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The transient growth in thermocapillary liquid layers is examined by nonmodal stability
theory. Two kinds of thermocapillary liquid layers including linear flow and return flow
are considered. The transient growth is measured by a growth function, which depends on
both the velocity and temperature. It was found that rather large transient growth occurs in
subcritical flows at small Prandtl numbers (Pr), while the temperature field on the surface
has a negative effect on the transient growth. In particular, the transient growth function
increases significantly with the Reynolds number, but decreases with Pr. The most ampli-
fied perturbation is characterized by counter-rotating vortices and streaks, which are both
nearly streamwise. Energy analysis shows that the energy of transient growth mainly comes
from the basic flow, while the work done by Marangoni forces on the surface is negligible.
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I. INTRODUCTION

Thermocapillary convection refers to the flow driven by the temperature-induced surface tension
gradient. It appears in many practical applications, such as crystal growth [1], fusion welding [2],
ink-jet printing [3], droplet migration [4], and nanofluid flows [5]. The thermocapillary flow has
been studied over the years, and the related works have been reviewed by Davis [6] and Schatz and
Neitzel [7]. Recently, the studies of thermocapillary convections have been extended to the flows in
different geometries, such as a sphere [8], vertical cylinders [9], and horizontal cylinders [10]. The
thermocapillary flows with two gas-liquid interfaces have been investigated by both experiments
[11,12] and numerical simulations [13,14].

The instability of thermocapillary convection has been studied extensively. Smith and Davis [15]
have performed linear stability analysis on thermocapillary liquid layers. They claimed that there are
two kinds of instabilities, which are stationary longitudinal rolls and unsteady hydrothermal waves.
Chan and Chen [16] have examined the stability of thermocapillary fluid layers coupled with gravity
effect. Their results agree with the experiment by Riley and Neitzel [17]. In Refs. [15,16], the surface
tension was considered to be large enough, so the model of liquid layer with a nondeformable
surface was used. In more general cases, some authors have found that the surface deformation is
also important to thermocapillary instabilities [18–20].

Recently, three-dimensional numerical simulations have been performed by Zhang et al. [21] on
the thermocapillary convection in a shallow annular pool, and the effect of surface heat dissipation
has been demonstrated. Davalos-Orozco [22] has studied the sideband thermocapillary instability
of a thin liquid film flowing down the outside of a hot vertical cylinder. Kang et al. [23] have
reported the space experimental results on the thermocapillary convection in an open annular liquid
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pool. It is worth noting that the studies of thermocapillary instabilities have been generalized to
liquid layers on an inclined plane [24] and non-Newtonian fluids, such as viscoelastic fluids [25,26],
shear-thinning fluids [27], and viscoplastic fluids [28].

In the theoretical studies of thermocapillary instabilities, the modal analysis is mostly used,
where a small perturbation is assumed to vary exponentially with time. This method can be
used to predict the long time behavior of disturbances. However, in many cases, the short-term
characteristics of flow instabilities are very important in the transition to turbulence. For this reason,
some authors have turned to the nonmodal stability theory [29,30].

Trefethen et al. [31] have investigated the transient energy growth and the transient behavior of
response to external excitations for plane Poiseuille and Couette flows. The concept of nonmodal
stability theory addressed by them has been used to study the energy growth for channel flows [32]
and pipe flows [33]. These works suggested that there can be substantial transient growth even if
the flow is linearly stable in the normal-mode analysis. Nouar et al. [34] have examined modal
and nonmodal linear stability of the plane Bingham-Poiseuille flow, which shows that the optimal
disturbance depends on the Bingham number. The nonmodal instability in plane Couette flow of a
power-law fluid has been examined by Liu and Liu [35]. The result shows that the shear-thinning
effect significantly increases the amplitude of response to external excitations and initial conditions.
Balestra et al. [36] have performed an optimal transient growth analysis for the Rayleigh-Taylor
instability under curved substrates. They found that the system displays a linear transient growth
potential that gives rise to two different scenarios depending on the value of the Bond number.

The nonmodal stability of thermocapillary convection has not been thoroughly discussed in
previous works. However, in thermocapillary liquid layers, the critical Reynolds numbers are on
the order of 1000 at small Pr. The energy growth can reach O(1000) in channel flows [32,35]
at these Reynolds numbers, so one would expect that there may also be large transient growth
in thermocapillary convections. In the present work, the transient growth of thermocapillary
convection is investigated by nonmodal linear stability analysis. The model of thermocapillary liquid
layers is considered. The flows at different Prandtl numbers and Biot numbers are discussed.

The paper is organized as follows. In Sec. II, the physical model and mathematical formulations
are presented. The governing equations for the flow and perturbations are derived. Then in Sec. III,
the transient growth function is determined. The level lines of maximum growth and the optimal
perturbation flow fields are displayed. After that, the instability mechanism is discussed in Sec. IV.
Finally, we summarize the results and present the conclusions in Sec. V.

II. PROBLEM FORMULATION

We consider the model of thermocapillary liquid layer proposed by Smith and Davis [15], where
a fluid layer above an infinite rigid plane is set in motion by a temperature gradient imposed
on its free surface (see Fig. 1). The surface tension σ ′ is linearly related to the temperature T:
σ ′ = σ ′

0 − γ (T − T0), where γ is the variation of surface tension with temperature. In most cases,
the surface tension decreases with the temperature; thus γ = −dσ ′/dT > 0. The convection is
driven by the thermocapillary force. x, y, and z are the streamwise, spanwise, and wall-normal
direction, respectively. This model has been widely used in the theoretical study of thermocapillary
instabilities. The oblique hydrothermal waves predicted by this model have been observed in
experiment [17] and numerical simulations [37]. There are two kinds of flows, which are linear
flow and return flow. They will be discussed later.

A. Governing equations

The dimensionless parameters are defined as follows. R is the Reynolds number R = ρÛ0d/μ,
where μ is the viscosity, ρ is the fluid density, and Û0 is the characteristic velocity with the
expression Û0 = bγ d/μ. Here, b is the temperature gradient on the surface, Ma is the Marangoni
number defined as Ma = bγ d2/(μχ ), and χ is the thermal diffusivity. Ma and R have the relation
Ma = RPr, where Pr is the Prandtl number; Pr = μ/(ρχ ).
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FIG. 1. Schematic of thermocapillary liquid layers: (a) linear flow; (b) return flow. Here, d is the depth of
the layer, Tb is the temperature distribution in the vertical direction, and U0 is the velocity field.

The magnitude of the surface deformation can be measured by the capillary number [15,17]:
Ca = μÛ0/σ̂ , where σ̂ is the characteristic surface tension. We assume that the free surface is
nondeformable in the following. For liquid silicon [15] and silicone oil [17], O(Ca) ≈ 10−3 � 1,
so the assumption of a nondeformable free surface can be satisfied.

Below we give the dimensionless governing equations, which are the continuity equation, the
momentum equation, and the energy equation, respectively.

∇ · u = 0, (2.1)

R

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · τ, (2.2)

∂T

∂t
+ u · ∇T = 1

Ma
∇2T . (2.3)

Here, u, p, and T stand for the velocity, pressure, and temperature, respectively. τ is the stress tensor.
We assume the fluid is Newtonian, so its constitutive equation is

τ = S, (2.4)

where S = ∇u + (∇u)T is the strain-rate tensor. The viscous dissipation is ignored in (2.3). The
boundary conditions are set as follows:

u = (u, v,w) = 0,
∂T

∂z
= 0, z = 0, (2.5)

τ13 + ∂T

∂x
= 0, τ23 + ∂T

∂y
= 0, w = 0, −∂T

∂z
= Bi(T − T∞) + Q̃, z = 1. (2.6)
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In (2.5), there is no slip and zero heat flux on the rigisd plane. In (2.6), the stress on the surface
is caused by the thermocapillary effect. T∞ is the temperature of the bounding gas far from the
surface. Bi = ĥd/k̂ is the Biot number, where ĥ is the unit thermal surface conductance, and k̂ is
the thermal conductivity. Q̃ is the imposed heat flux to the environment, which can be determined
by the form of basic flow [15].

The basic flow is fully developed while its temperature is linear in x as imposed due to Q̃ plus a
distribution in z as follows:

u = [U0(z), 0, 0], T0(x, z) = −x + Tb(z). (2.7)

Two kinds of flows are investigated. The first kind is the linear flow, whose velocity is linear in z,

U0(z) = z, Tb(z) = Ma 1
6 (1 − z3). (2.8)

The second kind is the return flow, which has zero mass flux in the vertical section
∫ 1

0 U0dz = 0,
so

U0(z) = 3
4 z2 − 1

2 z, Tb(z) = Ma
(− 1

16 z4 + 1
12 z3 − 1

48

)
. (2.9)

The streamwise velocity U0 only depends on z; thus the continuity equation (2.1) is automatically
satisfied. The basic flow is steady and parallel, so the momentum equation (2.2) can be satisfied, and
the pressure gradient has d p

dx = d2U0
dz2 , which is constant for both the return and linear flows. Applying

(2.7) to the energy equation (2.3), we have −U0 = 1
Ma

d2Tb
dz2 . It is obvious that the solutions in (2.8)

and (2.9) satisfy this equation. The distributions of velocity and temperature are displayed in Fig. 1.

B. Modal analysis

First, we study the flow stability by modal analysis. Suppose an infinitesimal perturbation in the
normal-mode form is added to the basic flow,

(u, T, P, τ ) = (u0, T0, P0, τ0) + δ, (2.10a)

δ = (
�
u,

�
v ,

�
w,

�

T ,
�

P,
�
τ ) exp[i(−ωt + αx + βy)]. (2.10b)

The subscript 0 stands for the basic flow and hereafter, the variables without subscript 0 stand
for the perturbation. Here, ω is the complex frequency; α, β are the wave number in the x and y
directions, respectively. The wave number and the propagation angle are defined as k =

√
α2 + β2

and φ = tan−1(β/α), respectively.
The boundary conditions of perturbations are determined as follows.

�
u = �

v = �
w = D

�

T = 0, z = 0, (2.11a)
�
τ 13 + iα

�

T = 0,
�
τ 23 + iβ

�

T = 0,
�
w = 0, D

�

T + Bi · �

T = 0, z = 1. (2.11b)

Here, D = d
dz . Substituting (2.10) into governing equations (2.3)–(2.6), the linearized perturbation

equations can be derived as follows:

iα
�
u + iβ

�
v + D

�
w = 0, (2.12)

R[β(
�
wDU0 + U0iα

�
u ) − α(U0iα

�
v )] − β(iα

�
τ 11 + iβ

�
τ 12 + D

�
τ 13) + α(iα

�
τ 12 + iβ

�
τ 22 + D

�
τ 23)

= Riω(β
�
u − α

�
v ), (2.13)

Rα(D
�
w · DU0 + �

wD2U0 + DU0 · iα
�
u + U0iαD

�
u ) + Rβ(DU0 · iα

�
v + U0iαD

�
v ) − Rik2(U0iα

�
w)

− (iα2D
�
τ 11 + 2iαβD

�
τ 12 + αD2�

τ 13 + iβ2D
�
τ 22 + βD2�

τ 23) + ik2(iα
�
τ 13 + iβ

�
τ 23 + D

�
τ 33)

= Riω(αD
�
u + βD

�
v − ik2 �

w), (2.14)
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TABLE I. The critical parameters of thermocapillary liquid layers.

Flow Pr Bi Ma k ψ c

Linear flow 0.001 1 17 0.82 90◦ 0.0150
Return flow 0.01 0 6.3 0.24 77◦ 0.0736

Ma

(
�
u

∂T0

∂x
+ �

w
∂T0

∂z
+ U0iα

�

T

)
+ (α2 + β2)

�

T − D2
�

T = Maiω
�

T , (2.15)

�
τ 11 − μ2iα

�
u = 0,

�
τ 12 − μ(iα

�
v + iβ

�
u ) = 0,

�
τ 13 − μt (D

�
u + iα

�
w) = 0, (2.16)

�
τ 22 − μ(2iβ

�
v ) = 0,

�
τ 23 − μ(iβ

�
w + D

�
v ) = 0,

�
τ 33 − μ(2D

�
w) = 0. (2.17)

Then, the Chebyshev collocation method is used to solve the eigenvalue problem with the form
of Wg = ωZg, where W, Z are two matrices, and g is the eigenvector [38]. The eigenvalues are
obtained by using the QZ algorithm available in the MATLAB software package. We use more than
80 Chebyshev nodes to ensure the accuracy in the following.

In order to validate our code, we have computed the critical parameters of thermocapillary liquid
layers. The results are listed in Table I, which agree with those in Ref. [15]. Here, � = 180◦ − φ,
and c = |σi|/k is the wave speed.

C. Nonmodal analysis

Now we study the transient growth of perturbation by nonmodal stability analysis. Suppose a
perturbation with the wave numbers (α, β) is the sum of normal modes as follows [32]:

�(z, t ) =
∑

j

a j exp(−iω jt )� j (z). (2.18)

Here, �(z, t ) = (u, v,w, T ) is a vector consisting of the perturbation velocity and temperature,
the subscript j stands for the jth least stable mode, aj is the jth expansion coefficient, and � j =
(
�
u j,

�
v j,

�
w j,

�

T j ) is the jth eigenvector. A disturbance “energy” can be defined as the following form
[39],

E = ‖�‖2 =
∫

(|u|2 + |v|2 + |w|2 + ς |T |2)dz, (2.19)

where ς is a positive coefficient. Then, the transient growth of perturbation can be measured by the
growth function,

G(t ) = sup
�(0)	=0

‖�(t )‖2/‖�(0)‖2. (2.20)

The transient growth function is obtained by using the algorithm available in the book of Schmid
and Henningson [38]. In the computation, we only need to choose the first K modes,

�(z, t ) ≈
K∑

j=1

a j exp(−iω jt )(
�
u j,

�
v j,

�
w j,

�

T j ). (2.21)

The transient growth function is essentially independent of K when K is large enough [32],

G(t ) ≈ ‖F exp (−i�Kt )F−1‖2
2. (2.22)
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Here, �K = diag(ω1, ω2 · · · ωK ); F is a decomposition of a Hermitian matrix A = F∗F, where F∗ is
the Hermitian conjugate of F; and A is the matrix defined in terms of an inner product,

Ajl = (� j,�l ) =
∫

(
�
u

∗
j
�
ul + �

v
∗
j
�
v l + �

w
∗
j
�
wl + ς

�

T
∗
j

�

T l ) · dz. (2.23)

‖H‖2 is the 2-norm of the matrix H, which is defined as ‖H‖2 = sup
κ 	=0

‖Hκ‖2/‖κ‖2. Here κ is a

vector.
The choice of ς is arbitrary. However, we want the disturbance energy to be mainly a measure of

kinetic energy as this seems more relevant to transition; thus∫
(|u|2 + |v|2 + |w|2)dz �

∫
ς |T |2dz. (2.24)

However, when ς is too small, G(t ) will be singular at small k. We choose ς = k2/100. The
computation shows that the transient growth function is nearly independent of ς when ς is on
the order of O(k2/100). Therefore, the results below are not expected to change qualitatively.

III. NUMERICAL RESULTS

In the following, we compute the transient growth function G(t ) for subcritical flows, whose
Marangoni number Ma is smaller than the critical value Mac [15]. The maximum transient growth
is defined as [32]

Gmax = G(tmax) = max
t�0

G(t ). (3.1)

Then, the optimal growth is defined as

Gopt = max
α,β

G(tmax), (3.2)

and t opt is the time corresponding to Gopt. The transient growth function, maximum growth, and
optimal growth will be discussed in Secs. III A, III B, and III C, respectively. The computation shows
that the transient growth function decreases obviously with Pr. When Pr > 0.1, the largest transient
growth is less than 10 for subcritical flows. Therefore, we restrict our attention to Pr = 0.01 and
Pr = 0.001. Due to symmetry, we shall confine ourselves to the case α � 0, β � 0.

A. Transient growth function

We plot the variation of transient growth function G(t ) with time for linear flow in Fig. 2. For
Pr = 0.001, Bi = 1, the critical Marangoni number of linear flow is Mac ≈ 17 [15]. The Reynolds
numbers in Fig. 2 are far below the critical value Rc = Mac/Pr ≈ 17 000. However, large transient
growth occurs in the subcritical flow.

It can be seen that the perturbation experiences a transient growth and then decays when the
time is large enough. In Fig. 2(a), both G(t ) and tmax increase significantly with R. The largest
transient growth is reached when the wave number is moderate [see Fig. 2(b)]. In Fig. 2(c), the
maximum transient growth is relatively large for streamwise-independent (α = 0) perturbation, and
it decreases significantly with the decrease of φ. This can also be seen in the level lines of the
maximum growth in Sec. III B. tmax increases with φ obviously. In Fig. 2(d), G(t ) is not sensitive
to Pr when t < 20. However, both Gmax and tmax decrease obviously with the increase of Pr. This
suggests that the transient growth of thermocapillary convection depends on the temperature field,
so it differs from those of channel flows. Furthermore, Fig. 2(e) shows that Gmax increases with Bi.

The variations of transient growth function with time for return flow are displayed in Fig. 3. For
Pr = 0.001, Bi = 1, the critical Marangoni number of return flow is Mac ≈ 7.2, and the critical

014001-6



TRANSIENT GROWTH IN THERMOCAPILLARY LIQUID …

FIG. 2. The variation of G(t ) with time for linear flow: (a) at Pr = 0.001, Bi = 1, k = 4, φ = 90◦ with
various Reynolds numbers R; (b) at Ma = 4, Pr = 0.001, Bi = 1, φ = 90◦ with various wave numbers k;
(c) at Ma = 4, Pr = 0.001, Bi = 1, k = 2 with various propagation angles φ; (d) at R = 1200, Bi = 1, k = 3,
φ = 90◦ with various Prandtl numbers Pr; (e) at Ma = 1.2, Pr = 0.001, k = 3, φ = 90◦ with various Biot
numbers Bi.

Reynolds number is Rc = Mac/Pr ≈ 7200; these are larger than those in Fig. 3. It can be seen that
Gmax increases with R significantly, while tmax = O(100) in Fig. 3(a). Both Gmax and tmax decrease
rapidly with the decrease of φ [Fig. 3(c)]. In plane channel flows, the maximum transient growth
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FIG. 3. The variation of G(t ) with time for return flow: (a) at Pr = 0.001, Bi = 1, k = 4, φ = 90◦ with
various Reynolds numbers R; (b) at Ma = 5, Pr = 0.001, Bi = 1, φ = 90◦ with various wave numbers k; (c)
at Ma = 5, Pr = 0.001, Bi = 1, k = 2 with various propagation angles φ; (d) at R = 3000, Bi = 10, k = 3,
φ = 90◦ with various Prandtl numbers Pr; (e) at Ma = 3, Pr = 0.001, k = 3, φ = 90◦ with various Biot
numbers Bi.

behaves like O(R2) [31]. However, in Figs. 2(a) and 3(a), we find that the relation of Gmax and R
is nearly linear. In Figs. 3(d) and 3(e), the variations of G(t ) with Pr and Bi are similar to those in
linear flow in Figs. 2(d) and 3(e).
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FIG. 4. Level lines of the maximum growth Gmax in the α−β plane for linear flow at Pr = 0.001.
(a) Ma = 1, Bi = 0, (b) Ma = 4, Bi = 1.

B. Maximum growth

The level lines of the maximum growth in the α−β plane for linear flow at Pr = 0.001 are
displayed in Fig. 4. By modal analysis, we find that for Bi = 0, the critical Marangoni number
at Pr = 0.001 is Mac ≈ 1.43, while for Bi = 1, Mac ≈ 17; these agree well with the results in
Ref. [15]. Therefore the flows in Fig. 4 are subcritical. It can be seen that when Ma = 1, the optimal
growth appears in the spanwise direction (α = 0), which is similar to the case in plane Poiseuille
flow [32]. However, for Ma = 4, the most amplified disturbance appears when φ is close to 90◦,
which is similar to the case in plane Couette flow [35]. The basic flow of linear flow is the same as
that of plane Couette flow. However, the transient growth of the former is different from that of the
latter. When R = 1000, it can be seen in Fig. 4(a) that Gopt = O(100); however, Gopt = O(1000) for
plane Couette flow [35]. In Fig. 4(b), the maximum growth is of the order of 1000 when Ma = 4
and R = 4000. We can find that large transient growth [Gmax = O(500)] still occurs even when
k = O(10).

The level lines of the maximum growth in the α−β plane for linear flow at Pr = 0.01 are
displayed in Fig. 5. In modal analysis, Mac ≈ 4.43 for Bi = 0, while Mac ≈ 14.5 for Bi = 1.
Therefore the flows in Fig. 5 are subcritical. It can be seen that the maximum growth in Fig. 5(a) is

FIG. 5. Level lines of the maximum growth Gmax in the α−β plane for linear flow at Pr = 0.01. (a) Ma = 3,
Bi = 0, (b) Ma = 12, Bi = 1.
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FIG. 6. Level lines of the maximum growth Gmax in the α−β plane for return flow at Pr = 0.001.
(a) Ma = 1.5, Bi = 0, (b) Ma = 5, Bi = 1.

far smaller than that in Fig. 4(a) even though Ma for the former is three times of that for the latter. In
Fig. 5(b), R = 1200, and the maximum growth has the same order as that in Fig. 4(a). This indicates
that Gmax is more sensitive to R. In Figs. 4 and 5, the optimal growth is reached when β ≈ 3, which
seems to be insensitive to R and Pr.

The level lines of the maximum growth in the α−β plane for return flow at Pr = 0.001 and Pr =
0.01 are displayed in Figs. 6 and 7, respectively. In modal analysis, the critical values at Pr = 0.001
are Mac ≈ 1.97 for Bi = 0, while Mac ≈ 7.2 for Bi = 1. When Pr = 0.01, Mac ≈ 19.4 for Bi = 1,
while Mac ≈ 48 for Bi = 10. Therefore the flows in Figs. 6 and 7 are subcritical. The optimal growth
appears at α ≈ 0, β ≈ 3 in Fig. 6(a), and α ≈ 0.3, β ≈ 4 in Fig. 6(b). Comparing Fig. 6 with Fig. 7,
we can find that the wave numbers in the x and y directions of the optimal growth change with Ma
and Pr for return flow.

The level lines of the maximum time in the α−β plane corresponding to the cases in Figs. 4 and
6 at Pr = 0.001, Bi = 1 are displayed in Fig. 8. It can be seen that tmax have the same order for a
wide range of wave numbers. t opt is not the maximum of tmax in the α−β plane. When α � 0.2, tmax

is not very sensitive to β. We find that the geometries of the contours of Gmax and tmax at different
Pr and Ma are qualitatively similar.

FIG. 7. Level lines of the maximum growth Gmax in the α−β plane for return flow at Pr = 0.01. (a) Ma =
15, Bi = 1, (b) Ma = 35, Bi = 10.
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FIG. 8. Level lines of the maximum time tmax in the α−β plane at Pr = 0.001, Bi = 1: (a) linear flow,
Ma = 4; (b) return flow, Ma = 5.

C. Perturbation flow field

In this section, we pay attention to the flow field of the most amplified disturbance. The flow
field is plotted in a new coordinate system (x′, y′, z), where x′ is the direction of the wave vector,
z is still the wall-normal direction, and y′ is perpendicular to both of them. The velocities in the x′
and y′ directions are ur = u cos φ + v sin φ and vr = −u sin φ + v cos φ, respectively. For the most
amplified disturbance, φ ≈ 90◦. Thus, ur ≈ v, vr ≈ −u.

For plane shear flows, the streamwise streaks (narrow regions where the streamwise velocity
is larger or smaller than the average) are observed in many experiments [40,41]. The nonmodal
analysis of these flows [32,35] also suggested that there are streamwise streaks in the perturbation
field which have the optimal growth. In the thermocapillary liquid layer, the case is similar to those
in channel flows. The flow field of the most amplified disturbance for linear flow is displayed in
Fig. 9. It can be seen that at the initial time and optimal time tmax, the flow fields are characterized
by counter-rotating vortices and streaks. As α � β, the vortices and streaks are nearly streamwise.

The amplitude of temperature perturbation at tmax is far larger than that at the initial time. The
hot spots at tmax appear in the middle of the layer. The values of |ur |, |vr |, |w|, and |T | show that
(2.24) is satisfied, and the increase of the growth function is mainly caused by the increase of |vr |.
There is a little increase of |ur | at tmax, while |w| at tmax is smaller than the value at the initial time.

The flow field of the most amplified disturbance for return flow is displayed in Fig. 10. It can be
seen that the hot spots are in the interior at tmax. The maximum of |vr | is reached on the boundary of
the counter-rotating vortices at tmax, while the maximum of |vr | appears in the interior of the vortex
at the initial time. The isolines of |vr | show the shapes of streaks. It is observed that the shapes of
the streaks are tilted in Figs. 9 and 10, while those in plane Couette flow are upright [35]. The tilt
direction at the initial time is opposite to that at tmax.

D. Energy analysis

We study the energy mechanism in this section. The rate of change for perturbation kinetic energy
can be written as follows [25,42],

∂Ekin

∂t
= − 1

2R

∫
(τ : S)d3r + 1

R

∫
u · τ · nd2r −

∫
u · [(u · ∇)u0]d3r

= −N + M + I, (3.3)

where N is the work done by the perturbation stress, M is the work done by Marangoni forces on
the surface, and I is the interaction between the perturbation flow and the basic flow.
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FIG. 9. The flow field of the most amplified disturbance for linear flow at Pr = 0.01, Ma = 12, Bi = 1,
α = 0.35, β = 3: (a) the velocity field at the initial time; (b) the temperature field and (c) the velocity field
at tmax = 30.5. In (a), (c), the streamlines of (ur,w) are plotted, while the color shows the value of vr . The
maximum growth is Gmax = 134. At the initial time, the amplitudes of velocity and temperature are |ur | =
0.8139, |vr | = 0.0424, |w| = 0.1642, and |T | = 0.0147, while at tmax = 30.5, |ur | = 0.8633, |vr | = 11.8983,
|w| = 0.1373, and |T | = 2.5135.

For Newtonian fluid, the stress is proportional to the strain rate, so N stands for the viscous
dissipation (N > 0). The perturbation energy can only come from the last two terms in (3.3). It
is known that M is an important energy source for perturbation in modal stability analysis. For
example, M/I � 0.4 at Pr = 0.01 [24]. In contrast, the energy of transient growth comes from the
basic flow, which is similar to the mechanism of transient growth in channel flows.

In Tables II and III, the terms in (3.2) of the most amplified disturbance are listed, which are
normalized by the kinetic energy, ∫

|u|2d3r = 1. (3.4)

It can be found that I decreases with t, while the viscous dissipation N increases during the transient
growth. The value of M at Pr = 0.01 is larger than that at Pr = 0.001. However, M is far smaller than
the other two terms, so it is negligible for the energy mechanism. The transient growth only depends
on the relative size of I and N. I > N when t < tmax, so the perturbation kinetic energy increases
with time. In contrast, I < N when t > tmax. This indicates that the growth function reaches its
maximum at tmax.
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FIG. 10. The flow field of the most amplified disturbance for return flow at Pr = 0.001, Ma = 5, Bi = 1,
α = 0.2, β = 4: (a) the velocity field at the initial time; (b) the temperature field and (c) the velocity field at
tmax = 91 . The maximum growth is Gmax = 235. At the initial time, the amplitudes of velocity and temperature
are |ur | = 0.9489, |vr | = 0.0317, |w| = 0.1737, and |T | = 0.0019, while at tmax = 91, |ur | = 0.4322, |vr | =
18.3395, |w| = 0.1075, and |T | = 0.8007.

In Fig. 11, we plot the distribution of the energy from the basic low in the wall-normal direction.
Here,

I = −
∫

u · [(u · ∇)u0]d3r =
∫

PI dz, (3.5a)

PI = −
∫

u(wDU0)d2r. (3.5b)

TABLE II. The terms of perturbation kinetic energy growth in linear flow at Pr = 0.01, Ma = 12, Bi = 1,
α = 0.35, β = 3, Gmax ≈ 134, tmax ≈ 30.5.

t 15 25 30 35 45

N 0.014329 0.019808 0.024597 0.029659 0.038534
M –0.000050 0.000104 0.000114 0.000089 0.000018
I 0.074131 0.035298 0.026420 0.022000 0.019834
∂Ekin

∂t 0.059752 0.015594 0.001937 –0.007570 –0.018682
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TABLE III. The terms of perturbation kinetic energy growth in return flow at Pr = 0.001, Ma = 5, Bi = 1,
α = 0.2, β = 4, Gmax ≈ 235.8, tmax ≈ 91.

t 40 70 90 120 160

N 0.005801 0.006685 0.007913 0.009983 0.011585
M –0.000011 0.000003 0.000005 0.000004 0.000001
I 0.024522 0.011695 0.008050 0.005958 0.006242
∂Ekin

∂t 0.018710 0.005013 0.000142 –0.004021 –0.005342

It can be seen that the energy from the basic flow is related to u and w, but is independent of
v. In Fig. 11, |PI | ≈ 0 near the boundaries, where the vertical velocity has w = 0. PI > 0 in most
regions. For return flow, the maximum of PI appears at z ≈ 0.75, where |DU0| is relatively large. For
linear flow, DU0 = 1, and the maximum of PI appears in the middle of the layer. The distributions
of PI at different times are similar.

IV. DISCUSSION

We will discuss the mechanism of transient growth in thermocapillary liquid layers and make
comparisons with those in channel flows and thermally driven flows in this section.

For channel flows, the transient growth is caused by the “lift-up” effect [31,43], where the stream-
wise streaks are amplified from streamwise vortices. The mechanism can be simply explained as
follows. For large Reynolds numbers, the linearized momentum equation of streamwise perturbation
velocity u can be simplified as

∂u

∂t
+ wDU0 = 0. (4.1)

During the transient growth, w is nearly independent of time, so the streamwise velocity increases
linearly with time.

A similar mechanism also exists in thermocapillary liquid layers. In Figs. 9(c) and 10(c), ur ≈
v, vr ≈ −u, we can find that |vr | reaches its maximum on the boundary of vortices where |w| is
relatively large. For linear flow [see Fig. 9(c)], the maximum of |vr | appears in the middle of the
layer, while for return flow, it appears at z ≈ 0.75. This difference is due to |DU0|, which has been
discussed in Sec. III D.

FIG. 11. The distribution of the energy from the basic flow in the wall-normal direction: (a) linear flow
with the parameters in Table II; (b) return flow with the parameters in Table III.
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Besides the vortices and streaks, the temperature field also has a great effect on the transient
growth in thermocapillary convections. For R = 1000, O(Gmax) = 1000 for plane Couette flow
[35], while O(Gmax) = 100 for linear flow, although the velocity profiles of them are the same.
Furthermore, both Gmax and tmax decrease with Pr [see Figs. 2(d) and Fig. 3(d)], but increase with
Bi [see Figs. 2(e) and F3(e)]. The effect of temperature on the transient growth can be explained as
follows.

Suppose the most amplified disturbance of plane Couette flow is added in the linear flow; then the
vertical downward flow of vortices will increase the streamwise velocity. As the hot spot is mainly
heated by the horizontal convection (

�
u ∂T0

∂x ) for small Pr in thermocapillary liquid layers [24,44], the
increase of streamwise velocity can heat the flow region. Due to the heat conduction, the temperature
of the surface above this region increases. However, the direction of Marangoni force induced by
this temperature perturbation is opposite to the direction of velocity on the surface, so the kinetic
energy will be decreased. Therefore the temperature field on the surface has a negative effect on
the transient growth, and the maximum growth of linear flow is smaller than that of plane Couette
flow. The heat flux to the gas is linearly related to Bi, so the temperature perturbation on the surface
becomes smaller when Bi increases. This is the reason why the maximum growth increases with Bi
in Fig. 2(e).

There is rather large transient growth in subcritical flows at small Prandtl numbers. However,
for moderate and high Prandtl numbers, the order of the critical Reynolds number is less than 1000
[15], and the energy mechanism shows that the energy of perturbation mainly comes from the work
done by Marangoni forces on the surface, while the energy from the basic flow is very small [24].
Therefore there is no obvious transient growth at these Prandtl numbers.

We can find that Gmax of return flow is obviously smaller than that of linear flow when they
have the same Reynolds number (see Figs. 2 and 3). This may be due to the basic flow (see
Fig. 1). The energy analysis in Sec. III D shows that the energy growth of perturbation mainly
comes from the basic flow, and the energy from the basic flow is proportional to DU0. For linear
flow, DU0 = 1, the energy mainly comes from the region 0.3 � z � 0.75 [see Fig. 11(a)], while for
return flow, |DU0| < 1 in most regions, the energy mainly comes from the region 0.6 � z � 0.85
[see Fig. 11(b)]. Therefore there is less energy from the basic flow in return flow, and its transient
growth is smaller.

To some extent, the thermocapillary liquid layer is similar to the thermally driven flows, such as
Rayleigh-Bénard-Marangoni convection. In order to study the transient problem of the latter, some
authors have used the frozen-time analysis [45,46], where the unsteady basic state is supposed to
evolve much more slowly than the perturbations [47]. On the contrary, the nonmodal analysis is
widely used for instability problems of steady base flow [38], including the problem in this paper.
Furthermore, the non-normal approach has been extended to transient cases by Doumenc et al. [47],
which shows that the frozen-time assumption may fail in the transient problem while the non-normal
approach is still valid. Therefore, the non-normal analysis may characterize the transition domain
more properly.

V. CONCLUSION

We have performed the transient growth analysis for thermocapillary liquid layers by nonmodal
stability theory. The maximum growth is determined for linear flow and return flow at different
Prandtl numbers Pr. The results show that rather large transient growth occurs in subcritical flows
at small Prandtl numbers, while the temperature field on the surface has a negative effect on the
transient growth.

The transient growth function increases significantly with the Reynolds number R. Both the
maximum growth Gmax and time tmax decrease with Pr, but increase with the Biot number Bi.
The optimal growth appears when the propagation angle is close to 90◦ and the wave number is
moderate (k ≈ 3−4). Comparing linear flow and return flow, we can find that the maximum growth
of the former is obviously larger than that of the latter at the same Reynolds number.
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The flow field of the most amplified disturbance is characterized by counter-rotating vortices and
streaks, which are both nearly streamwise. This is similar to the case in channel flows. However,
the shapes of streaks are tilted in thermocapillary liquid layers, while those in plane Couette flow
are upright. The increase of the transient growth function is mainly caused by the energy growth of
streaks. For the temperature field, the amplitude of temperature perturbation at the maximum time
tmax is far larger than that at the initial time, and the hot spots at tmax appear in the interior of the
layer.

Energy analysis shows that the energy of transient growth at small Pr mainly comes from the
basic flow, while the work done by Marangoni forces on the surface is negligible. For the most
amplified disturbance, the energy from the basic flow I decreases with time t, while the viscous
dissipation N increases during the transient growth. I > N until t reaches the maximum time tmax.
On the contrary, for moderate and high Prandtl numbers, the work done by Marangoni forces is
dominant, while the energy from the basic flow is small. So the transient growth is not obvious at
these Prandtl numbers.
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