
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=nvsd20

Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility

ISSN: 0042-3114 (Print) 1744-5159 (Online) Journal homepage: https://www.tandfonline.com/loi/nvsd20

Nonlinear hunting stability of high-speed
railway vehicle on a curved track under steady
aerodynamic load

Han Wu, Xiao-Hui Zeng, Jiang Lai & Yang Yu

To cite this article: Han Wu, Xiao-Hui Zeng, Jiang Lai & Yang Yu (2019): Nonlinear hunting
stability of high-speed railway vehicle on a curved track under steady aerodynamic load, Vehicle
System Dynamics, DOI: 10.1080/00423114.2019.1572202

To link to this article:  https://doi.org/10.1080/00423114.2019.1572202

Published online: 29 Jan 2019.

Submit your article to this journal 

Article views: 25

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=nvsd20
https://www.tandfonline.com/loi/nvsd20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00423114.2019.1572202
https://doi.org/10.1080/00423114.2019.1572202
https://www.tandfonline.com/action/authorSubmission?journalCode=nvsd20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=nvsd20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00423114.2019.1572202&domain=pdf&date_stamp=2019-01-29
http://crossmark.crossref.org/dialog/?doi=10.1080/00423114.2019.1572202&domain=pdf&date_stamp=2019-01-29


VEHICLE SYSTEM DYNAMICS
https://doi.org/10.1080/00423114.2019.1572202

Nonlinear hunting stability of high-speed railway vehicle on a
curved track under steady aerodynamic load

Han Wua,b, Xiao-Hui Zenga,b, Jiang Laic and Yang Yud

aKey Laboratory for Mechanics in Fluid Solid Coupling Systems, Chinese Academy of Sciences, Institute of
Mechanics, Beijing, People’s Republic of China; bSchool of Engineering Science, University of Chinese
Academy of Sciences, Beijing, People’s Republic of China; cNuclear Power Institute of China, Chengdu,
People’s Republic of China; dState Key Laboratory of Hydraulic Engineering Simulation and Safety, School of
Civil Engineering, Tianjin University, Tianjin, People’s Republic of China

ABSTRACT
This paper investigates the nonlinear hunting stability of a high-
speed vehicle on a curved track under steady aerodynamic load.
We first established a nonlinear dynamic model of high-speed vehi-
cle on a curved track while considering the effect of aerodynamic
load. Then, we wrote a numerical simulation programme and veri-
fied the validity. The following two types of aerodynamic conditions
were concerned in this study: considering only the aerodynamic lift
and considering the crosswind loads. The influence of aerodynamic
load on the creep force, the restoring force and moment gener-
ated by gravity, and the equilibrium position of the vehicle on the
curved track can all change the hunting stability.We calculated bifur-
cation diagrams, limit cycle motions, nonlinear critical speeds, and
frequency spectrum considering those two types of aerodynamic
conditions, then comparedwith thosewithout considering the aero-
dynamic effects. The results show thatmultiple frequencies including
double frequency, triple frequency, quadruple frequency, and high
frequencies will appear in addition to the fundamental frequency
when huntingmotion occurs. The higher frequencieswhich are even
times of fundamental frequency are caused by the deviation of equi-
librium position from track centre, while the deviation of equilibrium
position is generated by curve track or crosswind load. Additionally,
a positive aerodynamic lift and a crosswind load in the centrifugal
directionwill decrease the vehicle’smotion stability, while a negative
aerodynamic lift and a crosswind load in the centripetal direction can
improve the stability.
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1. Introduction

A railway vehicle moving along a track is a non-linear system that includes many coupled
factors. It is very important to investigate the stability of the non-linear huntingmotions of
such a vehicle. There have been many important studies of the hunting stability of trains.
True [1] provided an accurate definition of the non-linear critical speed and pointed out
that this speed can be determined numerically by using the path-following method [2,3].
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Polach andKaiser [4] used twomethods to analyse the non-linear huntingmotion of a rail-
way vehicle. Di Gialleonardo et al. [5] analysed the effects of different types of rail models
on bifurcation diagrams. Zeng et al. [6] studied the gyroscopic effect of thewheelsets on the
hunting stability of high-speed railway vehicles. Most of these studies focused on hunting
stability on a straight track, but railway vehicles on a curved track experience very different
operating conditions. Consequently, the non-linear stability of a vehicle on a curved track
has also received attention. Using numerical simulations to produce bifurcation diagrams
for such a system, Zboinski and Dusza [7,8] investigated the effects on the non-linear sta-
bility of the suspension parameters, the wheel/rail profile, wheel/rail wear, the radius of
curvature of the track and the rail slope. Their studies [9] explained the cause of a train’s
self-excited vibrations and elucidated the similarity between a curved track and a straight
track. Zeng and Wu [10] analysed the influence of the superelevation of the outer rail and
of the radius of the curve on the non-linear critical speed. True et al. [11] calculated the
critical speed of the curved track and studied the existence of multiple stable solutions
of the curved-track problem. These studies have accordingly provided us with a theory
of the non-linear stability of railway vehicles on curved tracks and also with appropriate
numerical methods for calculating the non-linear critical speed.

Generally, the aerodynamic load is proportional to the square of the wind speed, and
the aerodynamic load on a train generated by the reverse airflow and by crosswinds is
considerably greater at higher speeds than at lower speeds. For this reason, it is crucial to
investigate the aerodynamic loading effect on high-speed trains. Baker et al. [12,13], Yao
et al. [14] and Sun et al. [15] conducted aerodynamic and flow-field analyses of high-speed
trains. The analysis of the dynamic response and safety factors of high-speed train, aimed
at aerodynamic loading conditions, has gradually taken root. Yu et al. [16] and Liu et al.
[17] analysed the influence of aerodynamic loads on the dynamic response, derailment
coefficient, the wheel load-reduction rate and the overturn coefficient. Cheng et al. [18,19]
and Baker et al. [20] investigated the dynamic response and derailment coefficient of a
railway vehicle under aerodynamic conditions. Mao [21] discussed the problem of vehicle
control under crosswinds.

In summary, most numerical or experimental studies of the aerodynamic effects on
high-speed railway-vehicle motions have been performed to obtain the aerodynamic load
on the vehicle. The vehicle is then subjected to this load, and the dynamic response is anal-
ysed to obtain the derailment coefficient, load-reduction rate and derailment coefficient for
the railway vehicle. These are actually forced-vibration problems. In contrast, the hunting
stability of a railway vehicle subject to aerodynamic loads is a self-excitation vibration prob-
lem, themechanism of which is different from that of forced vibrations. In other words, the
results of existing studies of the aerodynamic loads on a vehicle’s forced vibrations are not
sufficient to characterise the stability of a vehicle’s hunting motions under the influence
of an aerodynamic load. It is therefore necessary to study the hunting stability of high-
speed railway vehicles that are subject to aerodynamic loading effects. We have previously
studied the linear stability of the aerodynamic effects on vehicles travelling on straight and
curved tracks [22–25], and from these investigations we have gained considerable under-
standing of aerodynamic effects on the hunting stability of high-speed railway vehicles. A
steady aerodynamic load can change the gravitational restoring force (and moment) and
the creep force (andmoment), as well as the equilibrium position of the moving vehicle. In
the equations that describe vehicle motions, these effects appear as changes in the stiffness
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and damping, which implies that the intrinsic characteristics of the vibration system of the
high-speed rail vehicle have also changed.

In the present study, we have investigated the non-linear stability of a vehicle on a
curved track, extending our previous linear-stability study. To understand the mechanism
by which aerodynamic loading influences the hunting stability of a railway vehicle on a
curved track, we consider here two aerodynamic conditions: steady aerodynamic lift and
crosswind loads. Here, ‘crosswind load’ refers to the aerodynamic force and moment gen-
erated by a combination of high-speed reverse air flow and crosswinds on the train; this
includes the lateral aerodynamic force, lift force, roll moment, pitch moment and yaw
moment.

We first establish a non-linear dynamic model for a railway vehicle on a curved track
that takes into account the aerodynamic load.We have developed a simulation programme
based on this model, and we have verified the accuracy of this programme. Using this
simulation programme, we have used a path-following method to calculate bifurcation
diagrams for a railway vehicle that include the effects of aerodynamic lift and crosswind
loads. By analysing the bifurcation characteristics, the non-linear critical speed and limit-
cycle motions, we have determined the influence of aerodynamic effects on the non-linear
hunting stability. In addition, we have analysed the frequency spectrum and determined
the high-frequency characteristics of hunting motions on a curved track and under a
crosswind load.

2. Systemmodel

2.1. Equations ofmotion

Figure 1 shows a dynamic model of a vehicle on a curved track, where C0 is the superel-
evation of the outer rail, and the numbers represent the elements of the suspension
system.

To investigate the hunting stability of a high-speed railway vehicle that is negotiating a
curved track, we have considered 23 rigid-body degrees of freedom of the vehicle: the lat-
eral displacement yw and yawψw of the wheelset (×4), the lateral displacement yt , vertical
displacement zt , roll φt , yawψ t and pitch β t of the frame (×2) and the lateral displacement
yc, vertical displacement zc, roll φc, yaw ψ c and pitch βc of the car body (×1). These are
collectively expressed in the vector Y1:

Y1 = [yw1 yw2 yw3 yw4 ψw1 ψw2 ψw3 ψw4

yt1 zt1 φt1 ψt1 βt1 yt2 zt2 φt2 ψt2 βt2

yc zc φc ψc βc]T. (1)

The roll φw and vertical displacement zw of the wheelset are not independent; they are
constrained by the relative lateral displacement and the geometric relationship of the wheel
and rail.

In addition, both the secondary lateral damping and the yaw damping are modelled
by series-connected springs and dampers, and there are lateral displacements yh of the
spring-damped connecting points of the secondary lateral dampers (×2) and longitudinal
displacements ys of the spring-damper connecting points of the secondary yaw dampers
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Figure 1. Schematic diagramof the dynamic railway-vehicle system. 1, 2 = primary lateral and longitu-
dinal stiffness; 3 = primary vertical stiffness anddamping; 4 = secondary lateral stiffness anddamping;
5 = secondary vertical stiffness and damping; 6 = secondary lateral damping; and 7 = secondary yaw
damping.

(×4). These degrees of freedom can be expressed collectively by the vector Y2:

Y2 = [
yh1 yh2 ysL1 ysR1 ysL2 ysR2

]T . (2)

The equations of motions for this dynamical model can be written as follows:

M
{
Ÿ1
0

}
+C

{
Ẏ1
Ẏ2

}
+K

{
Y1
Y2

}
=Pf + Pg , (3)

whereM,C andK are the inertiamatrix, dampingmatrix and stiffnessmatrix, respectively,
and Pg and Pf denote the centrifugal and aerodynamic forces, respectively.

The individual governing differential equations are listed Appendix A, and all the phys-
ical quantities in Appendix A are defined in Appendix B. The nominal design parameters
of the vehicle are also provided in Appendix B.

2.2. Wheel/rail contact relationship

2.2.1. Wheel/rail geometric profile
The non-linearity of the wheel-rail relationship is one of the most important non-linear
factors of the railway-vehicle vibration system. In this paper, we use a combination of the
tread profiles of the LMA wheel and the UIC60 rail.
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2.2.2. Wheel and rail creep force
According to the Kalker theory of linear creep [26], the wheel/rail creep coefficients are as
follows:

f11 = Gmn
(
3π(1 − σ 2)

2E(A + B)
N

) 2
3

C11, f22 = Gmn
(
3π(1 − σ 2)

2E(A + B)
N

) 2
3

C22

f23 = Gmn
(
3π(1 − σ 2)

2E(A + B)
N

)
C23, f33 = Gmn

(
3π(1 − σ 2)

2E(A + B)
N

) 4
3

C33

(A + B) = 1
2

(
1
Rw

+ 1
rr

+ 1
rw

)
(4)

where Rw, rw, rr, G, Cij, m and n are the rolling radius of the wheelset, the transverse
radius of the wheel profile, the transverse radius of the rail profile, the shear modulus, the
non-dimensional Kalker coefficients and the coefficients about A and B, respectively. The
coefficients C11, C22, C23 and C33 are tabulated elsewhere [27].

We calculate the creep force and creep moment according to Kalker’s linear creep
theory:

Fx = −f11γx
Fy = −f22γy − f23γs
Mz = f23γy − f33γs, (5)

where f 11, f 22, f 23, and f 33 are creep coefficients, and γ x, γ y, and γ s are creepages.
To calculate the wheel/rail creep force precisely, we used the Shen–Hedrick–Elkins non-

linear creep model [28] and made the following corrections to the creep force:

F =
√
F2x + F2y , (6)

F′ =
⎧⎨
⎩
f · N

[
F
f ·N − 1

3

(
F
f ·N

)2 + 1
27

(
F
f ·N

)3]
(F ≤ 3fN)

f · N (F > 3fN)
, (7)

where f is the coefficient of friction between the wheel and the rail. Introducing the
correction factor ε defined by

ε = F′

F
, (8)

we can write the corrected creep force and creep moment as:

F′
x = ε · Fx

F′
y = ε · Fy

M′
z = ε · Mz. (9)
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2.2.3. Wheel/rail normal force
The expression for the normal force at the wheel-rail contactcan be obtained from the
equations for the rolling and vertical motions of the wheelset:

NL = 2 cos(λL + φw)(W + Mwz̈w − FpzL − FpzR − fpzL − fpzR)+
2 cos(λL + φw)

d0

(
Iwxφ̈w − Iwy vR0

(
ψ̇w − v

R
) − dzxFpzL + dzxFpzR − dzxfpzL + dzxfpzR

−FyLRL − FyRRR − RRNR sin(λR − φw)+ RLNL sin(λL + φw)

)

NR = 2 cos(λR − φw)(W + Mwz̈w − FpzL − FpzR − fpzL − fpzR)−
2 cos(λR − φw)

d0

(
Iwxφ̈w − Iwy vR0

(
ψ̇w − v

R
) − dzxFpzL + dzxFpzR − dzxfpzL + dzxfpzR

−FyLRL − FyRRR − RRNR sin(λR − φw)+ RLNL sin(λL + φw)

)
.

(10)

Here, NL and NR are, respectively, the normal forces at the left and right contact points;
λL and λR are, respectively, the contact angles of the left and right wheels; RL and RR are,
respectively, the radii of the rolling circles of the left and right wheels; and the quantities
FpzL, FpzR, fpzL, fpzR, FyL and FyR are, respectively, the changes in the primary-suspension
forces at the left and right sides of the wheelset, the primary-suspension damping forces at
the left and right sides of the wheelset and the corresponding lateral creep forces.

In Equation (10), we calculate the roll φw and vertical displacement zw of the wheelset
from the geometric relationship between the wheel and rail and the lateral displacement
of the wheelset. The normal force at the wheel/rail contact point is coupled to the various
degrees of freedom of the motion; it is determined iteratively during the calculation.

2.3. Aerodynamic load

For a moving vehicle under the influence of a crosswind, the aerodynamic load on the
vehicle is mainly caused by the high-speed airflow opposite to the forward direction
of the vehicle and the ambient airflow. The aerodynamic loads are proportional to the
square of the modulus of the sum of the two velocity vectors. The aerodynamic loads are
given as:

Fy_wind = 1
2
ρACC(�v2 + �U2

)

Fz_wind = 1
2
ρACL(�v2 + �U2

)

Mx_wind = 1
2
ρALCMx(�v2 + �U2

)

My_wind = 1
2
ρALCMy(�v2 + �U2

)

Mz_wind = 1
2
ρALCMz(�v2 + �U2

) (11)

In Equations (11), ρ, A and L are the air density, reference area and reference length,
respectively. The quantities CC, CL, CMx, CMy and CMz are the coefficients of the lateral
aerodynamic force, lift force, roll moment, pitch moment and yaw moment, respectively.
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The vectors �v and �U are the reverse air velocity (i.e. in the direction opposite to the vehicle
velocity) and the crosswind velocity, respectively. The vector �U can be in any direction,
although, in practice, it is most commonly in the crosswind sense. If a train travels at a
speed of 300 km/h, the reverse air speed is 83.3 m/s. Under normal operating conditions,
the reverse air speed is much greater than the crosswind speed. Therefore, the reverse air
flow plays a major role in determining the aerodynamic load.

The existence of a steady aerodynamic load has amajor influence on the normal force on
the wheel-rail system, because aerodynamic lift reduces the axle weight. The lateral aero-
dynamic force and the roll moment cause the normal forces on the left and right wheels
to be different, and the pitch moment causes the normal force at the front wheel/rail con-
tact point to be different from that at the rear wheel/rail contact point. The gravitational
restoring force arises from the normal force between the wheel and the rail; a steady aero-
dynamic load thus changes the normal force and consequently changes the gravitational
restoring force as well. In addition, the creep coefficient Equation (4) and correction factor
Equation (8) are related to the normal force and the parameters of the contact point. There-
fore, a steady aerodynamic load changes not only the normal force but also the equilibrium
position of the wheel and rail. As a result, the creep coefficient and correction factor are
changed significantly by the aerodynamic load and consequently so are the creep force and
creep moment.

The changes in the gravitational restoring force and the creep force (andmoment) due to
a steady aerodynamic load appear in the equations ofmotion of the vehicle as changes in the
stiffness and damping. This implies that the intrinsic characteristics of the vibration system
of a high-speed railway vehicle also change. In other words, the effects of aerodynamic
loads on a vehicle’s vibration system are inherent and complex and are not just an external
excitation.

2.4. Determining the non-linear critical speed

Because of the curved track and the aerodynamic load factors, the limit-cycle motion of
a vehicle is asymmetric with respect to the centre of the track. In this paper, we construct
the bifurcation diagram by plotting half of the peak-to-peak value of the lateral hunting
motion as a function of vehicle speed.

Figure 2 is a subcritical bifurcation diagram for a typical non-linear railway-vehicle sys-
tem. The minimum bifurcation speed vn is the non-linear critical speed, and the larger
bifurcation speed vh is the Hopf bifurcation speed. A correct method for calculating the
bifurcation diagram and finding the minimum bifurcation point is based on the path-
following method [2]. In this method, we change the vehicle speed manually by a small
step and solve the initial-value problem to obtain the dynamic response at each step. If the
solution for the current step is stationary, then we increase the speed in the next step, and
obtain the initial condition for the subsequent calculation by adding a small disturbance.
The speed at which a periodic solution occurs is called the Hopf bifurcation speed vh. The
solution for the current step is then taken as the initial condition for the next step. We
continue increasing the speed until the amplitude of the periodic solution is significantly
large. We then decrease the vehicle speed by a small step. The smallest bifurcation point,
i.e. the non-linear critical speed vn, is found where the solution has a stable zero, as shown
in Figure 2.
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Figure 2. Schematic bifurcation diagram and the non-linear critical speed.

3. Simulation programme and validation

It is difficult to express the contact parameters as specific functions of the lateral dis-
placement of the wheel relative to the rail. We therefore compute the wheel-rail profile
at discrete data points and calculate the contact parameters using spline interpolation. We
use the Runge-Kutta method to integrate the governing differential equations numerically
to obtain the dynamic response, and we then calculate the bifurcation diagram, non-
linear critical speed and motion phase diagram. To ensure the reliability of the simulation
programme, we compared the simulation results with those obtained from commercial
software and from the literature.

First, we examined the submodule for the wheel-rail contact relationship. Figure 3
compares the results calculated by this submodule with those obtained from commercial
software for a LMA/UIC60 pair and from Ref. [29]. The results compare well, indicating
that the submodule is correct.

Figure 3. Comparison of the result from our non-linear wheel/rail subroutine with those from commer-
cial software and from the literature.
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Figure 4. Comparison of wheel/rail lateral forces during steady-state motion on a circular track, as
obtained from our simulation programme and from Ref. [29].

Figure 5. Comparison of the lateral displacements of wheelsets negotiating a curve, as obtained from
our simulationprogrammeand fromRef. [30]. (a)Ordinary railway vehicle. (b) Railway vehiclewith simple
turning mechanism.

In Figure 4, we compare the lateral wheel/rail forces on the outer track of a railway
vehicle during steady-state motion on a circular track. The agreement is good for all three
velocity conditions.

Fortin [30] calculated the lateral displacements of wheelsets during negotiation from
a straight track onto a circular track for both an ordinary railway vehicle and a vehicle
with a turning mechanism. We simulated the lateral displacement curves of the wheelsets
using our simulation programme, and subsequently compared the results with Fortin’s
calculations, as shown in Figure 5. The results are consistent, thus again validating the
accuracy of the programme developed in this study.

4. Non-linear bifurcation analysis

On the basis of our dynamic model and the simulation programme described above, we
calculated the bifurcation diagram and the non-linear critical speed for a railway vehicle
on a curved track. We assumed the radius of the true circular curve to be 6000 m and the
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superelevation of the outer track to be 0.06 m. In the following discussion, we focus on two
types of aerodynamic conditions: aerodynamic lift alone and crosswind loads.

4.1. Non-linear bifurcation analysis under aerodynamic lift

For aerodynamic lift, there are two cases: positive aerodynamic lift and negative aerody-
namic lift. In our analysis, the positive aerodynamic lift coefficient isCL = 0.11563, and the
negative aerodynamic lift coefficient is CL = −0.12441. When the effects of aerodynamic
lift is not taken into account, CL = 0.

Figure 6 shows bifurcation diagrams for the lateral movement of the first wheelset
for a vehicle with positive aerodynamic lift, negative aerodynamic lift, and without any
aerodynamic effect. In comparison to the case without any aerodynamic load, a positive
aerodynamic lift increases the amplitude of the limit cycle and decreases the Hopf bifur-
cation speed and the non-linear critical speed. Conversely, a negative aerodynamic lift
decreases the limit-cycle amplitude and increases the Hopf bifurcation speed and the non-
linear critical speed. See Table 1 for details. Thus, a negative aerodynamic lift improves the
stability of a railway vehicle on a curved track, whereas a positive aerodynamic lift degrades
its stability.

Figure 7 shows the time history and phase-plane projections of the lateral displacement
and yaw angle for the first wheelset at a speed of 290 km/h. The change in direction of the
aerodynamic lift has a greater influence on the yaw than on the lateral displacement.

Figure 6. Comparison of bifurcation diagrams for the lateral displacement of the first wheelset.

Table 1. Changes in critical speed under the influence of aerodynamic lift.

Hopf bifurcation speed (km/h) Non-linear critical speed (km/h)

Without aerodynamic load 272 233
Positive aerodynamic load (CL = 0.11563) 267 229
Variation relative to CL = 0 −5 −4
Negative aerodynamic load (CL = −0.12441) 277 236
Variation relative to CL = 0 +5 +3
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Figure 7. Time history and phase-plane projection when v = 290 km/h. (a) First-wheelset lateral dis-
placement. (b) First-wheelset yaw.

4.2. Non-linear bifurcation analysis under crosswind load

In this section, we consider further the complicated aerodynamic loads generated by
crosswinds. On account of the curved track, we need to consider crosswinds in two oppo-
site directions. One is a centrifugal crosswind, where the wind blows radially towards
the outer rail of the track; the other is a centripetal crosswind, where the wind blows
radially towards the inner rail of the track. To consider various wind directions and
wind speed, we used the following five aerodynamic conditions in our calculations and
analyses:

(1) Aerodynamic effects not considered: vf = 0.0m /s.
(2) Centrifugal wind direction, wind speed at 10.7m/s: vf =10.7m/s.
(3) Centrifugal wind direction, wind speed at 5.4m/s: vf = 5.4m/s.
(4) Centripetal wind direction, wind speed at 5.4m/s: vf = −5.4m/s.
(5) Centripetal wind direction, wind speed at 10.7m/s: vf = −10.7m/s.

We obtained the aerodynamic coefficients for the various aerodynamic conditions used
in this section from Yang et al. [31]. These coefficients were calculated by the CFD
method [15]. Table 2 shows all the aerodynamic coefficients. The difference between
centrifugal and centripetal crosswinds is reflected in the opposite signs of CC, CMx
and CMz.
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Table 2. Aerodynamic coefficients.

Aerodynamic condition CL CC CMx CMy CMz

Centrifugal crosswind (vf = 10.7 m/s) −0.02797 0.33856 0.04379 −0.058333 −0.75349
Centrifugal crosswind (vf = 5.4 m/s) −0.10082 0.1358 0.01717 −0.24503 −0.74366
Centripetal crosswind (vf = −5.4 m/s) −0.10082 −0.1358 −0.01717 −0.24503 0.74366
Centripetal crosswind (vf = −10.7 m/s) −0.02797 −0.33856 −0.04379 −0.058333 0.75349

Figure 8. Bifurcation diagram for the lateral motion of (a) the first wheelset and (b) the third wheelset.

Table 3. Changes of critical speed under the influence of crosswind load.

Hopf bifurcation speed (km/h) Non-linear critical speed (km/h)

Without aerodynamic loads vf = 0 272 233
vf = 10.7 m/s 260 218
Variation relative to vf = 0 −12 −15
vf = 5.4 m/s 270 232
Variation relative to vf = 0 −2 −1
vf = −5.4 m/s 299 247
Variation relative to vf = 0 +27 +14
vf = −10.7 m/s 302 261
Variation relative to vf = 0 +30 +28

We calculated the bifurcation diagram for a railway vehicle on a curved track for each
of the five aerodynamic conditions listed above. Figure 8 shows the bifurcation diagrams
for the lateral movement of the first wheelset and the third wheelset. These results show
that the bifurcation diagram for a railway vehicle on a curved track has only one non-zero
stable branch when considering the aerodynamic loads generated by crosswinds, which is
the same as when the aerodynamic load effect is not considered. When the wind blows
in the centripetal direction, the Hopf bifurcation speed and the non-linear critical speed
increase. On the contrary, the Hopf bifurcation speed and the non-linear critical speed
decrease under a centrifugal crosswind load. At a wind speed of 10.7 m/s, the changes in
both the critical speed and the Hopf bifurcation speed are greater than those at a wind
speed of 5.4 m/s. Table 3 shows the Hopf bifurcation speed and the non-linear critical
speed for these five cases. The variations relative to the case without an aerodynamic load
are shown in Table 3 as well. For a centrifugal crosswind at a speed of 10.7m/s, the non-
linear critical speed is 6.4% smaller than that without an aerodynamic load. Conversely, for
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Figure 9. Time history and phase-plane projections for a vehicle moving at a speed v = 280 km/h and
under a centrifugal crosswind vf = 10.7 m/s. (a) Lateral displacement of the wheelsets. (b) Yaw of the
wheelsets. (c) Lateral displacement of the frames, (d) Yaw of the frames.
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Figure 10. Time history and phase-plane projections of a vehicle moving at a speed v = 280 km/h and
under a centripetal crosswind load with vf = − 10.7 m/s. (a) Lateral displacement of the wheelsets. (b)
Yaw of the wheelsets. (c) Lateral displacement of the frames. (d) Yaw of the frames.
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a centripetal crosswind at a speed of 10.7 m/s, the non-linear critical speed is 12% larger
than that without an aerodynamic load.

Generally, for a fixed vehicle speed, a centrifugal crosswind load increases the ampli-
tude of the limit cycle, whereas a centripetal crosswind decreases it. Figure 8 shows that a
crosswind load of 10.7 m/s has a significant effect on the bifurcation diagram. If the wind
direction is centrifugal, bifurcation exists in a small range of speeds (218–225 m/s) near
the critical speed. Compared with a centrifugal wind load, the limit-cycle amplitude of the
third wheelset decreases sharply when a centripetal wind load is considered

Figure 9 shows the time history and phase-plane projections of a vehicle moving at a
speed of 280 km/h under a centrifugal crosswind load at vf = 10.7 m/s. The results show
that—when considering a crosswind blowing in the centrifugal direction—the amplitude
of vibration of the front bogie (including the first and secondwheelsets and the front frame)
is smaller than that of the rear bogie (including the third and fourth wheelsets and the rear
frame).

Figure 10 shows the time history and phase-plane projections of a vehicle moving at
a speed of 280 km/h and under a centripetal crosswind load with vf = − 10.7 m/s. In a
centripetal crosswind, the vibration amplitude of the front bogie is larger than that of the
rear bogie. This is opposite to the case of a centrifugal crosswind load. This shows that a
change in the wind direction can influence not only the non-linear critical speed but also
the relative magnitude of the hunting motions of the front and rear bogies.

5. Frequency-spectrum analysis

To investigate the influence of aerodynamic loads on the vibration frequency of hunting
motions, we used the fast fourier transform algorithm (FFT) to perform frequency-
spectrum analyses of the wheelset motions. The sampling period was equal to the numer-
ical integration step, 0.001 s. Thus, the sampling frequency was 1000Hz, which meets the
accuracy requirement of the FFT. Figure 11 shows the frequency spectrum of the first
wheelset when limit-cyclemotion occurs at a vehicle speed of 290 km/h, with aerodynamic

Figure 11. Spectrum of limit-cycle motions at a speed of 290 km/h, with aerodynamic lifts included.
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Figure 12. Spectrum at the non-linear critical speed under crosswind loads.

lifts included. The frequency spectrum at the non-linear critical speed under a crosswind
load is shown in Figure 12. When hunting motion occurs, multiple frequencies appear in
addition to the fundamental frequency, including the double frequency, triple frequency,
quadruple frequency and higher frequencies.

Unlike a linear vehicle system, in a non-linear vehicle system, higher frequency vibra-
tions occur at multiples of the fundamental frequency. In this section, we analyse the cause
of the higher frequency vibrations for a vehicle subject to an aerodynamic load on a curved
track. The non-linearity of our dynamic vehicle model is mainly rooted in the non-linear
wheel/rail contacts. For simplicity, we analyse below the lateral movement of a wheelset.
The relevant equation can be written in the simplified form

Mwÿw + Fk + Ff = NR · λR − NL · λL (12)

where Fk and Ff are the primary-suspension force and the wheel/rail creep force, NL and
NR are the left- and right-contact normal forces and λL and λR are the left and right contact
angles, respectively.

We consider the LMA/UIC60 wheel/rail pair as an example. The relation between the
wheel/rail contact angle and the lateral displacement yw of the wheelset can be fitted with
a polynomial function, as shown in Equations (13) and (14) and Figure 13. In Figure 13,
yw = 0 means that the wheelset is located at the centre of the track and that the wheel/rail
contact point is located on the nominal rolling circle.

λL = 0.02496 + 0.1735(yw − 0.02496)+ 303.8388(yw − 0.02496)2

− 1.0555e6(yw − 0.02496)3 − 4.5476e8(yw − 0.02496)4

+ 2.2664e12(yw − 0.02496)5 + 1.8239e14(yw − 0.02496)6

− 2.1008e18(yw − 0.02496)7 − 1.6998e19(yw − 0.02496)8

+ 7.28745e23(yw − 0.02496)9 (13)
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Figure 13. Polynomial fits for the left and right contact angles.

λR = 0.02496 − 0.1735(yw − 0.02496)+ 303.8388(yw − 0.02496)2

+ 1.0555e6(yw − 0.02496)3 − 4.5476e8(yw − 0.02496)4

− 2.2664e12(yw − 0.02496)5 + 1.8239e14(yw − 0.02496)6

+ 2.1008e18(yw − 0.02496)7 − 1.6998e19(yw − 0.02496)8

− 7.28745e23(yw − 0.02496)9 (14)

When a vehicle is running on a straight, flat track without any aerodynamic load, its equi-
librium position is located at the centre of the track, and the corresponding wheel/rail
contact point is located on the nominal rolling circle. Then, the relationships between the
contact angles and the relative lateral displacements of the left and right wheel/rail pairs
are symmetrical, as shown in Figure 13. In the neighbourhood of the equilibrium position,
the normal contact forces also can be regarded as equivalent; i.e. NL = NR. Substituting
Equations (13) and (14) into Equation (12) and subtractingNR ·λR fromNL ·λL causes the
even terms in the polynomial to disappear, and only odd terms remain. However, if the
vehicle is running on a curved track or under a crosswind load, its equilibrium position
deviates from the centre of the track. Naturally, the normal contact forces in the neighbour-
hood of the equilibrium position then cannot be regarded as equivalent, and the relations
between the contact angles and the relative lateral displacements of the wheel/rail pairs
become unsymmetrical. In this case, both even and odd terms remain in the polynomial
after NR ·λR is subtracted from NL ·λL.

From this analysis, we conclude that only higher frequencies that are odd multiples of
the fundamental frequency appear in the hunting motion when the equilibrium position
is located at the centre of the track. Nevertheless, if the equilibrium position deviates from
the track centre, then higher frequencies that are both even and odd multiples of the fun-
damental frequency appear in the hunting motion. The deviation from the equilibrium
position may be caused either by the curved track or by the crosswind load. Although we
obtained this conclusion by analysing the specific LMA/UIC60 pair, it can be extended to
other wheel/rail pairs because the relationships between the contact angles and the relative
lateral displacements of the left and right wheel/rail pairs are always symmetrical when the
vehicle equilibrium position is located at the track centre.
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Figure 14. Time history and frequency spectrum for a vehicle at a speed of 550 km/h on a straight track.

To validate this conclusion, we simulated the hunting motion of a vehicle on straight
track for cases both with and without aerodynamic loads, and we analysed the frequency
spectrum. As shown in Figure 14, for a vehicle on a straight track and without an aero-
dynamic load, the equilibrium position is located at the centre of the track, and the
high-frequency vibrations only contain frequencies that are odd multiples of the funda-
mental frequency. However, the equilibrium position deviates from the track centre when
there is a crosswind load, and it is obvious that frequencies that are both even and oddmul-
tiples of the fundamental frequency exist in the hunting motion. These simulation results
thus confirm our inference.

Our previous work [22–25] on the linear stability of a railway vehicle was performed
using eigenvalue analysis, and we determined the influence of an aerodynamic load on
the linear critical speed. In this paper, we give an explanation using explicit mathemati-
cal expression for the phenomenon that higher frequencies are multiples of fundamental
frequency under actions of crosswind in nonlinear system.

6. Conclusion

A steady aerodynamic load changes the normal force at the various wheel-rail contact
points, thus changing the creep force, gravitational restoring force and moment. This also
changes the equilibrium position of the railway vehicle on the curved track. These aero-
dynamic effects change the stability of high-speed railway vehicles on a curved track. To
investigate the effect of aerodynamic loads on the hunting stability of a vehicle on a curved
track, we simulated the limit-cyclemotions and bifurcation diagrams and obtained the crit-
ical speed for such a system. We also performed frequency-spectrum analyses and briefly
discussed themechanism responsible for the high-frequency characteristics of the hunting
motion. From these analyses, we have drawn the following conclusions:

For a railway vehicle running on a curved track subject to aerodynamic loads, when
hunting motions occur, multiple frequencies—including the double frequency, triple fre-
quency, quadruple frequency and higher frequencies—as well as the fundamental fre-
quency appear. In addition, a curved track or a crosswind load causes the equilibrium
position to deviate from the track centre. In such cases, higher frequencies that are both
even and odd multiples of the fundamental frequency appear in the hunting motion.
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However, when the equilibrium position is located at the centre of the track, only higher
frequencies that are odd multiples of the fundamental frequency appear.

A negative aerodynamic lift can improve the non-linear stability of a vehicle, whereas
a positive aerodynamic lift can degrade the stability. Compared to a case without any
aerodynamic load, a negative aerodynamic lift reduces the limit-cycle vibration ampli-
tude of the various degrees of freedom of the railway vehicle. The greater the vehicle
speed, the more pronounced the effect. Conversely, a positive aerodynamic lift increases
the limit-cycle vibration amplitude.

A centrifugal crosswind load can lower the non-linear critical speed and the Hopf
bifurcation speed of the vehicle. Conversely, a centripetal crosswind load can increase the
non-linear critical speed and the Hopf speed. In one calculation, we assumed the radius
of the curve to be 6000 m, the outer rail superelevation to be 0.06 m and the crosswind
speed to be 10.7 m/s. For a centrifugal wind direction, the Hopf bifurcation speed is then
reduced by 4.4%, and the non-linear critical speed is reduced by 6.4%. For a centripetal
wind direction, on the contrary, the Hopf bifurcation speed is increased by 11.0%, and the
non-linear critical speed is increased by 12.0%.

A change in the crosswind direction changes not only the non-linear critical speed but
also the relative amplitude of the hunting motion of the front and rear bogies. At a wind
speed of 10.7m/s and a centrifugal wind direction, the hunting amplitude of the front bogie
is smaller than that of the rear one. However, when the wind direction is centripetal, the
hunting amplitude of the front bogie actually becomes greater than that of the rear bogie.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by National Natural Science Foundation of China: [Grant Number
51805522 and 11672306]; Informatization Program of the Chinese Academy of Sciences: [Grant
Number XXH13506-204]; Strategic Priority Research Program of the Chinese Academy of Sciences:
[GrantNumberXDB22020101]; National KeyResearch andDevelopment ProgramofChina: [Grant
Number 2016YFB1200602].

References

[1] True H. Does a critical speed for railroad vehicles exist? In: Railroad Conference. Proceedings
of the 1994 ASME/IEEE Joint (in Conjunction with Area 1994 Annual Technical Conference);
1994 Mar 125–131.

[2] True H, Kaas-Petersen C. A bifurcation analysis of nonlinear oscillations in railway vehicles.
Vehicle Syst Dyn. 1983;12(1–3):5–6.

[3] TrueH.Multiple attractors and critical parameters and how to find themnumerically: the right,
the wrong and the gambling way. Vehicle Syst Dyn. 2013;51(3):443–459.

[4] Polach O, Kaiser I. Comparison of methods analyzing bifurcation and hunting of complex rail
vehicle models. J Comput Nonlin Dyn. 2012;7(4):041005.

[5] Di Gialleonardo E, Braghin F, Bruni S. The influence of track modelling options on the
simulation of rail vehicle dynamics. J Sound Vib. 2012;331(19):4246–4258.

[6] Zeng XH, Wu H, Lai J, et al. The effect of wheel set gyroscopic action on the hunting stability
of high-speed trains. Vehicle Syst Dyn. 2017;55(6):924–944.



20 H. WU ET AL.

[7] Zboinski K, Dusza M. Development of the method and analysis for non-linear lateral stability
of railway vehicles in a curved track. Vehicle Syst Dyn. 2006;44(sup1):147–157.

[8] Zboinski K, Dusza M. Bifurcation approach to the influence of rolling radius modelling
and rail inclination on the stability of railway vehicles in a curved track. Vehicle Syst Dyn.
2008;46(S1):1023–1037.

[9] Zboinski K, Dusza M. Self-exciting vibrations and Hopf ’s bifurcation in non-linear stability
analysis of rail vehicles in a curved track. Eur J Mech A Solids. 2010;29(2):190–203.

[10] Zeng J, Wu PB. Stability analysis of high speed railway vehicles. JSME Int J Ser C.
2004;47(2):464–470.

[11] True H, Hansen TG, Lundell H. On the quasi-stationary curving dynamics of a railroad
truck. Proceedings of the ASME/IEEE/AREA Joint Railroad Conference, ASME-RTD; 2005
Jan 131–138.

[12] Baker CJ. The simulation of unsteady aerodynamic cross wind forces on trains. JWind Eng Ind
Aerod. 2010;98(2):88–99.

[13] Baker C, Hemida H, Iwnicki S, et al. Integration of crosswind forces into train dynamic mod-
elling. Proceedings of the Institution ofMechanical Engineers, Part F: Journal of Rail and Rapid
Transit; 2011 Mar 154–164.

[14] Yao SB, Sun ZX, Guo DL, et al. Numerical study on wake characteristics of high-speed trains.
Acta Mech Sin. 2013;29(6):811–822.

[15] Sun ZX, Yao SB, Guo DL, et al. Numerical study of crosswind stability of a high speed train.
Sci Tech Engrg. 2012;12(32):8486–8497. in Chinese.

[16] YuMG, Zhang JY, ZhangWH. Running attitudes of car body and wheelset for high-speed train
under cross wind. Jiaotong Yunshu Gongcheng Xuebao. 2011;11(4):48–55. in Chinese.

[17] Liu JL, Yu MG, Zhang JY, et al. Study on running safety of high-speed train under crosswind
by large eddy simulation. J China Railway Society. 2011;33(4):13–21. in Chinese.

[18] Cheng YC, Chen CH, Yang CJ. Dynamics analysis of high-speed railway vehicles excited by
wind loads. Int J Struct Stab Dyn. 2011;11(06):1103–1118.

[19] Cheng YC, Huang CH, Kuo CM, et al. Derailment risk analysis of a tilting railway vehicle
moving over irregular tracks under wind loads. Int J Struct Stab Dyn. 2013;13(08):1350038.

[20] Baker C, Cheli F, Orellano A, et al. Cross-wind effects on road and rail vehicles. Vehicle Syst
Dyn. 2009;47(8):983–1022.

[21] Mao J, Xi YH, Yang GW. Research on influence of characteristics of cross wind field on
aerodynamic performance of a high-speed train. J China Railway Society. 2011;33(4):22–30.

[22] ZengXH, Lai J.Hunting stability of high-speed railway vehicle considering the actions of steady
aerodynamic loads. Eng Mech. 2013;30(4):52–58. in Chinese.

[23] Zeng XH,WuH, Lai J, et al. Influences of aerodynamic loads on hunting stability of high-speed
railway vehicles and parameter studies. Acta Mech Sin. 2014;30(6):889–900.

[24] Zeng XH,Wu H, Lai J, et al. Hunting stability of high-speed railway vehicles on a curved track
considering the effects of steady aerodynamic loads. J Vib Control. 2016;22(20):4159–4175.

[25] Zeng XH, Lai J, Wu H. Hunting stability of high-speed railway vehicles under steady aerody-
namic loads. Int J Struct Stab Dyn. 2018;18(7):1850093.

[26] Kalker JJ. Three-dimensional elastic bodies in rolling contact. Dordrecht (ZH): Kluwer Aca-
demic Publishers; 1990.

[27] Kalker JJ. Survey of wheel-rail rolling contact theory. Vehicle Syst Dyn. 1979;8(4):317–358.
[28] Shen ZY, Hedrick JK, Elkins JA. A comparison of alternative creep force models for rail vehicle

dynamic analysis. Vehicle Syst Dyn. 1983;12(1–3):79–83.
[29] Hirotsu T, Shimada M, Nishigaito T, et al. Curving simulation of a non-pendulum rail vehi-

cle: 1st Report, The influence of Configurations and forced Steering. Trans of JSME Series C.
1999;65(637):3531–3538.

[30] Fortin C. Dynamic curving simulation of forced-steering rail vehicles [dissertation]. Kingston
(ON): Queen’s University; 1984.

[31] Yang GW, Jin XS, Wang YM, et al. Fundamental mechanics in high speed train
at operation speed of 500 km/h, interim report. the National Basic Research Pro-
gram of China (973 Program) 2012; library collection No.306-2014-010350. in Chinese
(http://www.nstrs.cn/xiangxiBG.aspx?id= 50919).

http://www.nstrs.cn/xiangxiBG.aspx?id=50919


VEHICLE SYSTEM DYNAMICS 21

Appendices

Appendix A. Equations ofmotion

(1) For the wheelsets,

mwÿwi − 2kpy[−ywi + ytn + htzφtn − (−1)iltψtn] =
− NLi sin(λri + φwi)+ NRi sin(λli − φwi)+ FyLi + FyRi

+ mwv
2

Rwi
cosφrawi − mwgφrawi + mwR0φ̈rawi − mwgφwi (A1)

Iwzψ̈wi + Iwy
V
R0
(φ̇w + φ̇ra)+ 2dzxkpx[dzx(ψwi + (−1)iΦai)− dzxψtn] =

d0ψwi[NRi sin(λri − φwi)+ NLi sin(λli + φwi)] cosψwi

+ d0(FxRi − FxLi)+ d0ψwi(FyRi − FyLi)+ MzRi + MzLi + Iwzv
d
dt

(
1
Rwi

)
(A2)

In Equations (A1) and (A2), n = 1 when i = 1, 2 and n = 2 when i = 3, 4. The subscript i = 1 ∼
4 represents the i-th wheelset, and n = 1 ∼ 2 represents the n-th frame.

(2) For the frames,

mtÿti + 2kpy(2yti − yw(2i) − yw(2i−1) + 2htzφti)

− 2kty1(−yti + yc + htkφti + hckφc − (−1)ilcψc)

− kty2(yhi − yti + hthφti) =

mt
v2

Rti
− mtg(φti + φra)+ mt(R0 + ht)φ̈rati (A3)

mtz̈ti + 2kpz(2zti − zw(2i) − zw(2i−1))+ 2cpz(2żti − żw(2i) − żw(2i−1))

− 2ktz1[zc − zti + (−1)ilcβc] = −mtd0φ̈ra (A4)

Itx(φ̈ti + φ̈rati)+ 2kpyhtz(yw(2i−1) + yw(2i) − 2yti − 2htzφti)

+ 2kpzd2zx(2φti − φw(2i−1) − φw2i)− 2cpzd2zx(2φ̇ti − φ̇w(2i−1) − φ̇w2i)

− 2htkkty1[yti − yc − htkφti − hckφc + (−1)ilcψc]

+ hthkty2(yhi − yti + hthφti)+ 2d2khktz1(φti − φc) = 0 (A5)

Itzψ̈ti − 2kpylt(yw(2i−1) − yw(2i) − 2ltψti)− 2kpxd2zx(ψw(2i−1) + ψw(2i) − 2ψti)

− dsxksx[ysRi − ysLi − 2dsx(ψti + (−1)iΦsi)]

− 2d2khktx1[ψc − ψti − (−1)iΦsi] = Itzv
d
dt

(
1
Rti

)
(A6)

Ityβ̈ti − 2ltkpz(−zw(2i−1) + zw(2i) − 2ltβti)− 2ltcpz(−żw(2i−1) + żw(2i) − 2ltβ̇ti)

+ 4h2tzkpx1βti + htsksx(2htsβti + ysLi + ysRi)+ 2htkktx1(hckβc + htkβti) = 0 (A7)

In Equations (A3) ∼ (A7), i = 1∼ 2 represents the i-th frame.
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(3) For the carbody,

mcÿc − 2kty1(yt1 + yt2 − 2yc − htkφt1 − htkφt2 − 2hckφc)

+ kty2(−yt1 + hthφt1 + yh1)+ kty2(−yt2 + hthφt2 + yh2) =

mc
v2

Rc
− mcg(φc + φrac)+ mchcφ̈rac + Fy_wind (A8)

mcz̈c + 2ktz1(2zc − zt1 − zt2) = −mcd0φ̈rac + Fz_wind (A9)

Icx(φ̈c + φ̈rac)− 2kty1hck(yt1 + yt2 − 2yc − htkφt1 − htkφt2 − 2hckφc)

+ hchkty2(−yt1 + hthφt1 + yh1)+ hchkty2(−yt2 + hthφt2 + yh2)

− 2ktz1d2kh(φt1 + φt2 − 2φc) = Mx_wind (A10)

Iczψ̈c − 2kty1lc(yt1 − yt2 − htkφt1 + htkφt2 − 2lcψc)
+lckty2(−yt1 + hthφt1 + yh1)− lckty2(−yt2 + hthφt2 + yh2)
+dsxksx(−2dsxψt1 + ysR1 − ysR1)+ dsxksx(−2dsxψt2 + ysR2 − ysL2)
−2ktx1d2kh(ψt1 + ψt2 − 2ψc) = Iczv d

dt

(
1
Rc

)
+ Mz_wind

(A11)

Icyβ̈c − 2ktz1lc(zt2 − zt1 − 2lcβc)+ 2ktx1hck(2hckβc + htkβt1 + htkβt2)

− hcsksx(2htsβt1 + ysL1 + ysR1)− hcsksx(2htsβt2 + ysL2 + ysR2) = My_wind (A12)

The components of aerodynamic loads Fy_wind, Fz_wind, Mx_wind, My_wind, and Mz_wind repre-
sent the lateral aerodynamic force, aerodynamic lift, aerodynamic roll moment, aerodynamic pitch
moment, and aerodynamic yaw moment, respectively.

(4) For the connecting points of the secondary lateral dampers and yaw dampers,

kty2(yti − hthφti − yhi)− cty2[ẏhi − ẏc − hckφ̇c + (−1)ilcψ̇c] = 0 (A13)

ksx[htsβti + ysLi + dsx(ψti + (−1)iΦsi)] + csx(hcsβ̇c + dsxψ̇c + ẏsLi) = 0

ksx[htsβti + ysRi − dsx(ψti + (−1)iΦsi)] + csx(hcsβ̇c − dsxψ̇c + ẏsRi) = 0 (A14)

where i = 1 and 2 denote the dampers on the front and the rear frame, respectively.
All physical quantities in Equations (A1) ∼ (A14) are defined inAppendixB. The nominal design

parameters of vehicle are also provided in Appendix B.

Appendix B. Explanation of parameters and nominal design parameters

Parameters Explanation and value

Mass of wheelset mw = 1780 kg
Mass of frame mt = 3300 kg
Mass of car body mc = 31,374 kg
Roll moment-of-inertia of wheelset Iwx = 967 kg·m2

Roll moment-of-inertia of frame Itx = 2673 kg·m2

Roll moment-of-inertia of car body Icx = 120,800 kg·m2

Pitch moment-of-inertia of wheelset Iwy = 118 kg·m2

Pitch moment-of-inertia of frame Ity = 1807 kg·m2

Pitch moment-of-inertia of car body Icy = 1,555,000 kg·m2

Yawmoment-of-inertia of wheelset Iwz = 967 kg·m2

Yawmoment-of-inertia of frame Itz = 3300 kg·m2

Yawmoment-of-inertia of car body Icz = 1,467,400 kg·m2

Longitudinal stiffness of primary suspension kpx = 1.37× 107 N/m
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Parameters Explanation and value

Lateral stiffness of primary suspension kpy = 5.49× 106 N/m
Vertical stiffness of primary suspension kpz = 1.176× 106 N/m
Primary vertical damping cpz = 19,600 Ns/m
Half of track gauge d0 = 0.7465m
Half of width of primary suspension dzx = 1.0m
Half of length of primary suspension lt = 0.75m
Vertical distance from primary suspension to centre-of-gravity of frame htz = 0.064m
Longitudinal stiffness of secondary suspension ktx1 = 1.597× 106 N/m
Lateral stiffness of secondary suspension kty1 = 1.597× 106 N/m
Vertical stiffness of secondary suspension ktz1 = 9.9× 105 N/m
Half of width of secondary suspension dkh = 1.23m
Height of secondary suspension above centre-of-gravity of frame htk = 0.39m
Vertical distance from secondary suspension to centre-of-gravity of car body hck = 0.62m
Half of length of secondary suspension lc = 8.75m
Stiffness of spring-damping connecting point of lateral damper kty2 = 3.43× 107 N/m
Damping of spring-damping connecting point of lateral damper cty2 = 1.18× 105 Ns/m
Height of lateral damper above centre-of-gravity of frame hth = 0.281m
Vertical distance from lateral damper to centre-of-gravity of car body hch = 0.719m
Stiffness of spring-damping connecting point of yaw damper ksx = 8.82× 106 N/m
Damping of spring-damping connecting point of yaw damper csx = 2.89× 105 Ns/m
Half of width of yaw damper dsx = 1.35m
Height of yaw damper above centre-of-gravity of frame hts = —0.03m
Vertical distance from yaw damper to centre-of-gravity of car body hcs = 1.04m
Normal wheel radius R0 = 0.43m
Axle weight W = 1.1× 105 N
Left normal contact force of i-th wheelset (i = 1∼ 4) NLi
Right normal contact force of i-th wheelset (i = 1∼ 4) NRi
Left contact angle of i-th wheelset (i = 1∼ 4) λLi
Right contact angle of i-th wheelset (i = 1∼ 4) λRi
Left lateral creep forces of i-th wheelset (i = 1∼ 4) FyLi
Right lateral creep forces of i-th wheelset (i = 1∼ 4) FyRi
Left longitudinal creep forces of i-th wheelset (i = 1∼ 4) FxLi
Right longitudinal creep forces of i-th wheelset (i = 1∼ 4) FxRi
Left creep moment of i-th wheelset (i = 1∼ 4) MzLi
Right creep moment of i-th wheelset (i = 1∼ 4) MzRi
normal wheel radius R0
Rail radius at the position of i-th wheelset (i = 1∼ 4) Rwi
Rail radius at the position of i-th frame centre (i = 1, 2) Rti
Rail radius at the position of car-body centre Rc
Superelevation at the position of i-th wheelset (i = 1∼ 4) φrawi
Superelevation at the position of i-th frame centre (i = 1, 2) φrati
Superelevation at the position of car-body centre φrac
Relative yaw angle between i-th wheelset and frame due to railway curve (i = 1∼ 4) �ai
Relative yaw angle between i-th frame and car body due to railway curve (i = 1, 2) �si
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