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ABSTRACT
Colloidal particle submerged in a non-equilibrium fluid with a concentration gradient of solutes
experiences diffusio-phoresis. Such directional transport originates from the driving forces that exert
on the fluid in a microscopic boundary layer surrounding the colloid. Based on a simple model of
spherical colloid fixed in a concentration gradient of solutes, molecular dynamics simulations are
performed to determine the interaction parameters that maximise the diffusio-phoretic mobility,
which cannotbeproperlymeasuredby conventional continuumtheory. Thediffusio-phoreticmobil-
ity is found to depend non-monotonically on the strength of the interaction between the colloid
and solutes, due to the presence of bound solutes within adsorption shell that cannot contribute to
diffusio-phoresis. The results also show that the phoretic mobility depends sensitively on the den-
sity of solutes in bulk, due to the uneven distribution of excess particles surrounding the colloid at a
microscopic level. The simulations suggest that diffusio-phoresis may in principle be applied to the
selective transport, separation and purification for colloidal systems. By substituting the spherical
colloid with other realistic macromolecules, the model could provide results that are quantitatively
comparable with experiments.
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1. Introduction

The phoretic effects are a class of transport phenomena
induced by gradients of chemical potential [1–8], tem-
perature [9–22], charge [23–28], etc. Diffusio-phoresis
describes the spontaneous migration in a gradient of
solute concentration [29–32], which plays important
roles in separation science [33–37], pattern forma-
tion [5,32,38,39] and even dynamics in a living cell [40].

The migration of colloidal particles by phoresis
has long been described by continuum models and
hydrodynamics [2,8,25,30,41,42], which provide an ade-
quate explanation for the experimental results. For
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diffusio-phoresis with short-ranged interactions, how-
ever, the Stokesian hydrodynamics no longer holds near
the fluid-colloid interface, as it fails to picture the effects
of density and enthalpy fluctuations that emerge at
microscopic level [43,44]. Inspired by the previous works
on diffusio- and thermo-osmosis [45,46], in this arti-
cle molecular dynamics simulations are implemented to
describe the local structure and dynamics of the fluid.
The gradient of solute concentration can be generated
either explicitly with fixed source and sink of solute par-
ticles [14,44,47,48], or implicitly by applying external
forces on each particle [45,46].
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Based on these techniques of non-equilibrium molec-
ular simulations, results for the diffusio-phoretic motion
of a colloidal particle in a very weak gradient of solute
concentration are reported in the remainder of this arti-
cle. The dependence of the phoretic mobility on the
strength and range of the solute–colloid interactions,
solute density and the size of the colloidal particle is
presented, which can hardly be quantitatively deter-
minedwithmesoscopicmodels. Note that the long-range
columbic interactions are not taken into account, so the
simulated system is to measure the diffusio-phoresis of
a colloidal particle in the gradient of neutral solutes.
The manuscript is organised as follows: the next section
introduces the model and simulation methods. Simula-
tion results and discussions are then presented. The last
section is the summary.

2. Simulationmethod

2.1. Model

Molecular dynamics (MD) is implemented to simulate
the diffusio-phoresis. All MD simulations are carried out
in LAMMPS [49]. The fluid particle i of type α (sol-
vent) or β (solute) interacts with another fluid particle
j through the Lennard-Jones (LJ) 12–6 potential that is
truncated and shifted at rtij = 4.0:

ULJ
ij
(
rij
) = 4εij

[(
σij

rij

)12
−
(

σij

rij

)6
]
,

Uij
(
rij
) =

{
ULJ
ij
(
rij
)− ULJ

ij

(
rtij
)

for rij < rtij,
0 for rij ≥ rtij,

(1)
with εij and σij the LJ constants. Here and in what follows,
I use reduced units, based on εαα , σαα and mα (mass of
the solvent particle).

Morse potential is used to model the interactions
between the colloid c and fluid particle i of type α or β :

UM
ic (ric) = εic

[
e−2(ric−σic)/κic − 2e−(ric−σic)/κic

]
,

Uic (ric) =
{

UM
ic (ric) − UM

ic
(
rtic
)

for ric < rtic,
0 for ric ≥ rtic,

(2)
where εic, κic, and σic, respectively, control the interaction
strength, interaction range, and the position of the mini-
mum. Note that the subscript c denotes the fixed colloid,
and the potential is truncated and shifted at rtic = 7.0. See
Table 1 for the full list of interaction parameters used in
this paper (unless otherwise specified).

The concentration gradient can be explicitly simulated
by a source and sink regionwith the fixed number density
of solute [48] in a 50.00 × 19.73 × h box with periodic

Table 1. Table of parameters for interactions between different
particles (unless specified).

Lennard-Jones i−j εij σij – rtij

solvent–solvent α − α 1.0 1.0 – 4.0
solvent–solute α − β 1.0 1.0 – 4.0
solute–solute β − β 1.0 1.0 – 4.0
Morse i-colloid εic σic κic rtic
solvent–colloid α − c 1.0 3.0 0.5 7.0
solute–colloid β − c εβc 3.0 0.5 7.0

boundary conditions, as shown in Figure 1(a). The box
height h in the z-direction is varied to keep the pressure
at constant. The flow rate of the fluid is measured, whilst
keeping the colloid fixed at the origin.

As shown in Figure 1(b), the concentration gradient
can also be represented implicitly [45,48] by applying
(different) gradient forces fi on the solvent and solute
particles:

fi =
(

−∂μbulk
i

∂ρi

)
P

· ∇ρi, (3)

where μbulk
i is the chemical potential and ρi the num-

ber density. The system dimensions are 19.73 × 19.73 ×
h, and the colloid is fixed at the origin, providing the
counteracting force Fc = −(fαNα + fβNβ) to ensure that
there is no net force on the fluid. In the remainder of this
paper, model with implicit gradient is used unless other-
wise specified (due to its better accuracy and efficiency).

2.2. Simulation details

All simulations are performed in NPT ensemble, with
fixed pressure at P = 0.012, and temperature at
T = 0.845. The number of particles is fixed atN = 12308
and N = 7124 for the system with explicit and implicit
gradient, respectively. Nosé–Hoover thermostat with
damping constant for temperature 100dt and
Nosé–Hoover barostat with damping constant for pres-
sure 1000dt are implemented, with dt = 0.001 represent-
ing the length of the time step. As it may be useful to
compare simulationswith experimental results, inTable 2
quantities in reduced units used in this work are con-
verted into real units. For all real units, the mass and
LJ parameters of solvent particles are chosen as those of
argon atom.

All initial configurations are prepared as follows. First,
N−1 solvent particles are uniformly distributed on FCC
crystal lattice at low densities to prevent overlap. Nβ =
ρβV random solvent particles are then replaced with
solute particles, where V is the volume of the simula-
tion box and ρβ is the density of solute. The system
is then compressed in z-direction and quenched to the
desired pressure. At εβc = 2.6, The typical height of the
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Figure 1. Slice snapshot of the model systems with (a) explicit or (b) implicit concentration gradient of solutes.

Table 2. Comparison of quantities measured in reduced and real
units (in terms of argon atom).

Quantities In reduced unit In real unit

σαα 1.0 0.341 nm
εαα 1.0 10.30meV
mα 1.0 39.95 g/mol
dt 0.001 2.164 fs
P 0.012 0.5MPa
T 0.845 101 K

box is h = 23.92 for simulations with implicit gradient,
and h = 16.34 for explicit gradient.

For simulations with explicit concentration gradient,
the identities of the fluid particles within the source
(ρβ = 0.07) or sink (ρβ = 0.03) regions are reset every
5 × 102 simulation steps to maintain a constant gradi-
ent and ρβ ∼ 0.05 at x = 0. For simulations with an
implicit concentration gradient, the identities of solvent
and solute particles in the bulk (i.e. far away from the

colloidal particle) are allowed to interchange every 500
simulation steps to keep the density of solute in bulk
ρbulk

β constant for at least 4 × 107 simulation steps. Gra-
dient forces fi along the x-direction are then applied to
the solvent and solute particles. Subsequently, a long run
(at least 2 × 108 steps) is performed to obtain the flow
rate, density profile, etc., which are collected by averaging
over 105 output configurations separated by 103 simula-
tion steps. For both cases, a solute concentration gradient
of |∇ρβ | = 0.002 is generated.

Based on the Green–Kubo formula, I determine the
radial auto-correlation for the shear terms of stress tensor,
ξ(r), which is written as

ξ(r) = V
kBT

∫ ∞

0
[〈pxy(0, r)pxy(t, r)〉

+ 〈pxz(0, r)pxz(t, r)〉 + 〈pyz(0, r)pyz(t, r)〉]/3 dt,
(4)
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Figure 2. The dependence of velocity of fluids in x-direction,
vx , on the interaction strength between solute and colloid, εβc ,
obtained from simulations with implicit and explicit gradient. The
density of solute in bulk is fixed atρbulk

β = 0.05. Typical simulation
snapshots of solutes around the colloid at εβc = 0.8, εβc = 2.2
and εβc = 5.0 are presented.

where pxy(t, r), pxz(t, r) and pyz(t, r) are off-diagonal
stress tensors averaged over particles at a distance r to the
fixed colloid, and kB is the Boltzmann constant.

3. Result and discussion

3.1. Interaction

Figure 2 shows that for all values of εβc, the interaction
strength between solute and colloid, vx, the velocity in
the direction of phoretic motion obtained from simula-
tions with imposed gradient forces agrees well with that
obtained using an explicit concentration source and sink.
It is found that vx depends non-monotonically on εβc.
For εβc < 2.5, the magnitude of vx increases with εβc.
This is because the number of adsorbed solute particles,
and hence total gradient force exerted on them, increases
with εβc. If the density profile around the colloid is
radially symmetric, the net force density equals Fx(r) =
ρα(r)fα − ρβ(r)fβ and fα/fβ =ρbulk

β /ρbulk
α . In that case,

an excess of solute (β) would imply Fx(r) < 0 and
an excess of solvent, Fx(r) > 0. The maximum veloc-
ity (vmx = −0.004) is obtained for εβc ≈ 2.5. When the
solute–colloid interaction is further increased, the mag-
nitude of vx decreases and reaches vx ∼ −0.002 at εβc =
5.0. This is because a sticky shell of solute particles is
effectively trapped around the colloid for larger values of
εβc, which does not contribute to diffusio-phoresis. The
formation of the shell-region is demonstrated by the typ-
ical simulation snapshots of solutes around the colloid at
εβc = 0.8, εβc = 2.2 and εβc = 5.0 shown in Figure 2.

Figure 3. The auto-correlation for the shear terms of stress ten-
sor, ξ , as a function of distance to the colloid, r, at three different
εβc . The inset magnifies 2.8< r< 4.0 part, with grey dashed line
indicating the viscosity for system consists of pure LJ particles of
σ = 1.0 and ε = 1.0 at the same thermodynamic state.

To validate the existence of shell-region, Figure 3
presents the dependence of auto-correlation for the shear
terms of stress tensor ξ as a function of distance to the
colloid r, which reflects the local viscosity of the fluid.
While ξ(r) is barely changed when εβc is increased from
1.0 to 2.6, its peak around r ∼ 2.5 mounts up when
εβc is increased to 5.0. The peak is generated by the
bound particles (mainly solvent), caged by the solute shell
formed around r ∼ 3.0, which is consistent with the posi-
tion of the first peak of Fx(r) in Figure S2 shown in SI.
The magnified inset of Figure 3 presents the secondary
peak around r ∼ 3.4, at which the magnitude of ξ for
εβc = 5.0 is still larger than the other two cases. This
peak is generated by the aggregation of solute particles
adsorbed to the shell, constrained by the solute–colloid
attraction, in accord with the peak of Fx at the same posi-
tion. For r>4.0, the value of ξ(r) fluctuates around 1.21,
i.e. the viscosity of pure LJ particles at same thermody-
namic state obtained by the samemethod (Equation (4)),
indicated by the grey dashed line within inset.

The results obtained here by simulation deviate from
the continuum approximation [29,47], for which the
magnitude of vx is determined by

vx = 2σcT
9η

∫ ∞

σc

[(σc

2r

)
−
(

3r
2σc

)

+
(

r
σc

)2
]
A1(r)

dUβ(r)
dr

dr, (5)

where σc is the radius of colloid, η the viscosity, A1(r)
the asymptotic expression for the first Legendre coeffi-
cient and Uβ(r) the solute–colloid interaction. Because
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Figure 4. The dependence of the diffusio-phoretic flow velocity
vx on εβc , for different values of the rangeκβc of the solute–colloid
interaction.

the formation of shell-region is not taken into account,
vx depends linearly on εβc according to Equation (5).
See Figures S1–S4 of SI for more results and discussions
on the effect of εβc on the diffusio-phoretic motion of
colloid.

The magnitude of the phoretic flow also depends
on the interaction range. Figure 4 shows the relation
between vx and εβc for various values of κβc, the range
parameter of the solute–colloid interaction. As is to be
expected, the magnitude of vx is larger for larger κβc (i.e.
larger interactive width), as more solute particles would
get attracted within the interface for larger κβc, a longer
range of attraction results in a larger number of adsorbed
solute particles. The maximum velocity vmx is reached at
smaller εβc for larger κβc.

The dependence of vx on solvent–colloid interactions
is discussed in Figure S6 in SI.

3.2. Density of solute

Figure 5(a) shows the dependence of vx on εβc, at differ-
ent solute density in bulk, namely ρbulk

β = 0.05, ρbulk
β =

0.25 and ρbulk
β = 0.50. Correspondingly, the number

fraction of solutes in bulk are φbulk
β = 0.066, φbulk

β =
0.328 and φbulk

β = 0.655. For εβc < 2.0 and εβc > 4.0,
the value of vx(εβc) barely depends on ρbulk

β . For 2.0 <

εβc < 4.0, the magnitude of vx is markedly larger for
ρbulk

β = 0.05. When ρbulk
β > 0.25, the flow velocity satu-

rates at around vx = −0.002 for εβc > 2.0. The weaker
diffusio-phoresis for larger bulk density of solutes is due
to two factors, both related to the fact that the diffusio-
phoretic velocity vx is equal to the product of the gradient
of the chemical potential of the solute ∂μbulk

β /∂x and the
excess density of solute in the adsorption layer around the

Figure 5. (a) The dependence of diffusio-phoretic flow velocity
vx , on the interaction strength between solute and colloid, εβc ,
for different solute densitiesρbulk

β . (b) Number difference of solute
particles of left (x< 0) and right (x> 0) part of the system δNβ

as a function of εβc at different ρbulk
β . The dashed line indicates

εβc = 2.6 at which the magnitude of vx reaches maximum.

colloid [50]

vx = 1
η

∂μbulk
β

∂x

∫ ∞

σc

r
[
ρβ(r) − ρbulk

β

]
dr, (6)

where ρβ(r) and ρbulk
β , respectively, denote the solute

density at distance r to the fixed colloid and in bulk
region. As solvent and solute form an ideal mixture, this
gradient is simply ∇ρβ/ρbulk

β , which at constant ∇ρβ is
inversely proportional to ρbulk

β . The second reason is that
the excess of solute in the adsorption layer ρex

β = ρ local
β −

ρbulk
β tends to saturate rather quickly with εβc. Once that

happens, increasing ρbulk
β tends to decrease ρex

β near the
colloid. This effect is counteracted to some extent by the
fact that for sufficiently large εβc, the total number of
adsorbed particles increases.

The increase of ρbulk
β also leads to the decrease of the

asymmetric distribution of solutes around the colloid in
the presence of the gradient forces. This is illustrated
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Figure 6. The normalised excess density of solute particles
ρex

β /ρbulk
β as a function of r at εβc = 2.6.

in Figure 5(b). The number difference of solute parti-
cles at left (x<0) and right (x>0) part of the system
δNβ increases obviously with εβc for ρbulk

β = 0.05. How-
ever, for ρbulk

β ≥ 0.25, the value of δNβ saturates near
εβc =2.6, which is also the point where the diffusio-
phoretic flow velocity appears to maximise (indicated by
the dashed line).The dependence of asymmetry of solutes
distribution on r is also discussed in Figure S7 of SI.

Figure 6 shows the saturation at high values of εβc of
the normalised excess density of solute particles adsorbed
to the colloid. Upon increasing the solute density in
bulk ρbulk

β from 0.05 to 0.25, the peak value of ρex
β (r) at

r = 3.0 clearly decreases.However, upon further increase
in ρbulk

β , the excess density of the adsorbed solute is
changed very slightly.

Figure 7. The dependence of velocity in x-direction of fluids, vx ,
on the interaction strength between solute and colloid, εβc , for
different colloid sizes σc .

3.3. Size effect

The dependence of vx on the size of the colloid σc, con-
trolled by setting the position of the minimum of the
Morse potential as σαc ≡ σβc ≡ σc, is shown in Figure 7.
Note that the width of the potential well is kept constant,
with fixed variations in the truncated cut-off distance and
the size of colloid as δrt = δσ . Increasing the size of the
colloid increases the magnitude of the diffusio-phoretic
flow (for any given εβc). Such an effect is to be expected,
as the volume of the adsorption region increase with σβc
and the formation of shell-region dependsmainly on εβc.

4. Conclusions

To conclude, in this work, how the diffusio-phoretic
motion of colloidal particle gets suppressed by the for-
mation of the shell-region is explained numerically.
Although the excess density of adsorbed solute increases
with the strength of solute–colloid attraction, this effect
is counteracted by the fact that very strong binding of
the solute suppresses diffusio-phoresis, as the adsorbed
layer becomes more viscous. The optimal solute–colloid
attraction that maximises the phoretic mobility is thus
determined. It is also found that the phoretic motion can
be impeded at high solute density in bulk, as both the
degree of asymmetric distribution of solutes surround-
ing the colloid and the excess density of solutes in the
adsorption shell decrease with solute density in bulk. The
phoretic mobility is also found to depend on interac-
tion range, size and hydrophobicity of the colloid, all of
which change the concentration distribution of solutes
(or solvents) surrounding the colloid. Similarly, introduc-
ing another colloidal particle would also change themag-
nitude of flow velocitywith a perturbation on the concen-
tration field. See Figure S8 in SI formore discussions. The
results indicate that diffusio-phoresis may be applied to
the selective transport, separation and purification of bio-
macromolecules and other types of colloids, due to the
sensitive dependence of the diffusio-phoretic mobility on
the interaction strength and the density of solutes. How-
ever, as the magnitude of flow velocity increases with the
solute–colloid interaction range, it might be more effi-
cient to transport bio-macromolecules such as protein
or DNA in a concentration gradient of electrolyte with
long-range interactions, i.e. by eletro-phoresis.
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