 20 20 20 20
Subsamples 1200 1200 1200 1200 1200

4.3.2. Experiment and Analysis

The experiments are divided into two parts. The first part is the comparison among the proposed
model and the traditional methods mentioned in Section 4.2.2. In the second part, the comparison
among ECNN, three CNN branches and a fusion convolutional neural network (FCNN) is carried out.
As shown in Figure 11, FCNN is chosen here because it has a similar structure and the same input
as MCF-CNN. Through the comparison, we can explain the reasons for the excellent performance
of ECNN.

In the first part, ten trials are carried out. Figure 12 shows the comparison of SVM, RF, AdaBoost
and ECNN. The testing accuracy is given in Table 7. Consistent with the results based on the CWRU
database, with the highest accuracy (98.17%) and the smallest standard deviation (1.74%), ECNN
shows apparently better performance than the other four methods, which demonstrates the good
robustness of ECNN. However, difference also exists between the results of the two databases that
SVM (85.75%) and AdaBoost (87.50%) show higher accuracy than RF (70.5%).

Figure 11. The fusion convolutional neural network.
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As shown in Figure 9, the confusion matrix of different methods is given. From Figure 13a–c,
it can be found that the judgment of the healthy condition and inner race damage is the main reason
for the different performance of the three methods. In addition, AdaBoost has higher accuracy in
outer race damage than the other two methods. From Figure 13d, ECNN has high accuracy of 100% in
each class.

Table 7. Diagnosis results of different methods in case 2.

Methods Average Accuracy (%) Standard Deviation (%)

SVM 85.75 3.13
RF 70.50 7.07

AdaBoost 87.50 3.10
ECNN 98.17 1.74

Figure 12. Average accuracy of SVM, RF, AdaBoost and ECNN in case 2.

(a) SVM (b) RF

(c) AdaBoost (d) ECNN

Figure 13. Confusion matrix of different methods in case 2, OR = Outer race; IR = inner race.

In the second part, two current signals are denoted as U and V and define the 1-D CNN based
on U and V as CNN_U and CNN_V, respectively. Table 8 and Figure 14 show the results of the five
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models. The accuracy of CNN_U is 86.42% and CNN_V is 67.25%, while the accuracy of MCF-CNN
is 97.75%. Obviously, the performance of MCF-CNN is much better than the two 1-D CNN models,
illustrating the advantages of the model based on multi-sensor data fusion. Besides, MCF-CNN
also has higher accuracy than FCNN (92.5%), which shows the effectiveness of the new structure
of MCF-CNN. Among all the five methods, ECNN has the highest average accuracy and the small
standard deviation. From Figure 15, it can be seen that the low accuracy happens in healthy class and
inner race class of CNN_V.

Table 8. Diagnosis results of CNN_U, CNN_V, FCNN, MCF-CNN, ECNN.

Methods Average Accuracy (%) Standard Deviation (%)

CNN_U 86.42 2.75
CNN_V 67.25 6.57
FCNN 92.50 3.05

MCF-CNN 97.75 1.92
ECNN 98.17 1.74

Figure 14. Average accuracy of CNN_U, CNN_V, FCNN, MCF-CNN, ECNN.

(a) CNN_U (b) CNN_V (c) FCNN

(d) MCF-CNN (e) ECNN

Figure 15. Confusion matrix of CNN_U, CNN_V, FCNN, MCF-CNN, ECNN.
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The reasons for the above results can be explained as follows. FCNN can be regarded as ECNN
without the branch of MCF-CNN, while the performance of ECNN is better than FCNN. Besides,
the accuracy of MCF-CNN is sightly lower than ECNN. Thus, it can be inferred that the excellent
performance of ECNN is mainly attributed to MCF-CNN and the CNN_U and CNN_V branches
slightly improve the accuracy of ECNN.

4.3.3. Visualization

Recently, the CNN models have developed a variety of complex structures, which make the
interpretation of the internal mechanism of the CNN model very difficult. However, with the visualization
in the invisible layers, some interesting phenomena can help us understand the mechanism [54].

In this manuscript, linear discriminant analysis (LDA) is used to extract two features for
visualization. As shown in Figure 16, the visualization of different layers and different networks
is given and LD1 and LD2 represent the first two principle components obtained by LDA.
Some interesting phenomena can be easily found. First, Figure 16a,b are the visualizations of the
input layer of CNN_U and CNN_V. It can be seen that the conditions can not be distinguished at all.
Therefore, extracting and selecting sensitive features is difficult, which is the main reason for the poor
performance of traditional methods. Second, Figure 16c is the visualization of CNN_U in the first fully
connected layers. The healthy condition is easily distinguished from the other two damage conditions,
while the two damage conditions can not be distinguished from each other clearly. The visualization
of CNN_V in the first fully connected layers is shown in Figure 16d. There are no clear boundaries
among the three conditions in that the accuracy of CNN_V is lower than the other branches. Third,
Figure 16e is the visualization of MCF-CNN in the first fully connected layers. Obviously, the three
conditions can be easily distinguished, which means that MCF-CNN can extract more effective fault
features compared to the other two CNNs.

(a) The input layer of CNN_U (b) The input layer of CNN_V

(c) The fully connected layer of CNN_U (d) The fully connected layer of CNN_V

Figure 16. Cont.
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(e) The fully connected layer of MCF-CNN

Figure 16. 2D-LDA projection of the learned features.

4.4. Discussions

1. The experiments are carried out based on two typical rolling bearing fault databases: CWRU
database and Paderborn University database. The collected data of the former is vibration signals
and the latter is current signals. For the two groups of experiments, the proposed model has
much higher accuracy and smaller standard deviation compared with the traditional methods,
which proves that the proposed model is effective and has better generalization. What is more,
the results of DCNN on the two databases are quite different, while the results of ECNN are
extremely consistent, demonstrating the good robustness of the proposed model.

2. The second part of the experiment in case 2 illustrates that the excellent performance of the
proposed model is mainly from the contribution of the MCF-CNN branch and the left two
branches play slightly auxiliary roles. According to the visualization analysis, MCF-CNN can
extract more effective features for fault diagnosis.

3. In the literature [50], the deep inception net with atrous convolution (ACDIN) is proposed to
diagnose real bearing faults by only relying on artificial bearing data sets, which achieves high
diagnostic accuracy of 96% on Paderborn University database. Different from ECNN, the input
of ACDIN is raw vibration signals from single sensor. In the literature [43], a deep random forest
fusion (DRFF) technique by using acoustic emission signals and vibration signals is proposed to
address fault diagnosis of gearboxes. Similar to FCNN, two deep Boltzmann machines extract the
sensitive features of the two signals separately and RF fuses the deep features for classification.
However, DRFF ignores the coupling information between the two signals. In comparison,
MCF-CNN can be regarded as a feature-level fusion model to extract the coupling features and
ECNN is constructed by three CNN branches that can be considered as a decision-level fusion
model to collect information comprehensively. This ensures the excellent performance of the
proposed model.

5. Conclusions

In this manuscript, a novel model ECNN using multi-sensor data is developed for bearing fault
diagnosis that get rid of the dependence on signal processing techniques and diagnosis experience.
The MCF-CNN model fuses multi-sensor data at the feature level and ECNN fuses the results of three
CNN branches at decision level, effectively overcoming the problem of information losses during the
fusion process. The proposed model is applied on two typical databases, and the results show that the
proposed model has higher accuracy and better generalization than traditional intelligent methods.

The CNN models using multi-sensor data in the field of bearing fault diagnosis are still in the
exploratory stage and there are still many problems to be solved, such as the fusion of “heterogeneous”
sensors. In the future, we will explore a more efficient fusion method so that these methods can be
applied in the modern industry as soon as possible.
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