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a b s t r a c t 

In this paper, three-dimensional lattice structures composed of octet-truss and truncated-octahedron unit cells 

with regular and tapered beams are proposed, and their mechanical properties are investigated through experi- 

ments and simulation comparisons. Firstly, analytical closed form expressions of the relative density functions are 

derived for different lattice structures. Secondly, in-situ compression samples are fabricated via Selective Laser 

Melting (SLM) 3D printing technique, monotonic compression experiments are performed for studying the effects 

of tapered beams on the mechanical properties of lattice structures with ordinary uniform beams, and SEM char- 

acterizations of fracture surface morphology are performed for understanding the underlying failure mechanisms. 

Afterwards, asymptotic homogenization (AH) method is used for evaluating the anisotropy properties of these 

lattice structures, closed form expression of the mechanical behaviors of unit cells is derived and solved with 

ABAQUS® using surface traction method. Asymptotic homogenization analysis shows that node enforcement 

can significantly enhance the modulus and reduce the anisotropy of the lattice. 
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. Introduction 

Lightweight 3D Lattice structures are widely used for multifunctional

pplications, such as load bearing, vibration attenuation,negative and

ero thermal-expansion structures, impact and blast proof structures,

tc. [1–12] . According to Maxwell algebraic rule, artificial designed 2D

nd 3D lattices can be classified into bending-dominatedand stretching-

ominated lattices [2,3] . Stretching-dominated lattice structures are

nown for their high modulus and yield strength, which makes them

he best choice for lightweight structural applications, such as pyramid,

ourglass lattice, Octet and Octahedral.Stretching dominated 3D lattice

ormally forms two types of microscopic failure modes, namely, elastic

uckling and plastic yielding. Avoiding elastic buckling failure without

eaching the plastic yielding of its cell elements is important for improv-

ng the mechanical integrity of stretching-dominant 3D lattice [11] . 

Chen and Tan [13] derived an analytical model for predicting the

ffect compressive stiffness and strength of octet lattice structures with

ylindrical struts, where material overlapping effects in strut joint are

ncluded. Making use of homogenization method, two approaches were

mployed for designing lattice structures with controlled anisotropy.

ne is to assemble two different base units with complementary stiff-
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ess along various spatial directions to forma newrepresentative unit.

he other is to employ one single base unit with partially symmetri-

al features and array it through symmetry operations to construct a

ew unit which is composed of multiple original base units [14] . Meza

t al. [15] investigated the strength and stiffness of solid- and hollow-

eam nanolattices made of solid polymer and hollow ceramic (Al2O3),

nd found that their strength and stiffness are governed by an intricate

ombination of geometry and structural parameters. Using strain energy

ased homogenization methods, the macroscopic elastic stiffness tensor

f BCC truss lattice materials is derived in the form of relative density,

nd closed-form analytical formulas are developed for bulk, Young’s and

hear moduli [16] . Mechanical properties of additive manufactured hol-

ow 3D lattice structures wereinvestigated with in-situ X-ray tomogra-

hy compression tests, and 3D tomography image-based conformal fi-

ite element model was performed using Gurson-Tvergaard-Needleman

GTN) porous plasticity [17] . Liu et al. [18] performed in-situ micro-

T interrupted quasi-static compression tests of SLS additive manufac-

ured metallic lattices consisting of octet and rhombicuboctahedron unit

ells, and statistical geometrical models on spatial distributions of de-

ects are developed for investigating the influences of manufacturing

rocess induced defects on the macroscopic strength degradation of the
t 2019 
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Fig. 1. Geometries of Octet-truss 3D lattice structures with ordinary and tapered beam cross-section;(a) details of the octet-truss unit cell; (b) arrangement of the 

compression sample with uniform beam; (c) geometry information of tapered beam; (d) details of the octet-truss lattice with tapered beam; (e) arrangement of the 

compression sample with tapered beam. 
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ctet-truss lattice structures with different lattice angles [19] . Analyti-

al reduced-order models including lattice node geometry features are

roposed for predicting the effective strength and modulus of 3D lattice

tructures consisting of non-slender beams [20] . Based on the combi-

ation of classical molecular dynamics (MD) simulations and theoret-

cal analysis, He et al. [21] investigate the mechanical properties of

opper (Cu) octet-truss nanolattices. In-situ synchrotron X-Ray micro-

omography uniaxial compression tests are performed on two types of

D lattice structures, it is shown that heterogeneous localized defor-

ation of as-fabricated lattice structures are induced bylocal lattice de-

ects formed during manufacturing process [22] . Through experimental,
heoretical and simulation verificationsand comparisons, the shearing

echanical performances of single-layer tetrahedral trusses fabricated

y rapid prototyping and investment casting are investigated, and it

s found that casting defects are responsible for thedrasticmechanical

roperties degradations of lattices manufactured with investment cast-

ngtechnique [23] . 3D space filling periodic octet-truss lattice structures

rom Ti–6Al–4 V alloy sheets are fabricated through combining sim-

le snap-fit and vacuum brazing techniques, where lattice elastic stiff-

ess constants and strengths are characterized with through-thickness

ompression and in-plane shearing experiments, and micromechanical

odels are proposed for understanding the underlying deformation and



D. Qi, H. Yu and M. Liu et al. International Journal of Mechanical Sciences 163 (2019) 105091 

Fig. 2. Geometries of truncated- 

octahedron 3D lattice structures with 

uniform and tapered beam cross-section; 

(a) details of the truncated-octahedron unit 

cell; (b) arrangement of the compression 

sample with uniform beam; (c) geometry 

information of tapered beam; (d) details of 

the tapered truncated-octahedron lattice 

with tapered beam; (e) arrangement of the 

compression sample with tapered beam. 
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ailure mechanisms [24] . Quantitative in situ multi-scale experi-

entswere employed for studying the damage process of metal-coated

ybrid meso-lattice composites, and the damage process was simulated

nd elaborated based on the progressive damage theory and fracture

echanics [25] . Ultralight-weight sandwich structure with robust load

earing capacity and core buckling resistance was proposed by Wu et al.

26] , and three-dimensional failure mechanism maps for the pyramidal-

yramidal hierarchical lattice material were developed for exploring its

echanical performances potentials. An increment equivalent contin-

um method was developed for studying the nonlinear mechanical prop-

rties of lattice truss composite materials [27] . Three beam-like lattice

tructures with triangular prism, square prism and hexagonal prism are

esigned and fabricated by SLM process using AlSi10Mg metal pow-

er materials, and it is found that the stiffness-to-mass ratio of lattice
tructures with triangular prisms are better than other types of config-

rations, demonstrating advantageous structural efficiencyin terms of

trength and stiffness [28] . Topology optimization techniques with SLM

dditive manufacturing constraints are proposed for designing three

ypes of 3D lattice structures, and Gibson-Ashby model is employed for

redict the performance of the three structures with different levels of

orosity [29] . Sercombe et al. [30] studied the deformation process and

ailure mechanisms of topology-optimized lattice scaffolds structures

ia interrupted compression testing and X-ray micro-tomography (XMT)

haracterization. Making use of homogenized method, Messner et al.

31] developed parameterized model for generating optimal mesostruc-

ures. The mechanical properties of micro-lattice structures subjected to

ormal stresses in arbitrary directions are investigated using an analyti-

al approach based on classical beam theory, the stiffness and plastic
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Table 1 

Relative density of designed lattice structures. 

Relative density Octet-truss Tapered octet-truss Truncated-octahedron Tapered truncated-octahedron 

Analytical 21.19% 26.38% 5.26% 7.03% 

CAD 20.69% 26.64% 5.25% 7.22& 

Error 2.42% 0.98% 0.19% 2.63% 

Fig. 3. Mechanical properties testing; (a) View of the 

setup for tensile test along; (b) printed tensile sam- 

ple; (c) speckle on the tensile sample; (d) engineering 

stress-strain curves of the two samples. 

Fig. 4. Homogenization concept of a heterogeneous material. 
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ollapse strength of the micro-lattice structures are compared with

he corresponding properties of other lightweight structures [32] . The

hearing modulus and strengths of lattice structures were studied in

erms of relative density, and two strut failure modes are proposed for

nderstanding the underlying failure mechanisms: elastic buckling of

he struts governed the response for low relative density case and delam-

nation failure controlled the strength for higher relative density [33] .

asta et al. [34] investigated the fracture toughness of a Ti-6Al-4 V alloy

ctet-lattice truss structure manufactured using a ‘snap-fit’ method, and

he fracture resistance was determined using the J-integral compliance

ethod applied to single-edge notched bend specimens. 

Considering the coupling effect of axial force and bending moment,

heoretical approach for predicting the yield surface of lattice structures
nder complex stress state is developed for two types of 3D novel lat-

ices, namely BCCZ (body-centered cubic with a strut in Z direction) lat-

ice, and 3D rhombic dodecahedron (RD) lattice [35] . The effect of vac-

um thermal cycling on the compression and shear performance of the

omposite sandwich panels with pyramidal-truss cores was studied us-

ng theoretical and experimental methods [36] . Latture et al. [37] stud-

ed and compared the mechanical behaviors of two types of octet trusses

ith and without filleted nodes. Based on structural superposition de-

ign of elementary truss and plate structures, 3D elastically-isotropic lat-

ice and plate metamaterials are developed [14,31,35–39] . Mechanical

esponse of 3D lattice structures is anisotropic, where lattice beams are

tretching-dominant or bending-dominant controlled depending on the

oading conditions, new approach through adjusting the ratio of bending

o stretching beam ratio is proposed for designing novel isotropic lattice

40] . Novel Hourglass truss lattice sandwich structure is fabricated with

nap-fitmethod, it is found that the compressive strengths and peak com-

ressive loads of as-fabricated Hourglass lattice sandwich structures are

uperior to pyramidal sandwich structures [41] . Tetrahedral lattice truss

andwich panels are manufactured by folding and air brazing of hexag-

nally perforated 6061 aluminum alloy sheets, and inelastic column-

uckling model is developed for predicting the lattice truss compres-

ive peak strength over a range of relative densities [42] . Sandwich

anels consisting of vertical strutintegrated body-centered cubic 3D lat-

ices are fabricated with selective laser melting (SLM) using AlSi10Mg

etal powder materials, and the effects of layer and cell numbers on
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Fig. 5. 𝜒mn filedof the unit cell calculated through Eqs. (A.28) ; (a1-a6) are the displacement field of octet-truss lattice under surface traction T mn ; (b1-b6) are the 

displacement field of tapered octet-truss lattice under surface traction T mn ; (c1-c6) are the displacement field of truncated-octahedron lattice under surface traction 

T mn ; (d1-d6) are the displacement field of tapered truncated-octahedron lattice under surface traction T mn . 
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A  
he quasi-static compressive performances of BCCZ sandwich panels are

nvestigated systematically [43] . Making use of buckling-dominated de-

ormation induced large deformation, sandwich panels with lattice cores

omposed by curved struts is proposed for energy absorption, it is found

hat the energy-absorbing ability of the proposed lattice materials with

urved struts is much better than common lattice materials composed by

traight struts [44] . Beharic et al. [45] investigated and compared the

mpact energy absorption performances of three types of sandwich struc-

ures with different core lattice geometrical configurations. The elastic

roperties and plastic yielding collapse surfaces of the octet-truss lat-

ice structured material are investigated through experimental and fi-

ite element simulation comparison [46] . Making use of in-situ micro-

T tomography and finite element analysis, Geng et al. [47] investi-

ated the compression mechanical properties of SLM metal Al-Si10-Mg

dditive manufactured 3D re-entrant lattice, and found that manufac-

uring process induced surface roughness and manufacturing geome-
ry differences can influences the mechanical performances of lattice

tructures remarkably. Based on in-situ SEM fatigue experiments and

icro-CT tomography characterizations of defects, Wang et al. [48] in-

estigated the relation between fatigue performances and internal de-

ects features of SLM metal Al-Si10-Mg additive manufactured tensile

ample. 

It can be concluded from above-mentioned literatures that the beam

eometry of unit cellcan significantly affect the overall strength, stiff-

ess, anisotropy, deformation and failure mechanism of lattice struc-

ure. In this paper, mechanical properties and deformation mecha-

isms of SLM additive manufactured stretching-dominated octet-truss

nd bending-dominated truncated-octahedron lattice structures con-

isting of ordinary uniform beams and tapered beams are investi-

ated. Firstly, analytical relative density formulas of the lattice struc-

ures with ordinary homogenous beam and tapered beam are derived;

fterwards, asymptotic homogenization(AH) theory is employed for
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Fig. 6. 
𝜕 𝜒𝑚𝑛 

𝜕𝑦 
fieldof the unit cell obtained by the gradient calculation of the 𝜒mn field; (a1-a6) are the strain field of octet-truss lattice under surface traction T mn ; 

(b1-b6) are the strain field of tapered octet-truss lattice under surface traction T mn ; (c1-c6) are the strain field of truncated-octahedron lattice under surface traction 

T mn ; (d1-d6) are the strain field of tapered truncated-octahedron lattice under surface traction T mn . 
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nvestigating the anisotropy mechanical properties of lattice structures;

inally, comparisons between experiments, theoretical analysis and fi-

ite element simulations are performed for exploring the effects of ta-

ered beams on lattice structures mechanical properties improvements.

hrough node enhancement design, the proposed lattice structures show

obust industrial application potentialsin lightweight sandwich struc-

ures in aerospace industry, impact energy absorption lightweight struc-

ures in automotive industry, transportation industries. Moreover, these

roposed lattice structures can also be employed for biomedical appli-

ations, such as: bone implant porous lattice structures, etc. 

. Mechanical design of compression lattice structures 

In this paper, stretching-dominated octet-truss lattice unit cell with

niform beam cross-section and tapered beam are designed, and tapered

eam with node strengthening geometrical layout are employed for el-
vating the superior compression resistance mechanical properties of

rdinary octet-truss lattice unit cell. Whereas the stanching-dominated

ctet-truss has been investigated extensively, the bending-dominated

runcated octahedron catches far less attention. Both the lattice struc-

ures are selected to give a comparison of the difference deformation

echanism and the node strengthening effect, which displays via quasi-

tatic compression analysis. 

Figs. 1 and 2 shows the topology of the unit cell and prismatic sample

nder investigation. From the unit cell topology, both the octet cell and

runcated-octahedron cell are cubic symmetry. First, in Fig. 1 , the regu-

ar octet unit cell is composed by an octahedron and eight tetrahedrons.

he eight tetrahedrons are attached to the eight faces of the octahedron.

econd, in Fig. 2 , the truncated-octahedron is an Archimedean solid. It

s constructed from a regular octahedron by the removal of six right

quare pyramids from each point. It has 14 faces (8 regular hexagonals

nd 6 squares), 36 edges and 24 vertices. 
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Fig. 7. Anisotropy of the octet-truss lattice structure. (a) unit cell and Young’s modulus surface. (b) shear modulus surface, xy plane, xz plane and yz plane. (c) 

Poisson ratio surface, xy plane, xz plane and yz plane. The transparent blue surface represents the maximum value, the green and red surfaces represent the minimum 

value and the red surface represents the negative value. The same expression was adopted in Figs. 8–10 . 
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For the unit cell in Figs. 1 and 2 , the beam length is denoted as L , the

dge length of the unit cell are 𝐿 𝑜𝑡 = 

√
𝐿 and 𝐿 𝑡𝑜 = 2 

√
2 𝐿 respectively.

or there are 24 complete beams in unit cell, the relative density of the

etamaterials can be defined by the ration of the volume of the beams

nd the volume of the unit cell, 
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= 

24 𝑉 
𝐿 𝑜𝑡 

3 𝑎𝑛𝑑𝜌
∗ 
𝑡𝑜 
= 

24 𝑉 
𝐿 𝑡𝑜 
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ith V denoting the volume of a single beam. For the unit cell with

niform beam cross section of radius R , the relative density can be given
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]
, (3) 

here 𝜌∗ 
𝑜𝑡 

and 𝜌∗ 
𝑡𝑜 

are the relative density of the octet-truss and truncated-

ctahedron structures, respectively. The derivation of the formulation is

resented in Appendix B1 and B2 . 

m  
Apart from the uniform beam cross-section, we also consider the ta-

ered beam with enlarged radius at ends of the constituent beams. As

hown in Figs. 1 and 2 , the radius of the beam section is a quadratic func-

ion of the position along beam mid-axis. Then the analytical expression

f the relative density can be modified as 
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√
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)
(5) 

here 𝜌∗ 
𝑡𝑜𝑡 

and 𝜌∗ 
𝑡𝑡𝑜 

are the relative density of the tapered octet-truss

nd tapered truncated-octahedron structures, respectively. The relative

ensity of designed lattice structures is shown in Table 1 . 

. Results and discussion 

.1. Mechanical properties testing 

These lattice specimens were manufactured via SLM metal additive

anufacturing technology. The Al-Si10-Mg powder materials used for
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Fig. 8. Anisotropy of the tapered octet-truss lattice structure. (a) unit cell and Young’s modulus surface. (b) shear modulus surface, xy plane, xz plane and yz plane. 

(c) Poisson ratio surface, xy plane, xz plane and yz plane. 
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LM printing with EOS M M290 (constructed by EOS GmbH, Germany)

achine, a selective laser melting system from SLM Solutions GmbH.

he Al-Si10-Mg fine powder was provided by EOS GmbH, with pow-

er particle sizes ranging from 20 to 65 𝜇m. The SLM laser power is

et as 370 W, and the scanning speed is set as 1300 mm/s, with layer

hickness of 30 𝜇m in an argon gas atmosphere. The designed sam-

les are supported on a plate heated to 300 °C. To relieve residual

tresses generated by the fabrication process, thermal stress relieving

as performed on these specimens at 300 °C for 2 h, prior to remov-

ng lattice structure specimens from the support structures. Tensile test

as performed on the Instron2367, as shown in Fig. 3 . The engineer-

ng strain was evaluated through digital image correlation method. Fi-

ally, we obtain the engineering stress-strain curves of the SLM printed

amples. 

.2. Elastic mechanical property with the proposed AH method 

The homogenization theory has been developed since 1970s mathe-

atically. This approach can be used to analyze the matter system with

wo or more scales. It can relate the meso-scale containing the second

hase space to the macroscopic scale. Fig. 4 depicts the homogenization

rocedure schematically. A composite elastomer Ω with periodic struc-

ure subjected to the surface traction t at the traction boundary Γt , the
isplacement d at the displacement boundary Γd and a body force f . The

icrostructure at the point x on the macroscopic can be treated as pe-

iodic repetition of the heterogeneous unit cell in spatial. Here, AH is

dopted to analyze the effective mechanical properties of the proposed

etastructure.It has proven to be a powerful technique to investigate

he effective mechanical properties of the heterogeneous materials and

etastructures with periodic structure arrangement [18,49–53] . 

Using the surface traction method depicted in previous section, we

valuate the detailed values of 𝜒𝑚𝑛 
𝑘 

for different lattice structure re-

pectively, as shown in Fig. 5 . The numerical model is discretized by

3D4 element and the element size is about 0.2 mm.In the present re-

earch, there are about 40,000 elements in pure unit cell and we have

xamined the reliability of the element. According to Eqs. (A.28) , 𝜒𝑚𝑛 
𝑘 

s represented by the displacement filed in the k direciton under the sur-

ace traction in the e mn direction. And 𝜒mn is represented by the resul-

ant displacement field. By introducing a taper,the deformation tends

o concentrated in the middle of the beam, as shown in Figs. 5 and 6 .

lso it can be clearly seen that beams distributions in special directions

ave significant influence on the overall deformation respond of the unit

ell. 

Different from the continuum materials, lattice structures are usually

trong anisotropic due to the special arrangement of the beams. Base on

he homogenization process, we evaluate the effective elastic tensor of
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Fig. 9. Anisotropy of the truncated-octahedron lattice structure. (a) unit cell and Young’s modulus surface. (b) shear modulus surface, xy plane, xz plane and yz 

plane. (c) Poisson ratio surface, xy plane, xz plane and yz plane. 
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he proposed unit cells. For cubic symmetry materials, the theoretical

ulk modulus reads 

 = 

1 
3 
(
𝐷 1111 + 2 𝐷 1122 

)
(6)

Furthermore, the Young’s modulus for the [100] direction can be

xpressed analytically as 

 = 

(
𝐷 1111 − 𝐷 1122 

)(
𝐷 1111 + 2 𝐷 1122 

)
𝐷 1111 + 𝐷 1122 

(7)

And the shear modulus reads 

 = 𝐷 1212 (8)

Using the open-source online application provided by Gaillac

54] ,we further compute the anisotropic elastic tensors and represent

hem graphically. As shown in Figs. 7–10 , the Poison ratio, general-

zed Young’s modulus and shear modulus are plotted in an orthogo-

al coordinate system. The anisotropy of elastic properties can be de-

ned as the ratio of maximum value to the minimum value.Clearly,

he anisotropy in special directions can be demonstrated and is highly

ependent on the special distribution of beams. For example, in octet-

russ structure, the ratio of Young’s modulus in [111] direction to mod-
lus in [100] is about 2.67, as shown in Fig. 7 (a).That is mainly be-

ause the much higher stiffness of the tetrahedrons attached to the

ight faces of the octahedron. Furthermore, illustrated in Fig. 7 (b),the

nisotropy of the shear modulus is much higher than that of Young’s

odulus. The anisotropy of shear modulus is about 3.43. Fig. 7 (c)

hows the strong anisotropic distribution of the Poison ratio. The max-

mum Poison ratio is about 0.61and the minimum value is about

 0.28. 

However, Young’s modulus surface of truncated-octahedron lattice

tructure seemly to be cube, as shown in Fig 8 (a). The surface has max-

mum value in diagonal directions. The anisotropy of Young’s modu-

us and shear modulus are 1.56 and 1.60, respectively. Different from

hat in octet-truss lattice structure, the minimum Poison ration is about

.22, which is positive. From the comparison of Figs. 7 (c) and 9 (c), the

nisotropy of octet-truss is much stronger than that of the truncated-

ctahedron lattice structure. 

Inspired by the research of Thomas [38] , the tapering design strat-

gy is proposed to control the anisotropy of the lattice structure. Notic-

ng the elastic properties in Figs. 8 (a-b) and 10 (a-b), it has to be point

ut that the strategy works well in modulating elastic properties. For

xample, the anisotropy of Young’s modulus and shear modulus of ta-

ered octet-truss structure are 2.47 and 3.16, respectively, which are

ower than that of octet-truss structure. However, for the comparison
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Fig. 10. Anisotropy of the tapered truncated-octahedron lattice structure. (a) unit cell and Young’s modulus surface. (b) shear modulus surface, xy plane, xz plane 

and yz plane. (c) Poisson ratio surface, xy plane, xz plane and yz plane. 
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f maximum Young’s modulus and shear modulus, the tapering strat-

gy increases the response by more than 120% and 160% for octet-

russ and truncated-octahedron structures, respectively. With regards to

he Young’s modulus and shear modulus, the effect of tapering strategy

s less beneficial for octet-truss structure. Considering the stretching-

ominated deformation in octet-truss structure and bending-dominated

eformation in truncated-octahedron structure, the tapering strategy

rovides more privilege to control the elasticity in periodic structure of

ending-dominated. From Figs. 8 (c) and 10 (c), it can be concluded that

apering strategy can significantly decrease the Poison ratio distribution

ange in special directions. 

.3. Large deformation response for static in situ compression test 

Figs. 11–13 illustrates the in situ monotonic compression of octet-

russ and truncated-octahedron lattice with uniform beam cross-section

nd node enhancement respectively. The elastic modulus along [100]

irection is evaluated and the comparison between experiment and an-

lytical result from Eqs. (A.7) are presented in Table 2 . 

.3.1. In situ compression test on octet-truss and tapered octet-truss 

tructures 

According to Fig. 11 (a), four deformation stages can be seen in the

tress strain curve, namely elastic stage, nonlinear stage, damage stage
nd densification stage. Specifically, linearity of the stress-strain oc-

urs in the initial stage, then nonlinearity occurs with the increasing

ompression load. From the Fig. 11 (d-e), the nonlinearity is mainly at-

ributed to the bending deformation of the beams in the metastructure. A

hear band along 45° with respect to the loading direction occurs, which

s caused by the fracture at the intersection nodes of the beams, leading

o the abrupt decrease in stress-strain curve. Theoretically, this direction

s coincident with the maximum shear stress surface. Subsequently, an-

ther shear band along the other side occurs repeatedly. Then densifica-

ion is formed with the increasing compression load. To be more specific,

he SEM characterization of the fracture surface is conducted to inves-

igate the local imperfection around intersection nodes of the beams,

s shown in Fig. 11 (b). The red labels in the Fig. 11 (b) demonstrate

hat there are many voids around intersection nodes. This is possible

aused by the immature manufacturing technique. In addition, shown

n Fig. 11 (c), the side views of the samples show that the shear band gov-

rned by shear stress is symmetry, which is different from that reported

y Song [25] . 

Considering the shear-stress dominated the deformation mechanism

nd the imperfection around intersection nodes, node enhancement is

ntroduced to the metastructure. Subsequently, the tapered octet-truss

tructure is compressed and the corresponding results are given in the

ig. 12 . Compared with the result of octet-truss structure, Fig. 12 (c)

hows extremely different deformation mechanism. The results show
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Fig. 11. In-situ compression of octet-truss 3D lattice with uniform lattice beam geometries. (a) Typical force-displacement curve. (b) SEM photographs of the fracture 

morphologies. (c) Macroscopic fracture morphologies of the sample after experiment. (d) Deformation history of the octet-truss lattice structure. The snapshots of 

I-VI correspond to the loading states labeled in (a). (e) Deformation history of the numerical simulation. 

Table 2 

Elastic modulus along [100] direction. 

Octet-truss Tapered octet-truss Truncated-octahedron Tapered truncated-octahedron 

Expermental 925MPa 1337MPa 106MPa 276MPa 

Analytical 976MPa 1543MPa 202MPa 474MPa 

Numerical 952MPa 1494MPa 193MPa 452MPa 
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t  
hat the node enhancement has a significant effect on the mechani-

al properties of the present structure. First, there is not shear band

uring the compression progress and progressively collapse deforma-

ion mechanism dominate the compression progress. To be more spe-

ific, shown in Fig. 12 (c), the fracture mainly occurs at the middle

f the beams. Moreover, Fig. 12 (c) demonstrated that the deforma-

ion is not symmetry. Finally, the SEM characterization of the fracture

urface illustrated there also manufacture imperfections, as shown in

ig. 12 (b). 

.3.2. In situ compression test on truncated-octahedron and tapered 

runcated-octahedron structures 

Compared to octet-truss and tapered octet-truss, the truncated-

ctahedron and tapered truncated-octahedron are compressed experi-

entally. Results in Fig. 13 shows that the truncated-octahedron lat-

ice is really a low load-bearing structure compared to the octet-
russ lattice structure. Additionally, shown in Fig. 14 , the fracture

orphology of the truncated-octahedron lattice structure turns out

o be progressively collapse deformation and the tapered truncated-

ctahedron lattice was shear band dominated. The result is completely

nversed compared to the octet-truss and tapered octet-truss lattice

tructure. The same fracture morphology can be seen in numerical

esults. 

. Conclusion 

In this paper, mechanical properties and deformation mechanisms

f SLM additive manufactured stretching-dominated octet-truss and

ending-dominatedtruncated-octahedron lattice structures consisting of

rdinary uniform beams and tapered beams are investigated. 

Firstly, analytical relative density formulas of the lattice struc-

ures with ordinary homogenous beam and tapered beam are derived.
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Fig. 12. In-situ compression of octet-truss 3D lattice with enforced node geometries. (a) Typical force-displacement curve. (b) SEM photographs of the fracture 

morphologies. (c) Macroscopic fracture morphologies of the sample after experiment. (d) Deformation history of the octet-truss lattice structure. The snapshots of 

I-VI correspond to the loading states labeled in (a). (e) Deformation history of the numerical simulation. 

Fig. 13. In-situ compression force-displacement curves of truncated- 

octahedronand tapered truncated-octahedron lattice structure. 
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ompared to the CAD model, the error of the analytical relative density

unction is less than 3%. 

Secondly, analytical expression of the AH theory was employed for

nvestigating the anisotropic mechanical properties of the proposed lat-

ice structures. It is found that elastic anisotropy is closely related to

he spatial arrangement of lattice beams for both lattice structures with

rdinary homogenous beam and tapered beam. However, thetapered

eam design can significantly improve the elastic modulus and reduce

he elastic anisotropy of the lattice structure. 

Thirdly, comparisons between experiments, theoretical analysis and

nite element simulations are performed. The elastic properties, defor-

ation behaviors and failure mechanism of proposed lattice structure-

are systematically investigated. In situ compressions shown that lattice

tructure arrangement has significant effect on the large deformation

f the compression sample. Stretching-dominated octet-truss lattice ex-

ibitsshear band fracture morphology. The macroscopic fracture mor-

hology of tapered octet-truss is dominated by progressively collapse

eformation. However, for truncated-octahedron and tapered truncated-

ctahedron lattice structure, the macroscopic fracture morphology was

ompletely inversed. 
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Fig. 14. (a) In-situ compression of 

truncated-octahedronand (b) tapered 

truncated-octahedron lattice structure. 
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ppendix A 

Explicitly, assumptions are made in the AH theory. It is assumed that

very field quantity depends on two spatial scales due to the existence of

he microstructure. On the macroscopic level x , the field quantities, such

s displacement, stress and strain, vary smoothly. On the microscopic

evel y , the field quantities are periodic. Base on AH theory, the relevant

eld quantities can be approximated by an asymptotic expansion: 

 

𝜂

𝑖 
( 𝑥, 𝑦 ) = 𝑢 0 

𝑖 
( 𝑥, 𝑦 ) + 𝜂𝑢 1 

𝑖 
( 𝑥, 𝑦 ) + 𝜂2 𝑢 2 

𝑖 
( 𝑥, 𝑦 ) + ⋯ (A.1)

here 𝑢 
𝜂

𝑖 
is the exact value of the field quantity, u 0 , u 1 , u 2 …are periodic

ith respect to the local coordinate y , which implies that each field

uantity yield identical value on the opposite sides of the unit cell. The

icroscopic coordinates y and the macroscopic coordinates x can be

elated through 

 𝑖 = 

𝑥 𝑖 

𝜂
(A.2) 

here 𝜂 is the magnification factor, which scales the size of the unit

ell to the size of structure at macroscale. If g 𝜂 = g 𝜂( x,y ) and y depends

n x , then the derivatives of the function with respect to x can be written

sing the chain rule: 

𝜕 𝑔 𝜂

𝜕 𝑥 𝑖 
= 

𝜕𝑔 

𝜕 𝑥 𝑖 
+ 

1 
𝜂

𝜕𝑔 

𝜕 𝑦 𝑖 
(A.3)

According to Eqs. (A.3) , we can obtain the small deformation strain

ensor to be written as 

 

𝜂

𝑘𝑙 
= 

1 
2 

( 

𝜕𝑢 
𝜂

𝑘 

𝜕𝑥 
𝜂

𝑙 

+ 

𝜕𝑢 
𝜂

𝑙 

𝜕𝑥 
𝜂

𝑘 

) 

= 

1 
2 

( 

1 
𝜂

( 

𝜕𝑢 0 
𝑘 

𝜕 𝑦 𝑙 
+ 

𝜕𝑢 0 
𝑙 

𝜕 𝑦 𝑘 

) 

+ 

( 

𝜕𝑢 0 
𝑘 

𝜕 𝑥 𝑙 
+ 

𝜕𝑢 0 
𝑙 

𝜕 𝑥 𝑘 
+ 

𝜕𝑢 1 
𝑘 

𝜕 𝑦 𝑙 
+ 

𝜕𝑢 1 
𝑙 

𝜕 𝑦 𝑘 

) 

+ 𝜂

( 

𝜕𝑢 1 
𝑘 

𝜕 𝑥 𝑙 
+ 

𝜕𝑢 1 
𝑙 

𝜕 𝑥 𝑘 
+ 

𝜕𝑢 2 
𝑘 

𝜕 𝑦 𝑙 
+ 

𝜕𝑢 2 
𝑙 

𝜕 𝑦 𝑘 

) 

+ 𝜂2 
( 

𝜕𝑢 2 
𝑘 

𝜕 𝑥 𝑙 
+ 

𝜕𝑢 2 
𝑙 

𝜕 𝑥 𝑘 
+ 

𝜕𝑢 3 
𝑘 

𝜕 𝑦 𝑙 
+ 

𝜕𝑢 3 
𝑙 

𝜕 𝑦 𝑘 

) 

+ ⋯ 

) 

(A.4) 

The strain tensor can be rewritten as: 

 

𝜂

𝑘𝑙 
= 

1 
𝜂
𝜀 −1 
𝑘𝑙 

+ 𝜀 0 
𝑘𝑙 
+ 𝜂𝜀 1 

𝑘𝑙 
+ 𝜂2 𝜀 2 

𝑘𝑙 
+ ⋯ (A.5)
here 

 

−1 
𝑖𝑗 

= 

1 
2 

( 

𝜕𝑢 0 
𝑖 

𝜕 𝑦 𝑗 
+ 

𝜕𝑢 0 
𝑗 

𝜕 𝑦 𝑖 

) 

(A.6) 

 

0 
𝑖𝑗 
= 

1 
2 

( 

𝜕𝑢 0 
𝑖 

𝜕 𝑥 𝑗 
+ 

𝜕𝑢 0 
𝑗 

𝜕 𝑥 𝑖 

) 

+ 

1 
2 

( 

𝜕𝑢 1 
𝑖 

𝜕 𝑦 𝑗 
+ 

𝜕𝑢 1 
𝑗 

𝜕 𝑦 𝑖 

) 

(A.7)

 

1 
𝑖𝑗 
= 

1 
2 

( 

𝜕𝑢 1 
𝑖 

𝜕 𝑥 𝑗 
+ 

𝜕𝑢 1 
𝑗 

𝜕 𝑥 𝑖 

) 

+ 

1 
2 

( 

𝜕𝑢 2 
𝑖 

𝜕 𝑦 𝑗 
+ 

𝜕𝑢 2 
𝑗 

𝜕 𝑦 𝑖 

) 

(A.8)

Substituting the Eqs. (A.5) into the constitutive equation, we can

btain the asymptotic expansion of the stress field: 

𝜂

𝑘𝑙 
= 

1 
𝜂
𝜎−1 
𝑘𝑙 

+ 𝜎0 
𝑘𝑙 
+ 𝜂𝜎1 

𝑘𝑙 
+ 𝜂2 𝜎2 

𝑘𝑙 
+ ⋯ (A.9)

Then, substituting the Eqs. (A.9) into the equilibrium equation, we

an obtain: 

1 
𝜂

[ 

𝜕𝜎−1 
𝑖𝑗 

𝜕 𝑥 
𝑗 

+ 

1 
𝜂

𝜕𝜎−1 
𝑖𝑗 

𝜕 𝑦 
𝑗 

] 

+ 

[ 

𝜕𝜎0 
𝑖𝑗 

𝜕 𝑥 
𝑗 

+ 

1 
𝜂

𝜕𝜎0 
𝑖𝑗 

𝜕 𝑦 
𝑗 

] 

+ 𝜂

[ 

𝜕𝜎1 
𝑖𝑗 

𝜕 𝑥 
𝑗 

+ 

1 
𝜂

𝜕𝜎1 
𝑖𝑗 

𝜕 𝑦 
𝑗 

] 

+ ⋯ + 𝑓 𝑖 = 0 

(A.10) 

By equating the terms with the same power of 𝜂, equations can be

erived: 

−2 ∶ 
𝜕𝜎−1 

𝑖𝑗 

𝜕 𝑦 𝑗 
= 

𝜕 

𝜕 𝑦 𝑗 
𝐶 𝑖𝑗𝑘𝑙 

𝜕𝑢 0 
𝑘 

𝜕 𝑦 𝑙 
= 0 (A.11)

−1 ∶ 
𝜕𝜎−1 

𝑖𝑗 

𝜕 𝑥 𝑗 
+ 

𝜕𝜎0 
𝑖𝑗 

𝜕 𝑦 𝑗 
= 

𝜕 

𝜕 𝑥 𝑗 
𝐶 𝑖𝑗𝑘𝑙 

𝜕𝑢 0 
𝑘 

𝜕 𝑦 𝑙 
+ 

𝜕 

𝜕 𝑦 𝑗 
𝐶 𝑖𝑗𝑘𝑙 

( 

𝜕𝑢 0 
𝑘 

𝜕 𝑦 𝑙 
+ 

𝜕𝑢 1 
𝑘 

𝜕 𝑦 𝑙 

) 

= 0 (A.12)

0 ∶ 
𝜕𝜎0 

𝑖𝑗 

𝜕 𝑥 𝑗 
+ 

𝜕𝜎1 
𝑖𝑗 

𝜕 𝑦 𝑗 
+ 𝑓 𝑖 = 

𝜕 

𝜕 𝑥 𝑗 
𝐶 𝑖𝑗𝑘𝑙 

( 

𝜕𝑢 0 
𝑘 

𝜕 𝑦 𝑙 
+ 

𝜕𝑢 1 
𝑘 

𝜕 𝑦 𝑙 

) 

+ 

𝜕 

𝜕 𝑦 𝑗 
𝐶 𝑖𝑗𝑘𝑙 

( 

𝜕𝑢 1 
𝑘 

𝜕 𝑦 𝑙 
+ 

𝜕𝑢 2 
𝑘 

𝜕 𝑦 𝑙 

)

+ 𝑓 𝑖 = 0 (A.13)

1 ∶ 
𝜕𝜎1 

𝑖𝑗 

𝜕 𝑥 𝑗 
+ 

𝜕𝜎2 
𝑖𝑗 

𝜕 𝑦 𝑗 
= 

𝜕 

𝜕 𝑥 𝑗 
𝐶 𝑖𝑗𝑘𝑙 

( 

𝜕𝑢 1 
𝑘 

𝜕 𝑦 𝑙 
+ 

𝜕𝑢 2 
𝑘 

𝜕 𝑦 𝑙 

) 

+ 

𝜕 

𝜕 𝑦 𝑗 
𝐶 𝑖𝑗𝑘𝑙 

( 

𝜕𝑢 2 
𝑘 

𝜕 𝑦 𝑙 
+ 

𝜕𝑢 3 
𝑘 

𝜕 𝑦 𝑙 

) 

= 0 

(A.14) 

http://dx.doi.org/10.13039/501100001809
https://doi.org/10.13039/501100011283
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Fig. B1. 3D view of single beam of (a) octet-truss lattice structure; (b) truncated- 

octahedron lattice structure for relative density calculation. 
For the positive definiteness of the elastic tensor D ijkl , we can derived:

𝜕𝑢 0 
𝑖 

𝜕 𝑦 𝑗 
= 0 (A.15)

Eqs. (A.15) indicates that 𝑢 0 
𝑖 

depend only on the macroscopic scale.

t can be treated as the average value of the displacement field.

qs. (A.4) can be rewritten as: 

 

𝜂

𝑘𝑙 
( 𝐮 ) = 

1 
2 

( 

𝜕𝑢 
𝜂

𝑘 

𝜕𝑥 
𝜂

𝑙 

+ 

𝜕𝑢 
𝜂

𝑙 

𝜕𝑥 
𝜂

𝑘 

) 

= 

1 
2 

[ ( 

𝜕𝑢 0 
𝑘 

𝜕 𝑥 𝑙 
+ 

𝜕𝑢 0 
𝑙 

𝜕 𝑥 𝑘 

) 

+ 

( 

𝜕𝑢 1 
𝑘 

𝜕 𝑦 𝑙 
+ 

𝜕𝑢 1 
𝑙 

𝜕 𝑦 𝑘 

) 

+ 𝜂

( 

𝜕𝑢 1 
𝑘 

𝜕 𝑥 𝑙 
+ 

𝜕𝑢 1 
𝑙 

𝜕 𝑥 𝑘 

) 

+ ⋯ 

] 
+ ℎ.𝑜.𝑡. 

(A.16)

here h.o.t . represents higher order terms. 𝑢 1 
𝑖 
, 𝑢 2 

𝑖 
,… are the microscopic

isplacement of different orders. Substituting Eqs. (A.15) in to the

qs. (A.12) , we can obtain: 

𝜕 

𝜕 𝑦 𝑗 
𝐶 𝑖𝑗𝑘𝑙 

( 

𝜕𝑢 0 
𝑘 

𝜕 𝑥 𝑙 
+ 

𝜕𝑢 1 
𝑘 

𝜕 𝑦 𝑙 

) 

= 0 (A.17)

The macroscopic displacement and the first order microscopic dis-

lacement are related in the Eqs. (A.17) . If the macroscopic displace-

ent is known, the first order microscopic displacement can be calcu-

ated through 

𝜕 

𝜕 𝑦 𝑗 

( 

𝐶 𝑖𝑗𝑘𝑙 

𝜕𝑢 1 
𝑘 

𝜕 𝑦 𝑙 

) 

= − 

𝜕 𝐶 𝑖𝑗𝑘𝑙 

𝜕 𝑦 𝑗 

𝜕𝑢 0 
𝑘 

𝜕 𝑦 𝑙 
(A.18)

Generally, finite element method can be used to solve the function.

or simplicity, eigenfunction, 𝜒𝑚𝑛 
𝑘 

( 𝑦 𝑖 ) , is introduced to relate the macro-

copic displacement and microscopic displacement. 

 

1 
𝑖 
= 𝜒𝑘𝑙 

𝑖 

𝜕𝑢 0 
𝑘 

𝜕 𝑥 𝑙 
(A.19)

Then Eqs. (A.18) can be written as 

𝜕 

𝜕 𝑦 𝑗 

( 

𝐶 𝑖𝑗𝑘𝑙 

𝜕𝜒𝑚𝑛 
𝑘 

𝜕 𝑦 𝑙 

) 

= − 

𝜕 𝐶 𝑖𝑗𝑘𝑙 

𝜕 𝑦 𝑗 
. (A.20)

The weak form of integration can be expressed as 

𝑌 

𝜕 

𝜕 𝑦 𝑗 

( 

𝐶 𝑖𝑗𝑘𝑙 

𝜕𝜒𝑚𝑛 
𝑘 

𝜕 𝑦 𝑙 

) 

𝑣 𝑖 𝑑 𝑌 = − ∫
𝑌 

𝜕 𝐶 𝑖𝑗𝑘𝑙 

𝜕 𝑦 𝑗 
𝑣 𝑗 𝑑 𝑌 ∀𝑣 𝑖 ∈ 𝑉 𝑌 (A.21)

here v is the virtual displacement. 

Substituting Eqs. (A.19) into (A.7) , we can obtain the macro strain

ensor 

 

0 
𝑖𝑗 
= 

1 
2 

( 

𝜕𝑢 0 
𝑖 

𝜕 𝑥 𝑗 
+ 

𝜕𝑢 0 
𝑗 

𝜕 𝑥 𝑖 
+ 

𝜕𝑢 1 
𝑖 

𝜕 𝑦 𝑗 
+ 

𝜕𝑢 1 
𝑗 

𝜕 𝑦 𝑖 

) 

= 

1 
2 

( 

𝜕𝑢 0 
𝑖 

𝜕 𝑥 𝑗 
+ 

𝜕𝑢 0 
𝑗 

𝜕 𝑥 𝑖 
+ 

𝜕𝜒𝑚𝑛 
𝑖 

𝜕 𝑦 𝑗 

𝜕𝑢 0 𝑚 
𝜕 𝑥 𝑛 

+ 

𝜕𝜒𝑚𝑛 
𝑗 

𝜕 𝑦 𝑖 

𝜕𝑢 0 𝑚 
𝜕 𝑥 𝑛 

) 

= 

( 

𝛿𝑖𝑚 𝛿𝑗𝑛 + 

𝜕𝜒𝑚𝑛 
𝑖 

𝜕 𝑦 𝑗 

) 

𝜕𝑢 0 𝑚 
𝜕 𝑥 𝑛 

. (A.22)

The corresponding macro stress tensor can be expressed as 

0 
𝑖𝑗 
= 𝐶 𝑖𝑗𝑘𝑙 𝜀 

0 
𝑘𝑙 
= 𝐶 𝑖𝑗𝑘𝑙 

( 

𝛿𝑘𝑚 𝛿𝑙𝑛 + 

𝜕𝜒𝑚𝑛 
𝑘 

𝜕 𝑦 𝑙 

) 

𝜕𝑢 0 
𝑚 

𝜕 𝑥 𝑛 
. (A.23)

Integrating Eqs. (A.13) , one concludes that 

𝜕 

𝜕 𝑥 𝑗 ∫
𝑉 

𝜎0 
𝑖𝑗 
𝑑𝑉 + ∫

𝑉 

𝜕𝜎1 
𝑖𝑗 

𝜕 𝑦 𝑗 
𝑑𝑉 + ∫

𝑉 

𝑓 𝑖 𝑑𝑉 = 0 (A.24)

Because 𝜎1 
𝑖𝑗 

is Y-periodic, Eqs. (A.24) can be written as 

𝜕 

𝜕 𝑥 𝑗 ∫
𝑉 

𝜎0 
𝑖𝑗 
𝑑𝑉 + ∫

𝑉 

𝑓 𝑖 𝑑𝑉 = 0 (A.25)

Then, substituting Eqs. (A.23) into Eqs. (A.25) , we can conclude the

omogenizedequilibrium equation: 

𝜕 

𝜕 𝑥 𝑗 
𝐷 𝑖𝑗𝑘𝑙 

𝜕𝑢 0 
𝑚 

𝜕 𝑥 𝑛 
+ 𝑓 𝑖 = 0 (A.26)
here 𝐷 𝑖𝑗𝑘𝑙 is the homogenized elastic tensor. 

 𝑖𝑗𝑚𝑛 = 

1 
𝑉 ∫

𝑉 

𝐷 𝑖𝑗𝑘𝑙 

( 

𝛿𝑘𝑚 𝛿ln + 

𝜕𝜒𝑚𝑛 
𝑘 

𝜕 𝑦 𝑙 

) 

𝑑𝑉 (A.27)

For the calculation of 𝜒𝑚𝑛 
𝑘 

( 𝑦 𝑖 ) , Gauss theorem is applied on the two

ides of Eqs. (A.21) , the final equilibrium equation is obtained 

𝑌 

𝐷 𝑖𝑗𝑘𝑙 

𝜕𝜒𝑚𝑛 
𝑘 

𝜕 𝑦 𝑙 

𝜕 𝑣 𝑖 

𝜕 𝑦 𝑗 
𝑑 𝑌 = − ∫

𝑆 

𝐷 𝑖𝑗𝑚𝑛 𝑛 𝑗 𝑣 𝑖 𝑑 𝑆 (A.28)

here S is the surface of the lattice, n j is the j thcomponent of the lattice

urface outer normal. The right side of Eqs. (A.28) can be treated as

he surface traction, T mn . The 𝜒𝑚𝑛 
𝑘 

can be obtained by the calculation of

isplacement field under different surface traction boundary condition

n ABAQUS. 

ppendix B 

.1 Relative density of the octet-truss structures 

The relative density of the octet-truss given in Eqs. (2) is in the case

f no taper. It can be derived through analysis of the exact geometry

f a single beam, as shown in Fig. B1 (a). For a single beam, the apex

ngles are different in the cross section of the rectangular pyramids. To

implify the calculation, we can assume that the apex angle is the same

nd then calculate the average volume of two beams. The total volume

an be divided into three parts: 

1) average volume oftwo cylinders with radius R and the length

are L − 2 R and 𝐿 − 2 
√
2 𝑅 , 

2) (2) average volume of two rectangular pyramidswith bottom side

length 
√
2 𝑅 and the height are R and 

√
2 𝑅 , 

3) average volume ofeight cylindrical wedges of radius R and the height

are ( 
√
2 − 1 ) 𝑅 or ( 2 − 

√
2 ) 𝑅 . 

The volume of a single beam can be calculated by 

 𝑜𝑡 = 𝑉 𝑜𝑡 −1 + 𝑉 𝑜𝑡 −2 − 𝑉 𝑜𝑡 −3 (B.1)

here V ot − 1 is the volume of the cylinder and is given by 

 𝑜𝑡 −1 = 

1 
2 
𝜋𝑅 

2 
(
( 𝐿 − 2 𝑅 ) + 

(
𝐿 − 2 

√
2 𝑅 

))
(B.2)

 ot − 2 is the volume of the two rectangular pyramids and is given by 

 𝑜𝑡 −2 = 2 

[ 

1 
2 

( 

2 
3 
𝑅 

3 + 

2 
√
2 

3 
𝑅 

3 

) ] 

(B.3)

 ot − 3 is the volume of the eight cylindrical wedges and is given by 

 𝑜𝑡 −3 = 8 

[ 

1 
2 

( 

2 − 

√
2 √

2 − 1 

( 

5 
√
2 

12 
𝑅 

3 − 

√
2 
8 

𝜋𝑅 

3 

) 

+ 2 

( 

5 
√
2 

12 
𝑅 

3 − 

√
2 
8 

𝜋𝑅 

3 

) ) ]

(B.4) 
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Then the total volume is obtained 

 𝑜𝑡 = 𝜋𝑅 

2 𝐿 − 

8 𝑅 

3 

3 
(√

2 − 1 
) , (B.5)

nd then, considering there are 24 integral beams in unit cell, the rela-

ive density can be calculated 

∗ 
𝑡𝑜𝑡 

= 

24 𝑉 𝑜𝑡 (√
2 𝐿 

)3 = 6 
√
2 𝜋

(
𝑅 

𝐿 

)2 
− 

32 
2 − 

√
2 

(
𝑅 

𝐿 

)3 
(B.6)

For tapped octet-truss structure, the two ends of the beam are en-

anced with the radius 
√
2 𝑅 and the length is 4 

√
2 𝑅 ∕3 . Then the total

olume of the single beam can be given by 

 𝑡𝑜𝑡 = 𝜋𝑅 

2 𝐿𝑓 + 𝜋𝑅 

3 (1 + 

√
2 ) ( 1− 𝑓 ) − 

8 
(√

2 + 1 
)

3 
𝑅 

3 (B.7)

here f = 1.1683. 

The corresponding relative density can be calculated 

∗ 
𝑡𝑜𝑡 

= 6 
√
2 𝜋

(
𝑅 

𝐿 

)2 
𝑓 + 𝜋

(
𝑅 

𝐿 

)3 (
6 
√
2 + 12 

)
( 1 − 𝑓 ) − 

32 
2 − 

√
2 

(
𝑅 

𝐿 

)3 
(B.8)

.2 Relative density of the truncated-octahedron structures 

The relative density of the truncated-octahedron can also be derived

hrough analysis of the exact geometry of a single beam, as shown in

ig. B1 (b). For a single beam, the apex is triangular pyramid. The total

olume can be divided into three parts: 

1) volume of cylinder with radius R and the length is 𝐿 − 

2 
3 𝑅 , 

2) volume of two triangular pyramids with bottom area 
8 
√
2 

9 𝑅 

2 and

height 1 3 𝑅 , 

3) volume of six cylindrical wedges of radius R and the height are 2 3 𝑅

and 

√
3 −1 
3 𝑅 . 

The volume of single ambient beam in truncated-octahedron struc-

ure can be calculated by 

 𝑡𝑜 = 𝑉 𝑡𝑜 −1 + 𝑉 𝑡𝑜 −2 − 𝑉 𝑡𝑜 −3 (B.9)

here V to − 1 is the volume of the cylinder and is given by 

 𝑡𝑜 −1 = 𝜋𝑅 

2 
(
𝐿 − 

2 
3 
𝑅 

)
(B.10) 

 to − 2 is the volume of the two triangular pyramids and is given by 

 𝑡𝑜 −2 = 

8 
√
2 

81 
𝑅 

3 (B.11) 

 to − 3 is the volume of the six cylindrical wedges and is given by 

 𝑡𝑜 −3 = 

208 
√
2 

81 
𝑅 

3 − 

2 
3 
𝑅 

3 
(
2 𝜃1 + 𝜃2 + sin 2 𝜃1 + 

1 
2 
sin 2 𝜃2 

)
(B.12)

here 𝜃1 = arcsin ( 
√
6 ∕3 ) and 𝜃2 = arcsin ( 

√
8 ∕3 ) . 

Then the total volume is obtained 

 𝑡𝑜 = 𝜋𝑅 

2 𝐿 − 

200 
√
2 

81 
𝑅 

3 + 

2 
3 
𝑅 

3 
[
2 𝜃1 + 𝜃2 + sin 2 𝜃1 + 

1 
2 
sin 2 𝜃2 − 𝜋

]
(B.13) 

nd then, considering there are 24 integral beams in unit cell, the rela-

ive density can be calculated 

∗ 
𝑡𝑜 

= 

24 𝑉 (
2 
√
2 𝐿 

)3 = 

3 
4 

√
2 𝜋

(
𝑅 

𝐿 

)2 
− 

100 
27 

(
𝑅 

𝐿 

)3 

+ 

√
2 (𝑅 

)3 [
2 𝜃1 + 𝜃2 + sin 2 𝜃1 + 

1 sin 2 𝜃2 − 𝜋

]
(B.14) 
2 𝐿 2 
For tapped truncated-octahedron structure, the two ends of the beam

re enhanced with the radius 7 R /5 and the length is 9 R /8. The total

olume of the single beam is given by 

 𝑡𝑡𝑜 = 𝜋𝑅 

2 𝐿𝑓 − 

200 
√
2 

81 
𝑅 

3 + 

2 
3 
𝑅 

3 
(
2 𝜃1 + 𝜃2 + sin 2 𝜃1 + 

1 
2 
sin 2 𝜃2 − 𝜋𝑓 

)
(B.15) 

here f = 1.3732. 

The corresponding relative density can be calculated 

∗ 
𝑡𝑡𝑜 

= 

3 
4 

√
2 𝜋

(
𝑅 

𝐿 

)2 
𝑓 − 

100 
27 

(
𝑅 

𝐿 

)3 

+ 

√
2 
2 

(
𝑅 

𝐿 

)3 (
2 𝜃1 + 𝜃2 + sin 2 𝜃1 + 

1 
2 
sin 2 𝜃2 − 𝜋𝑓 

)
(B.16) 
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