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A B S T R A C T

Statistical size scaling of compressive strength of quasi-brittle materials demands to define a global stress
parameter pertinent to the well accepted mechanism of shear stress induced fracture. The work proposes to
adopt the resultant stress acting on the diagonal cross-section of a uniaxial compression specimen from one
loading end to the other loading end in place of the conventional nominal compressive stress on two loading
ends for statistical size scaling. As a result, the size effect on compressive strength is partitioned into specimen
volume effect and specimen length-to-diameter ratio effect according to a recently developed formulation for the
generalized weakest link statistics. This proposal is validated by three published data sets on the compressive
strength of concrete, rock and four cohesive soils as preliminary case studies.

1. Introduction

This work concerns the statistical size scaling of compressive
strength of quasi-brittle materials measured from specimens with dif-
ferent length to diameter aspect ratios. Size effect on the strength of
brittle and quasi-brittle materials exists under either tensile or com-
pressive loading. A quantitative characterization of the size effect is
needed to transfer the strength data measured from laboratory small-
sized specimens under relatively simple loading conditions into the
design codes and safety regulations for full-scale engineering structures
serviced under complex loading conditions. Both deterministic methods
and statistical approaches have been pursued to understand the size
effect [1–7]. In addition to the size effect, strength values measured
from a group of nominally identical specimens under same loading
conditions also vary randomly. The random variation of strength arises
from the inherent stochastic distribution of defects in materials at the
microscopic and mesoscopic scales in terms of their spatial location,
orientation, geometrical shape and size. These defects are either pre-
existing in materials or developed as a result of progressive damage
localization during loading. The interplay between size dependence and
random variation of brittle failure strength necessitates the adoption of
statistical approaches to tackle both aspects for size scaling. While the
weakest-link statistics has been commonly used for tensile strength

characterization, its applicability to the analysis of compressive
strength has not been well agreed. As examples, Chen et al. [5] con-
ducted the Kolomogorove-Smirnov goodness-of-fit tests and validated
the feasibility of the modified Weibull distribution to 300 compressive
strength data of concrete cores with different length-to-diameter ratios.
Lei demonstrated the applicability of weakest-link statistics to the size
effect on compressive strength of coal [6] and ceramics [7]. Bazant [1],
Weiss et al. [4], Bazant and Xiang [8], Bertalan et al. [9], and Vu et al.
[10] claimed the failure of weakest-link statistics in compressive load-
ings. As Lei [6,7] pointed out, Weibull statistics is not equivalent to
weakest link statistics. Instead, Weibull statistics is only a subset of
weakest link statistics. Therefore, the unsuccessful applications of
Weibull statistics in [1,4,8–10] to compressive failure are not in a po-
sition to justify the failure of weakest link statistics. To the authors’s
opinion, among many other aspects that need to be addressed, a proper
representation of the compressive strength is essential in the study of
statistical size scaling. Fig. 1 shows a cylindrical specimen of diameter D
and length L under uniaxial compressive loading force F. The un-
confined compressive strength of a material is measured by the nominal
stress =σ F πD4 /( )2 at fracture. This uniaxial compression test is most
widely used for measuring the compressive strength and size effect of
geotechnical materials such as concrete [5,10], ice [11], coal [12],
rocks [13], and cohesive soils [14]. It raises two concerns: (1). The
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nominal compressive strength seems to work well for the case of pro-
portional size scaling of strength, in which all specimens have a fixed
value of length-to-diameter aspect ratio L/D while the magnitudes of L
and D vary. However, does it also work for non-proportional size
scaling of strength that involves specimens with different values of
length-to-diameter aspect ratio L D/ ? (2). There lacks a sound justifi-
cation or interpretation on how this nominal compressive strength σ is
associated with the commonly accepted physical mechanism of shear
stress induced failure for compressive loading. These two concerns
motivate the present work to search for a proper representation of the
compressive strength. The major purpose of this work is to propose and
justify the adoption of the resultant stress σt acting on the diagonal
cross-section of a uniaxial compression specimen from one loading end
to the other loading end for statistical size scaling, followed by pre-
liminary validation using some published data sets. The statistical size
scaling will be based on a recently proposed generalized weakest-link
statistical formulation [6], which will be briefly introduced first to fa-
cilitate the description.

2. Theoretical considerations

2.1. Introduction to the generalized weakest-link statistical formulation

The random distribution of various defects such as microcracks in a
material can be characterized by four attributes namely, their spatial
location, orientation, geometrical shape and size. Note that due to the
difficulty in formulating the fracture probability induced by an in-
dividual defect that interacts with other defects, the assumption of
mutual independence of defects is needed to develop the weakest-link
formulation. However, these defects are not limited to preexisting ones.
They can be developed due to progressive damage accumulation during
the loading history, so long as they can cause unstable propagation or
growth to incur fracture. Lei [6] proposed the generalized weakest-link
formulation for brittle fracture induced by a population of mutually
independent microcracks as follows:

∫= − ⎧
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− ∂
∂

⎫
⎬⎭

P ln p σ V N V
V

δV1 exp [1 ( , )]· ( ) ·
V 0
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where =N N V( ) is the number of microcracks in a volume V, which
describes the spatial distribution of microcracks, or more generically,
defects of sizes up to lateral size of an elemental volume V0; p σ V( , )0 is
the probability for an existing microcrack of size a in the elemental
volume V0 to propagate unstably under stress σ ,
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where σth is the threshold of fracture strength S, σeq is the effective stress
acting on a volume element V0, σeq is a function of principal stresses
( ≥ ≥σ σ σ )1 2 3 , σeq,max is the upper bound value of σeq, = ≥σ σ Seq refers
to the stress-based microscopic fracture criterion, which states that
unstable fracture occurs when σeq reaches the critical strength S of a
volume element V0 embedded with a microcrack of size a. Different
expressions of the effective stress σeq have been proposed [15].

≥F σ S( )eq is the fracture probability of an existing microcrack, which
depends on microcrack orientation and stress state, g S( ) is the prob-
ability density function (PDF) with respect to the fracture strength (S) of
elemental volume V0.

Under the simplest maximum tensile principal stress criterion,
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In turn, Eq. (2) reduces to the simplest format:

∫=p σ V g S dS( , ) ( )·
σ

σ
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th

1

(5)

Conceptually, the strength distribution g(S) is determined by mi-
crocrack size a and shape η, due to the Griffith law:

=
−

S
ηEγ

ν a(1 )2 (6)

where γ is the effective surface energy, E is the Young’s modulus and ν
is the Poisson’s ratio. In real materials such as concrete, crack-type
defects can be three-dimensional, such as those formed along the
curved interfaces between reinforcement phases and matrix. So the
accurate representation of defect shape factor distribution or even de-
fect size distribution is very challenging. This is a major consideration
to adopt strength distribution g(S) to represent the combined con-
tributions of defect size and shape in Eq. (2).

Therefore, Eq. (1) collectively represents the combined effects of the
four attributes of defects (spatial location, orientation, geometrical
shape and size) and stress states in a material, as illustratively high-
lighted in Fig. 2.

By assuming a power-law function for the number of defects in a
volume V,
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Eq. (1) reduces to
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Note that >β 0 includes three scenarios, namely
= < < >β β β1, 0 1, 1 [6,7,16,17].
Next, under the maximum tensile principal stress criterion in Eq. (3),

when g(S) is described by
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Eq. (5) reduces to
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Consequently, Eq. (8) reduces to

Fig. 1. A cylindrical specimen in unconfined uniaxial compression.
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Under uniform stress states such as uniaxial loading, Eq. (11) re-
duces to
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When =β 1, the crack-type defects are uniformly distributed within
a material, Eqs. (11) and (12) reduce to the three-parameter Weibull
statistics,
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In a real material, the exact PDFs of strength (g(S)) and defect or-
ientation are unknown. More likely, defect orientation takes a non-
uniform distribution. This makes it very challenging to pursue an
analytical solution to p σ V( , )0 in Eq. (2). As a result, an explicit ex-
pression of the cumulative failure probability P in terms of stress state,
microcrack orientation, microscopic strength distribution g(S) is rarely
available. Alternatively, according to the first mean value theorem for
integrals, Eq. (8) is rewritten as
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where σ~ is a stress value in the range ≤ ≤σ σ σ~
th N , h σ( )N is a function of

the nominal fracture strength σN .
Eq. (14) suggests a practical method to scaling size effect on

strength by correlating the compound parameter ⎡⎣ ⎤⎦−·ln
βV P

1 1
(1 )β and

nominal strength σN of different-sized specimens. It was validated by
proportional size scaling of the strength of wood, concrete, gamma ti-
tanium aluminum alloy, nuclear-grade graphite, and aluminum foam in
tension and coal in compression [6,7,17].

2.2. Selection of characteristic strength parameters for compressive failure
size scaling

In addition to the four attributes of microcracks or defects, the roles
of stress state in a material need to be emphasized. As highlighted in
Fig. 2, stress state has an impact on the spatial distribution of micro-
cracks, since during the loading history, progressive damage accumu-
lation induces growth of preexisting microcracks until their unstable
propagation is triggered to incur brittle failure. Furthermore, stress
state also has an impact on the selection of appropriate microscopic
fracture criterion ≥σ Seq . Obviously, the commonly adopted maximum
tensile principal stress criterion = ≥σ σ Seq 1 in tensile stress dominated
loading conditions is no longer valid in compressive loading conditions
such as uniaxial compression. Fig. 3a shows the cross section of a cy-
lindrical or prismatic specimen with its two end faces subjected to
uniaxial compression. The specimen height is denoted as L. The dia-
meter of the end face is denoted as D. The volume element at an ar-
bitrary material point M in the specimen is highlighted, in which a
randomly oriented microcrack is embedded. Due to the remotely loaded
global compressive stress σ, both a shear stress component τ ' and a
compressive normal stress component σn

' are applied on the crack sur-
face with its normal in an angle of α to the global compressive stress σ.
On the one hand, microscopically, the Coulomb criterion is commonly
adopted for the onset of brittle fracture under a compressive stress state
as below,

= + ≥σ τ μ σ S| | ·eq n
' ' (15)

where the sign convention of the normal stress component σn is positive
in tension and negative in compression, μ is an internal friction coef-
ficient, S now refers to the cohesion strength. Due to material hetero-
geneity and the random microcrack orientation, both μ and S are
random variables. On the other hand, as mentioned in Section 1. In-
troduction, the peak value of the global compressive stress σ is con-
ventionally taken as the nominal compressive strength and is also di-
rectly adopted for statistical analysis. As shown in Fig. 3a, there is

= =σ σ cos α τ σsinα cosα· , ·n
' 2 ' (16)

Fig. 2. Illustration of the combined effects of stress state and four microcrack attributes (spatial location, orientation, size and shape) on the cumulative failure
probability.
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Eq. (15) is rewritten as

= + ≥σ σ cosα cosα μ sinα S· ·( · )eq (17)

Regardless of the complexity of the solution to p σ V( , )0 in Eq. (2)
due to the unknown distributions of microcrack orientation angle α and
the internal friction coefficient μ, the formulation (17) suggests that
p σ V( , )0 relates to the nominal compressive strength σ. From this aspect,
the adoption of nominal compressive strength σ in engineering seems to
be in line with the Coulomb criterion in Eq. (15). However, one major
problem is that this nominal compressive strength σ is incapable of
manifesting the impact of specimen aspect ratio (L/D) on the onset of
failure. It is thus necessary to look for a better stress parameter that can
also reflect the effect of specimen aspect ratio (L/D). Now the specimen
in Fig. 3a is equivalently represented in Fig. 3b, where the whole spe-
cimen is partitioned into four zones I, II, III, and IV by the two diagonal
lines AC̄ and BD̄. Due to the symmetry of both loading and specimen
geometry, for a macroscopically homogeneous material, zone I (ΔBEC)
and zone II (ΔAED) have the identical mechanical performance, so do
zone III (ΔAEB) and zone IV (ΔCED). The same stress state exists along
the diagonal edges (lines AC̄ and BD̄). As shown in detail in Fig. 3c, the
resultant stress σt on the two diagonal lines AC̄ and BD̄ is a function of
the specimen aspect ratio (L/D) as follows:

= = +tanθ L D cosθ L D/ , 1/ 1 ( / )2 (18)

= = +σ σ cosθ σ L D· / 1 ( / )t
2 (19)

Accordingly, the shear stress component τ ' and the normal stress
component σn

' acting on an arbitrary microcrack surface can be re-
formulated in terms of the resultant stress σt as below:

= =σ σ cos α cosθ τ σ sinα cosα cosθ· / , · · /n t t
' 2 ' (20)

Therefore, the resultant stress σt on the diagonal sections of the
specimen embodies the effects of both the nominal compressive stress σ
and the specimen aspect ratio (L/D). For a group of specimens with a
fixed aspect ratio (L/D=constant), the angle θ remains unchanged.
The case reduces to proportional size scaling, and there is no difference
of using either σt or σ. However, when specimens of different aspect
ratios (L/D) are involved, the adoption of the resultant stress σt has a
clear merit over that of σ. Therefore, in Eq. (14), we now propose to use

=σ σN t instead of =σ σN as the nominal strength to investigate the
correlation between the compound parameter ⎡⎣ ⎤⎦−·ln

βV P
1 1

(1 )β and σt in
Eq. (19) for size scaling of compressive strength of specimens of dif-
ferent length-to-diameter ratios. As a preliminary effort, Section 3 is
dedicated to the case studies of three published data sets to validate this
proposal.

Fig. 3. Characteristic strength parameters for compressive failure analysis: Cross-sectional view of a specimen in uniaxial compression and a volume element
embedded with a microcrack in point M (a); four zones of the specimen defined by the end-to-end diagonal cross sections AC̄ and BD̄ (b); stress analysis along the
cross section AC̄ and a volume element embedded with a microcrack in point M (c).
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3. Case studies

3.1. Compressive strength of concrete cores with different length-to-diameter
ratios

Chen et al. [5] studied the statistical distribution of compressive
strength of concrete cores with a fixed diameter (D) of 74mm but dif-
ferent length-to-diameter (L/D) ratios of 0.5, 1.0, 1.5, 2.0, 3.0, and 4.0.
The maximum aggregate size is 20mm. At each aspect ratio (L/D), 50
core specimens were tested. In total, 300 strength data were reported in
a tabular form, and are shown here in Fig. 4a. The 50 strength data
points in each group are arranged in an ascending order. Then the rank
probability for the i-th strength datum is given by:

= −
+

= ⋯ =P i
n

i n n0.3
0.4

( 1, 2, , ; 50)i (21)

The strength data at each aspect ratio (L/D) were fit with the fol-
lowing modified Weibull distribution to account for the length (L) effect
in [5]:

⎜ ⎟ ⎜ ⎟= − ⎡

⎣
⎢−⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

L
L

σ
σ

P 1 exp
β m

0 0 (22)

Their fitting results are reported in Table 1. While β has a fixed
value of 3.848, both the estimated values of m and σ0 vary with the
aspect ratio (L/D).

Now Eq. (14) is adopted to seek the correlation between

⎡⎣ ⎤⎦−·ln
βV P

1 1
(1 )β and the nominal strength σN in two ways. First, the re-

mote compressive strength σ is taken as the nominal strength, =σ σN .
This leads to a poor correlation for either =β 1 (uniform spatial dis-
tribution of defects) or ≠β 1 (non-uniform spatial distribution of de-
fects) as shown in Fig. 4b and Fig. 4c, respectively. Second, the re-
sultant stress on the diagonal sections σt given in Eq. (19) is taken as the

nominal strength, = = +σ σ σ L D/ 1 ( / )N t
2 . All the data fall on a

master curve with =β 5.2 (non-uniform spatial distribution of defects)
as shown in Fig. 4d. This example clearly demonstrates the merit of
adopting the resultant stress σt in place of the conventional nominal
stress σ for statistical analysis of size effect on uniaxial compressive
strength. This master curve correlating ⎡⎣ ⎤⎦−·ln

βV P
1 1

(1 )β and σt is fitted by

a power function ( = xy a )m with the coefficient of determination
=R 0.9852 as shown in Fig. 4d. In equivalence, the power function fit is

given as below:

⎜ ⎟= − ⎡

⎣
⎢− ⎛

⎝
⎜ +

⎞

⎠
⎟

⎛
⎝

⎞
⎠

⎤

⎦
⎥P exp β σ

σ L D
V
V

1
1 ( / )

m β

0
2 0 (23)

with = = = = =β σ MPa V cm V πLD5.2, m 5.6, 10945.8 , 1 , /40 0
3 2 ,

=R 0.9852 .
While the uniqueness of the master curve correlation between

⎡⎣ ⎤⎦−·ln
βV P

1 1
(1 )β and σt is convincing, we admit that the relatively power

function does not accurately represent all the data points.

Fig. 4. Compressive strength of 74mm diameter concrete cores with different lengths: raw strength (σ) data [4] (a); correlation between ⎡⎣ ⎤⎦−·ln P
1
V

1
(1 ) and =σ σN (b);

correlation between ⎡⎣ ⎤⎦−·ln
βV β P

1 1
(1 ) and =σ σN (c); correlation between ⎡⎣ ⎤⎦−·ln

βV β P
1 1

(1 ) and =σ σN t (d).

Table 1
Estimation of Weibull parameters of concrete compressive strength data [4].

L/D Ref. [4] This study
Eq. (23) Eq. (24)

m σ0, MPa β R2 m σ0, GPa β R2

0.5 8.491 59.815 3.848 0.945 5.6 10.95 5.2 0.985
1.0 6.960 57.122 0.981
1.5 6.557 63.328 0.985
2.0 4.947 80.566 0.982
3.0 4.446 116.801 0.977
4.0 3.999 164.863 0.968
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3.2. Compressive strength of rock specimens with different length-to-
diameter ratios

Li et al. [13] studied the statistical distribution of compressive
strength of cylindrical rock specimens with a fixed diameter of 47.5 mm
but different length-to-diameter (L/D) ratios of 1.60, 1.87, 2.14, 2.41,
and 2.67 as actual measurement (the target L/D ratios being 1.5, 1.75,
2.0, 2.25, 2.5). At each aspect ratio (L/D), only 5 specimens were tested.
The strength data were given in tabular format and are plotted in
Fig. 5a. Now Eq. (14) is adopted to seek the correlation between

⎡⎣ ⎤⎦−·ln
βV P

1 1
(1 )β and the conventional nominal strength, =σ σN . This

leads to a poor correlation for either =β 1 (uniform spatial distribution
of defects) or ≠β 1 (non-uniform spatial distribution of defects) as
shown in Fig. 5b and c, respectively. Now we seek the correlation be-
tween ⎡⎣ ⎤⎦−·ln

βV P
1 1

(1 )β and the nominal strength

= = +σ σ σ L D/ 1 ( / )N t
2 . As shown in Fig. 5d, all the data sit on a

master curve defined by Eq. (24),with
= = = = =β σ V V πLD6.2, m 7.7, 5331 MPa, 1 cm , /40 0

3 2 , =R 0.9122 .
The small number of specimens (5) in each group should be responsible
for the relatively large scatter of strength data in Fig. 5a and d.

3.3. Compressive strength of cohesive soil specimens with different length to
diameter aspect ratios

Güneyli and Rüsen [14] studied the effect of length-to-diameter
ratio on the unconfined compressive strength of cohesive soil speci-
mens. Four soil materials were tested namely, Handere clay,

Alamanpinari clay, Sam-Tekin clay, and kaolinate. The samples for
unconfined compression testing were prepared with the optimum
moisture content to eliminate the effects of the moisture content, void
ratio, and natural density on the unconfined compressive strength. Each
soil sample was first oven-dried at 60 °C, then it was compacted using a
standard Proctor mold at the optimum moisture content and the max-
imum dry density according to the compaction curves. Next, a thin-
walled stainless steel sampling tube with an inner diameter of 48mm, a
length of 19 cm, and a wall thickness of 1.5mm was driven into the soil
in the standard Proctor mold with a hydraulic jack to immediately
extrude the soil from the sampling tube by another hydraulic jack and
its ends were cut to make it the desired length. The inner surface of the
sampling tube was lightly lubricated to minimize the side friction,
which can damage soil samples during intrusion and extrusion. The
weight of each sample was measured to an accuracy of about 0.01 g and
then wrapped in plastic foil to avoid significant variations in water
content. The samples isolated in this way were kept under ambient
conditions at 24 ± 2 °C for seven days in order to ensure moisture
uniformity. Cylindrical specimens were prepared for each soil material
with a fixed diameter (D) of 48mm and 11 different length-to-diameter
(L/D) ratios (from 0.5:1 to 3:1), corresponding to lengths from 24 to
144mm. The average values of the compressive strength along with the
standard deviations were reported as presented in Table 2, while the
individual strength measurement for each specimen was not given.
Therefore, we need to first formulate the mean value of strength as a
function of the aspect ratio based on Eq. (23).

Eq. (23) is equivalent to

Fig. 5. Compressive strength of 47.5 mm diameter rock with different lengths: raw strength (σ) data [13] (a); correlation between ⎡⎣ ⎤⎦−·ln P
1
V

1
(1 ) and =σ σN (b);

correlation between ⎡⎣ ⎤⎦−·ln
βV β P

1 1
(1 ) and =σ σN (c); correlation between ⎡⎣ ⎤⎦−·ln

βV β P
1 1

(1 ) and =σ σN t (d).
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⎜ ⎟= − ⎡
⎣⎢

−⎛
⎝

⎞
⎠

⎤
⎦⎥

P exp σ
σ

1
u

m

(24)

With

= + ⎛
⎝

⎞
⎠

σ σ
β

L D V
V

1 ( / ) ·u
0 2 0

m

β
m

(25)

Therefore, the mean value of strength σ is

= ⎛
⎝

+ ⎞
⎠

= + ⎛
⎝

⎞
⎠

⎛
⎝

+ ⎞
⎠

σ σ
m

σ
β

L D V
V m

¯ ·Γ 1 1 1 ( / ) · ·Γ 1 1
u

0 2 0
m

β
m

(26)

Eq. (26) is rewritten as:

+
= ⎛

⎝
⎞
⎠

⎛
⎝

+ ⎞
⎠

σ
L D

σ
β

V
V m

¯
1 ( / )

· ·Γ 1 1
2

0 0
m

β
m

(27)

Since the diameter (D) has a fixed value (48mm) for all the speci-
mens,

= = ⎛
⎝

⎞
⎠

∝π LD πD L
D

L
D

V
4 4

·2
3

(28)

Eq. (27) is rewritten as

+
=σ

L D
C

L D
¯

1 ( / ) ( / )η2 (29)

Or

=
+

σ
C L D

L D
¯

· 1 ( / )
( / )η

2

(30)

= ⎛
⎝

⎞
⎠

⎛
⎝

+ ⎞
⎠

= >C σ
β

V
πD m

η
β
m

· 4 ·Γ 1 1 , and 00 0
3m

β
m

(31)

According to Eq. (29), we now seek the correlation between

+

σ

L D

¯

1 ( / )2
and the aspect ratio L D/ , as shown in Fig. 6a and b. For all

the four soil materials, the power law correlation between
+

σ

L D

¯

1 ( / )2

and L D/ does exit, with = =η 0.96, 1.227, 1.152, 1.073β
m for Sam-Tekin

clay, Kaolinite, Handere clay, and Almanpinari clay, respectively. With
the information of statistical distribution of strength for each soil
(which was not reported in [13]), the values of β and m can be further
determined.

However, if we take the remote compressive strength σ s the nom-
inal strength, =σ σN , while Eq. (24) is still valid, Eqs. (25) and (26)
reduce to,

= ⎛
⎝

⎞
⎠

σ σ
β

V
V

·u
0 0

m

β
m

(32)

= ⎛
⎝

+ ⎞
⎠

= ⎛
⎝

⎞
⎠

⎛
⎝

+ ⎞
⎠

σ σ
m

σ
β

V
V m

¯ ·Γ 1 1 · ·Γ 1 1
u

0 0
m

β
m

(33)

Due to Eq. (28) for a fixed value of D, Eq. (33) is rewritten as

=σ C
L D

¯
( / )η (34)

Fig. 6c and d show the correlation between σ̄ and L D/ . A compar-
ison of the values of coefficient of determination R2 for each same
material supports to correlate

+

σ

L D

¯

1 ( / )2
instead of σ̄ with the aspect

ratio L D/ .

4. Discussions

The difference in size effect on brittle fracture induced by tension
and by compression is an interesting point to discuss. First, the size
effect on strength is well understood for tensile loading induced failure.
It essentially reduces to specimen volume effect for a given tensile
loading mode [16]. However, for compressive loading induced failure,
as revealed in Eq. (27), there are two aspects of the size effects on the
mean value of strength σ̄ , namely the volume effect and the length-to-
diameter ratio effect. Conceptually, Eq. (27) suggests that the mean
value of unconfined compressive strength σ̄ is a function of material
structural properties (Weibull modulus m, scale parameter σ0, ele-
mental volume V0, and defect spatial distribution parameter β) and
specimen geometries (volume V and length-to-diameter ratio L/D) as
follows:

=σ f V σ m β V L D¯ ( , , , , , / )0 0 (35)

Second, for the spatial distribution of defects in quasi-brittle mate-
rials under tensile loading, < ≤β0 1 is found (e.g. =β 1 for concrete)
in [6,16], while under compressive loading, both < ≤β0 1 (e.g. =β 0.5
for coal in [6]) and >β 1 (for concrete and rock in this study) are found.
It would be interesting to conduct tensile tests and compressive tests
respectively on a same material (e.g. concrete) and compare the values
of β inferred from both tests. If they are significantly different, it will
validate the argument that both the preexisting defects and those de-
veloped due to progressive damage accumulation during loading pro-
cess contribute to the final unstable failure event.

While these three case studies support the proposed idea, more
experimental data will be needed for validation before it is adopted for
engineering practice. Particularly, these three case studies all designed
specimens of different aspect ratio (L/D) by fixing specimen diameter D
and varying specimen length L. This method of experimental design
may be due to practical demand in their engineering applications. In
order to validate this model, we do need strength data from specimens
of different aspect ratio (L/D) by varying D while fixing L or by varying
both D and L in future studies. However, since in the model, the
parameters V σ m β, , ,0 0 are assumed material properties, so long as the

Table 2
Uniaxial compressive strength data of cohesive soils [14].

L/D ratio Average strength (σ̄) ± standard deviation (δ )σ , MPa

Sam-Tekin clay Kaolinite Handere clay Almanpinari clay

0.50 3.4663 ± 0.067 2.2866 ± 0.087 1.9947 ± 0.074 4.2623 ± 0.182
0.75 3.2865 ± 0.065 1.9479 ± 0.101 1.7606 ± 0.060 3.9573 ± 0.171
1.00 3.0110 ± 0.068 1.6949 ± 0.096 1.2222 ± 0.099 3.8475 ± 0.176
1.25 2.5814 ± 0.149 1.6724 ± 0.097 1.1480 ± 0.113 3.3142 ± 0.243
1.50 2.4942 ± 0.167 1.5230 ± 0.122 1.0509 ± 0.124 3.1045 ± 0.251
1.75 2.2791 ± 0.180 1.4148 ± 0.123 0.9860 ± 0.132 2.9289 ± 0.212
2.00 2.1980 ± 0.216 1.3327 ± 0.126 0.9130 ± 0.142 2.6190 ± 0.224
2.25 2.1826 ± 0.211 1.2405 ± 0.145 0.8836 ± 0.170 2.5085 ± 0.264
2.50 2.0770 ± 0.225 1.0882 ± 0.144 0.8761 ± 0.157 2.4229 ± 0.291
2.75 2.0090 ± 0.266 0.6928 ± 0.208 0.7786 ± 0.218 1.8662 ± 0.446
3.00 1.8760 ± 0.297 0.6330 ± 0.229 0.7404 ± 0.267 1.8630 ± 0.479
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specific preparation method of specimens with different aspect ratio (L/
D) by varying either L or D or both does not cause change of these
material properties, the proposed model is expected to still hold.

The relationship between Weibull statistics and weakest link sta-
tistics is explained in Section 1. Introduction. In brief, since Weibull
statistics is only a subset of weakest link statistics, the failure of Weibull
statistics in [1,4,8–10] to compressive failure are insufficient to reject
weakest link statistics for compressive failure analysis. The reader is
cautioned to distinguish between Weibull distribution function and
Weibull statistical analysis for failure of materials. Specifically, Eq. (9)
is the so-called Weibull distribution function, which is the PDF for
strength of an elemental volume V0, Eq. (10) is the fracture probability
of an elemental volume V0 under stress σ. While Weibull statistical
analysis for failure of materials refers to the combination of weakest
link statistics for a bulk material of volume V and the Weibull dis-
tribution function in Eq. (9) for the strength of an elemental volume V0,
which leads to Eq. (13), under the assumption of uniform spatial dis-
tribution of flaws. As shown in Figs. 4b and 5b, the failure of using Eq.
(13) to describe statistical characteristics of compressive strength only
concludes the incompetence of Weibull statistical analysis for com-
pressive strength, and is insufficient to claim the failure of weakest link
statistics. Note that Eq. (12) is not a Weibull model of strength. Eq. (12)
is a weakest link model with the specific assumption of strength of
elemental volume V0 in Eq. (9) and the power-law function for the
number of defects in a volume V. The successful application of Eq. (12)
in characterizing the statistics of compressive strength in Figs. 4d, 5d,
and 6a,b validates the applicability of weakest link statistics in com-
pressive strength analysis.

When the weakest link postulate is applied to failure analysis of a
solid of volume V subjected to arbitrary multi-axial stresses, its total
volume (V) is divided into many small volume elements, each of which
is subjected to a quasi-homogeneous stress state and may contain cer-
tain number of elemental volume V0. These small volumes are con-
ceptually assumed to be linked in series. The failure of each small

volume element is assumed an independent event. When the failure
probability of an elemental volume V0, p σ V( , )0 , is known, the weakest
link model for the cumulative failure probability of the whole solid is
obtained in Eq. (1). In a nutshell, this methodology combines weakest
link analysis and micromechanics. The contribution of micromechanics
is manifested by =N N V( ), the number of flaws in a volume V, in Eq.
(1). Note that in the presentation, the terms “microcrack” and “defect”
are used interchangeably in the presentation. Strictly, the term “defect”
is more appropriate than “microcrack” to describe a flaw in a material,
as its size is unnecessarily at microscale, but can be as large as the
lateral size of an elemental volume V0, depending on the specific ma-
terial being studied. Moreover, these defects can be initially pre-ex-
isting one as a result of material preparation before loading, or can be
the instantaneous growing-up flaws at certain phase of loading, so long
as they can cause unstable propagation to induce fracture. Note that
due to the difficulty in formulating the fracture probability induced by
an individual defect that interacts with other defects, the assumption of
mutual independence of defects is needed to formulate the weakest-link
model.

5. Conclusion

Since the conventional nominal compressive stress on the loading
ends of a specimen is not sensitive enough to reflect the effect of spe-
cimen length to diameter ratio on uniaxial compressive strength, the
resultant stress σt acting on the loading end-to-loading end diagonal
cross-section of a cylindrical specimen in uniaxial compression is pro-
posed to replace the conventional nominal compressive stress for sta-
tistical size scaling of compressive strength of quasi-brittle materials
when specimens of different length to diameter ratios are involved. This
proposal is validated by three case studies of published strength data
sets from specimens of different length to aspect ratios by changing
specimen length only while fixing specimen diameter.

Fig. 6. Correlation between = +σ σ L D/ 1 ( / )t
2 and length-to-diameter (L/D) ratio of four soils, namely Same-Tekin clay and Kaolinite (a), and Handere clay and

Alamanpinari clay (b) according to Eq. (29), in comparison with Correlation between σ and length-to-diameter (L/D) ratio (c) and (d).
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