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A B S T R A C T

The underlying mechanisms of hydraulic fracturing remain elusive, and the optimization of the
related processes for rocks of low permeability is challenging. There exists local crack closure
induced by shear stress, which is one of the crack instabilities for a straight crack. In this study,
we develop a full-stress model, which includes the combined effects of hydrodynamic pressure
and shear stress on the crack surfaces. The hydrodynamic pressure is a driving force, while the
shear stress is a resistance force. A novel criterion for crack propagation is derived based on the
asymptotic solution of shear stress. The asymptotic solution, which is derived using perturbation
analysis in the toughness-dominant regime, reveals the existence of the crack-closure phenom-
enon and shear-stress-dominant regime. The necessary condition for the crack closure is obtained
according to numerical calculations. An energy analysis is conducted to discuss the difference
between the shear-stress-dominant and the viscosity-dominant regimes. The existence of the
crack closure is shown to be independent of two assumptions, lubrication theory and no-fluid-lag
zone. The results presented in this study are useful for the simulation and design of hydraulic
fracturing.

Nomenclature

C, n flow consistence index, flow behavior index, ′ = × ++C C n n2 [(2 1)/2 ]n n2 1

̃C , ̃KIC, ̃Q , ̃γ dimensionless quantities in the time-independent system of units

E, ν Young’s modulus, Poisson’s ratio, ′ = −E E ν/(1 )2

ep, et power indexes of pressure and shear stress
G, GC energy release rate, critical energy release rate
KI, KIC mode-I stress intensity factor, fracture toughness
K , Q , R dimensionless quantities in the time-dependent system of units
l, lf, l0 half crack length, half length of the fluid region, initial half crack length
M , P , S ,

V

dimensionless quantities used to build the time-dependent system of units

p, pv net pressure in the fracturing fluid, vapor pressure in the fluid-lag zone
q, q0 flow rate, flow rate at the wellbore
w crack opening
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̃xΔ cr critical mesh size
γ, θ surface tension and contact angle of fracturing fluid
ε, P, T time-independent quantities
η power (energy rate), subscripts “tot”, “frac”, “visc” and “strain” represent the total added energy rate, the power used for fracturing, the viscous

dissipation rate and the change rate of the strain energy, respectively
μ dynamic viscosity of fracturing fluid
σ∞ crustal stress
τ shear stress acting on the crack surfaces

Subscripts “p” and “t” represent the pressure and the shear stress, respectively.
The symbol “∼” above a variable represents that the variable is dimensionless.

1. Introduction

Analyzing hydraulic fracturing has been a topic of great interest since 1947. The difficulties of analyzing this process lie in the
strong coupling between elastic deformation and viscous flow, moving crack and fluid tips. Mathematical models [1–9], which differ
either in geometry or physical effect, have been proposed to predict the dimensions of fracture and the wellbore pressure.

There are reports that suggest the presence of a boundary layer near the crack tip with an abnormal stress singularity in its outer
solution [3,10]. This result is due to the competition between the fracture of the solid and the viscous dissipation of the fracturing
fluid. The size of the boundary layer is determined by a single dimensionless parameter (called the dimensionless fracture toughness),
which represents the ratio of fracturing energy to the energy of viscous dissipation [10]. A viscosity-dominant regime (or a toughness-
dominant regime) is achieved when this parameter approaches zero (or infinity). A small boundary layer corresponds to a small value
of this dimensionless parameter. The factors that influence the stress singularity of the outer solution include the compressibility,
laminar or turbulent flow state and leakage of the fracturing fluid [4,11]. It is worth pointing out that only the coupling between the
pressure and the normal stress on the solid-liquid interface is considered in the derivation of outer solution [3,10], and the effect of
the flow-induced shear stress is neglected.

Recently, flow-induced shear stress has been found to play a more important role than hydrodynamic pressure in the outer
solution, since the singularity of shear stress is much stronger than that of the hydrodynamic pressure [6,7]. Different from hy-
drodynamic pressure, flow-induced shear stress tends to inhibit the crack propagation. The strong singularity of the flow-induced
shear stress leads to the breakdown of the criteria commonly used for the crack propagation and deflection in the viscosity-dominant
regime [6,7], even though the flow-induced shear stress is negligible in the calculation of the crack opening far away from the crack
tip [8]. There likely exists potential unstable crack growth caused by the flow-induced shear stress, and the criteria for crack pro-
pagation needs to be modified in the toughness-dominant regime [6,7]. Unstable crack growth is important because it may lead to the
formation of a crack network, which is of practical importance in many fields, including reservoir stimulation in shale gas ex-
ploitation [12]. Shen and Zhao [6,7] discussed the hydraulic-crack growth in a homogeneous medium, and showed potential de-
flections of fluid-driven cracks. Their results provide some novel insights into the control of the crack path.

In their analyses [6,7], Shen and Zhao showed the crack-closure phenomenon on the basis of the local asymptotic solution at the
crack tip and the one-way coupling between the fracture of rocks and the viscous flow of fracturing fluid. The potential of local crack
closure near the crack tip is a sign of instabilities if a crack is assumed to propagate straightly. Different from a dynamic crack, of
which the unstable growth is predicted with the near-crack-tip maximum tensile stress or strain energy density [13,14], the shear-
stress-induced crack-closure phenomenon was demonstrated by a negative crack opening [6,7]. Also, there are a variety of factors
that affect the crack-closure phenomenon: lubrication theory (in which the vertical velocity is neglected) [15] and fluid-lag zone
[2,10]. These factors remove the stress singularity which is the basis of the asymptotic analysis of Refs. [6,7]. Consequently, global
solutions, which are the solutions to the fully coupled solid-fluid problem and are applicable to the whole crack surfaces, are needed
to study the unstable crack growth, and the effects of lubrication theory and fluid-lag zone are needed to be evaluated.

Although the near-crack-tip asymptotics reveals possible occurrence of local crack closure in the viscosity-dominant regime [6,7],
there are no reports available on the related results in the laboratory experiments [16–19]. There are several possibilities for the lack
of reports on the crack-closure phenomenon, including (1) there is a criterion for the crack-closure phenomenon, (2) the crack is not
straight, (3) the lubrication theory is invalid near the crack tip used in the asymptotic analysis [15], and (4) there is a fluid-lag zone
which eliminates the singularities of pressure and shear stress [2,6]. Such behavior raises the question: is there an unstable crack
growth with the presence of a fluid-lag zone or with a two-dimensional flow assumption near the crack tip? If so, what is the criterion
for the unstable growth of a crack?

In this work, the shear-stress-induced unstable crack growth is studied by solving the global solution of the fully-coupled solid-
fluid problem. As shown in Fig. 1, the highly pressurized fluid, which is forced into the crack, introduces stresses on the crack
surfaces, resulting in the opening and propagation of the crack and creating a narrow channel in rock. Lubrication theory [20,21] is
used to describe the viscous flow. The rock is considered as an infinite, impermeable, elastic space with a Griffith-type crack. The
crack grows symmetrically about the wellbore, and the crack path is assumed straight. There is a fluid-lag zone between the tip of the
fracturing fluid and the tip of the crack.

This paper is organized as follows. First, a full-stress model is developed by incorporating the flow-induced shear stress and
hydrodynamic pressure. The surface tension of the fracturing fluid is introduced with the Young-Laplace equation [21]. A new
criterion of the crack propagation is derived in the toughness-dominant regime. This full-stress model can be extended to model a real
hydraulic fracturing. Second, for a fluid-driven crack with no fluid-lag zone, the crack-closure phenomenon is presented with per-
turbation analysis. By imposing two numerical constraints, mesh-dependent results due to the crack-closure phenomenon are shown,
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and a semi-empirical criterion is obtained for the mesh-dependent results. The effect of lubrication theory on stress singularities is
studied. Third, the effects of fluid-lag zone on the crack-closure phenomenon are studied, and the mechanism of the shear-stress-
induced crack-closure is further discussed.

2. Problem formulation

A Cartesian coordinate system shown in Fig. 1 is used in the analysis with O being the inlet of the fracturing fluid, Ox1 being
parallel to the crack surfaces, and Ox2 being perpendicular to the crack surfaces. For a Griffith-type crack in an infinite space, the
crack opening, w, flow rate, q, hydrodynamic pressure, p, and shear stress, τ , are symmetric about both Ox1 and Ox2 axes. For
simplification, both the governing and boundary-condition equations are described in the first quadrant, where ⩾w 0.

The theories of lubrication flow and LEFM are used to analyze the hydraulic fracturing with the stress state being plane strain. The
crack will propagate when the stress intensity factor is larger than the fracture toughness, KIC, of the rock. The flow of the fracturing
fluid into the channel between fracture surfaces leads to the opening of the fracture in the rock. In the full-stress model, both
hydrodynamic pressure and shear stress are incorporated in the boundary conditions on the fluid-solid interface.

2.1. Viscous fluid flow in a narrow channel

The lubrication theory without the presence of inertial and body forces is used to describe the flow of the fracturing fluid [20,21].
It is known that the maximum pressure in hydraulic fracturing is 101∼ 102 MPa [22]. Thus, it is reasonable to assume the fracturing
fluid as incompressible inside the crack. Note that the stress singularity associated with the viscous flow of fracturing fluid at the
crack tip can be changed by considering the compressibility and phase transition. Here, we adopt the commonly used assumption of
incompressible fluid for simplicity [1–3,11,23]. The flow behavior of the fracturing fluid follows the Ostwald-de Waele relationship,
=τ Cγṅ, where γ ̇ is shear rate, C and n are constants representing flow consistency index and flow behavior index, respectively. The

Ostwald-de Waele model is applicable to both shear thinning and shear thickening fluids in addition to Newtonian fluids.
Using the condition of mass conservation, the differential equation describing the crack opening can be expressed as

∂
∂

+
∂
∂

=w x t
t

q x t
x

( , ) ( , )
01 1

1 (1)

in which q x t( , )1 is the flow rate at location x1 of the channel between the crack surfaces. According to the lubrication theory [20,21],
the pressure gradient can be calculated from the flow rate as

∂
∂

= −
′

+
p x t

x
q x t

C q x t
w x t

( , )
sgn{ ( , )}

| ( , )|
[ ( , )]

n

n
1

1
1

1

1
2 1 (2)

where sgn{*} is the signum function, and ′ = × ++C C n n2 [(2 1)/2 ]n n2 1 . It is evident that a narrower fracture leads to a higher pressure
gradient for the same flow rate. Note that hydraulic approximation was used in the derivation of Eq. (2), i.e., the velocity component
perpendicular to the x1 axis is negligible [24]. This approximation results in no vortex near the crack tip and an underestimated
pressure drop. The flow rate is therefore a monotonous function of x1, and the pressure gradient and shear stress do not change their
signs. The force balance in the x1 direction yields

=
∂
∂

τ x t w x t p x t
x

( , ) ( , )
2

( , )
1

1 1

1 (3)

The conditions of constant flow rate at the origin and the relationship between the fluid-tip position and the flow rate give the
kinematic boundary conditions as

=q t q(0, ) 0 (4)

=q l t t l t w l t t( ( ), ) ̇ ( ) ( ( ), )f f f (5)

where l t( )f is the position of the fluid tip and q0 is the constant flow rate from wellbore. An alternative to Eq. (4) or (5) is the global
mass balance as

Fig. 1. Schematic of hydraulic fracturing, showing the flow of a viscous fluid into a Griffith-type crack at a constant flow rate.
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∫=q t w ζ t ζ( , )d
l t

0 0

( )f

(6)

We assume that the fluid-lag zone is filled up with a vapor. The fluid pressure, the vapor pressure in the fluid-lag zone and the
surface tension are balanced at the fluid tip. Using the Young-Laplace equation, one has

= −p l t t p
γ θ

w l t t
( ( ), )

cos
( ( ), )f v

f (7)

where pv is the pressure of the vapor, γ and θ are the surface tension and contact angle, respectively. Note that there are various
models describing the motion of contact line either in the micro- or macroscale instead of the Young-Laplace equation [5,21].

2.2. Deformation of rocks

The fractured rock is assumed to be linear-elastic and brittle. There is only a Griffith-type crack in the fractured rock. The crack
opening can be found as [6]

∫

∫

= −

+ + −
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− + −
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( , ) [ ( , ) ]ln d

( , )d ( )

E
l t l t x l t ζ

x ζ

ν
ν E x

l t σ p
E

π1
8

0
( )

v
( ) ( )
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2 2 2

1
2 2

1
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(8)

where ′ = −E E ν/(1 )2 with E being Young’s modulus, ν being Poisson’s ratio, ∞σ the least compressive-principle stress in the rock,
and l t( ) being the crack length.

Assume that the fluid-tip position at =t t0 is lf0, i.e.,

=l t l( )f 0 f0 (9)

where t0 is determined by the mass conservation. If there is no fluid-lag zone, =l t l t( ) ( )f , without presence of the vapor pressure, Eqs.
(4) and (7) are redundant. Eq. (5) degenerates to

=q l t t( ( ), ) 0 (10)

due to the finite crack-tip velocity and zero crack opening at the crack tip. The initial condition becomes =l t l( )0 0. − ∞p x t σ( , )1 ,
denoted as p x t( , )1 for convenience, is used to eliminate the crustal stress.

2.3. Criterion for crack propagation

According to the result given by Shen and Zhao [6], the stress component, σ11, is used to evaluate the stress intensity factor. There
is

∫ ∫= + −

+ + ⎡
⎣

− ⎤
⎦

− → −

∞

+
K x l t
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π ( ) π ( ) 2 arcsin

l t l t p ζ t ζ

l t ζ x l

l t τ ζ t ζ ζ
x ζ

l t l t
l t

I
( )
π 0

( ) ( , )d

( )
2
π 1 0
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1

f
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f

(11)

where KI is the modified mode-I stress intensity factor. The crack propagates when

⩾K KI IC (12)

in which KIC is the mode-I fracture toughness. The second term on the right-hand side of Eq. (11) may take effect for =l t l t( ) ( )f , i.e.
there is no fluid-lag zone, which leads to = −τ O x l[(1 / ) ]e

1
2 2 t . This term becomes non-removable for = −e 1/2t and becomes dominant

for < −e 1/2t , which occur in the toughness-dominant regime and viscosity-dominant regime for Newtonian fracturing fluid, re-
spectively [6,7]. In the viscosity-dominant regime, τ is − −O l x[( ) ]1

2/3 and negative, and KI is negative infinity. The crack cannot
propagate according to the concept associated with the stress-intensity factor [6,7]. Consequently, there is, in the toughness-
dominant regime,

∫=
−

+ + + ⩾∞K l t p ζ t ζ
l t ζ

τ l t σ p l t K2 ( )
π

( , )d
( )

2 π ( ) ( ) π ( )
l t

I
0

( )

2 2
0 v IC

(13)

where = − + −τ τ x l O x l/ 1 / ( 1 / )0 1
2 2

1
2 2 , <τ 00 . The detailed derivation of Eq. (13) is given in Appendix A. With the term of

τ l t2 π ( )0 , the stress intensity factor is dependent on the local property of shear stress, because shear stress introduces the same order
of the singularity to stress as induced by pressure. The effect of shear stress is dependent on its local property, while that of pressure is
dependent on its distribution.

Note that Eq. (13) is incompatible with the energy release rate. Let KIp and KIt denote the stress intensity factor induced by the
pressure and the shear stress, respectively. The energy release rate of a crack tip is

= ⎡
⎣⎢ ′

+ −
− ′

⎤
⎦⎥

G K
K
E

ν τ l
ν E

(1 2 ) π
2(1 )Ip

Ip 0

(14)
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The detailed derivation of Eq. (14) is given in Appendix A. The commonly used relation, = ′G K E/I
2 , becomes invalid due to the

singular shear stress. For cases with zero or weaker-singular shear stress, Eq. (14) degenerates to = ′G K E/I
2 .

Let KIC be the fracture toughness for pressure-only cases. Using the energy concept, ⩾ = ′G G K E/C IC
2 , the modified criterion for

the crack propagation in terms of the stress intensity factor is

⎡
⎣⎢

+ −
−

⎤
⎦⎥
⩾K K ν τ l

ν
K(1 2 ) π

2(1 )Ip Ip
0

IC
2

(15)

The discrepancy between Eqs. (13) and (15) stems from the interaction between the pressure and the crack opening induced by
the singular shear stress. For <τ 00 , a conservative criterion is obtained from the energy release rate as

∫=
−

+ −
−

+ + ⩾∞K l t p ζ t ζ
l t ζ

ν τ
ν

l t σ p l t K2 ( )
π

( , )d
( )

(1 2 )
2(1 )

π ( ) ( ) π ( )
l t

I
0

( )

2 2
0

v IC
(16)

It is clear that Eq. (16) is valid for = − −τ O l x[( ) ]1
1/2 . The additional term in Eq. (16) is slightly smaller (absolute value) than that

in Eq. (13), because − − <ν ν(1 2 )/2(1 ) 1 for < <ν0 0.5.

2.4. Energy partition without fluid-lag zone

Energy analysis has been used [10,11] to discuss the role of viscous flow and fracturing in hydraulic fracturing. The total power
during fracturing consists of the contributions of viscous dissipation rate, the energy release rate due to the crack propagation and the
change rate of the strain energy. In general, it is a challenge to calculate the viscous dissipation rate. The major issue is that the
integral of ∬ σ γ Ṡ dS ij ji

f
f is divergent, in which the superscript “f” represents fluid. For a Newtonian fracturing fluid, the first-order

asymptotic solutions of both the shear stress and the strain rate are ̃− −O x(1 )1
1/2, leading to a logarithmic singularity at the crack tip

and divergence of the integral. This result suggests that the viscous dissipation rate cannot be calculated directly from the integration
of the energy dissipation rate for viscous flow.

Here, a concise method is used to calculate the viscous dissipation rate. The total energy rate added during the fracturing is
calculated as

=η t p t q( ) 2 (0, )tot 0 (17)

for the flow of the fracturing fluid into the fracture at a constant flow rate. Note that both the body force and the inertia term are
assumed to be negligible in the full-stress model. The viscous dissipation rate due to the flow of the fracturing fluid is equal to the
difference between the total energy and the work done by the stresses acting on the crack surfaces, i.e., ∮ v σ n· · dΓΓ for a slit crack.
Here v is the velocity of the crack surface, and n is the unit outward normal vector of the crack surface. Thus, the viscous dissipation
rate is

∫= − ∂
∂

η t p t q p x t w x t
t

x( ) 2 (0, ) 2 ( , ) ( , ) d
l t

visc 0 0

( )
1

1
1 (18)

Note that Eq. (18) does not include the work done by the shear stress in the crack surfaces, because it is negligible compared with
the work done by pressure ( ≈ ≈ < <τu pu τ p w l¯ ¯ / ¯ ¯ ¯/ ¯ ¯ /¯ 01 2 , where the over-bar represents the average value). The energy dissipation rate
due to local fracturing of the rock can be calculated from the energy release rate. Using the relationship of = ′G K E/C IC

2 , one obtains

= =
′

η t G l t
K
E

l t( ) 2 (̇ ) 2 (̇ )frac C
IC
2

(19)

The change rate of the strain energy in the rock is calculated as

= − −η t η t η t η t( ) ( ) ( ) ( )strain tot visc frac (20)

3. Hydraulic fracture with no fluid-lag zone

For hydraulic fractures without fluid-lag zone, there is crack closure in the fluid-tip region or deflection for the mode-I hydraulic
fracture in the viscosity-dominant regime [6]. Shen and Zhao [6] used one-way coupling and asymptotic analysis to study the effect
of shear stress on the crack opening and stress intensity factor via the solution of the pressure-only problem. Here, perturbation
analysis and numerical calculation are used to obtain the global solution (the solution for arbitrary point in the domain of definition)
with strong coupling between the lubrication theory and LEFM.

3.1. In toughness-dominant regime

3.1.1. Normalization
In the hydraulic fracturing field, both the time and length scales range largely. But a time-dependent unit system [23] was not

used here, because the non-zero dimensionless parameters leads to additional derivatives with respect to time in the mass con-
servation equation. The normalization scheme is as follows
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̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃= = = =x l l t x w x t εl w x t p x t Pp x t t Tt( ) , ( , ) ( , ), ( , ) ( , ) and1 0 1 1 0 1 1 1 (21)

in which ε, P and T are time-independent quantities, which can be obtained by substituting Eq. (21) into Eqs. (1)–(3), (6), (8) and
(16). The mass conservation must be preserved, and the pressure-induced crack opening is used to measure the overall crack opening.
Consequently, Eq. (6) and the first term of the right-hand side of Eq. (8) are normalized. In the toughness-dominant regime, the
fracture toughness is used to measure the viscosity dissipation. There are

=
′

= =
′

Pε K
E l

K
l

T
K l

q E
2 π ,

2
π and

2 πIC

0

IC

0

IC 0
3/2

0 (22)

and the other two dimensionless quantities are

̃ ̃=
′ ′
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− ′

+ −

+ +C
q C E l

K
Q ν K

ν E l2 π
and (1 2 )

(1 )
πn n n

n n n
0

2 1
0
1

2 1
IC
2 2

IC

0 (23)

It is evident that there exists the self-similar solution for ̃→Q 0 and =n 1 for the dimensionless parameters being independent of
geometrical variables [25–27]. Substituting the boundary-condition equations into the governing equations and using the normal-
ization scheme, one obtains

̃ ̃ ̃ ̃ ̃ ̃ ̃∫=t l t w ζ t ζ( ) ( , )d
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1

(24)

̃ ̃ ̃
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with the initial condition being ̃ ̃ =l t( ) 10 and ̃ ̃ ̃ ̃ ̃= −
→ −

τ x τ x tlim 1 ( , )
x

0
1

1
2

1
1

. ̃t0 is unknown and determined by Eq. (24). Here, no

backflow was assumed in the derivation of Eq. (25) so that the absolute sign and signum function are removed. With the condition of
no backflow, the flow rate does not change its sign at any position of the crack. This assumption is valid when the crack grows
steadily and the effect of initial condition are negligible. Substituting Eq. (22) into Eq. (3) yields the normalized shear stress.

3.1.2. Asymptotic solution
In the toughness-dominant regime, asymptotic solution can be obtained using perturbation analysis for a Newtonian fracturing

fluid. In this regime, the viscosity dissipation rate is much smaller than the energy release rate due to the crack propagation, ̃C is
therefore very small. The dependent variables were expanded in terms of ̃C ,

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃
̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃
̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃
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2 1
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2 1 (28)

which were substituted into Eqs. (24), (26), (35) and (36) with =n 1. The asymptotic expansions to the first two orders give

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃= = − = −l t t w x t t x p x t t( ) 2 , ( , ) 2 1 and ( , ) 2
π0

2/3
0 1

4/3
1
2

0 1
2/3 1

3
2
3

1
3

(29)

and

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃
̃ ̃ ̃ ̃ ̃ ̃

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃

̃ ̃̃ ̃
̃

∫

∫

∫

⎧
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⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

= ⎡
⎣

− ⎤
⎦

+ ⎡
⎣

+ + ⎤
⎦

= ⎡
⎣

+ ⎤
⎦

− −

+ ⎡
⎣

− − ⎤
⎦

− −

= ⎡
⎣

− ⎤
⎦

− ⎡
⎣

+ + ⎤
⎦

− ⎡
⎣⎢

− − ⎤
⎦⎥

− −

−
−

−

l t I x x t τ t Q t

w x t I x x t x t I x

Q τ t x QI x

p x t I x x t τ t Q t

x t

( ) ( )d (6 ln 2 1)

( , ) ( )d 1 ( )

(3 ln 2 1) 1 ( )

( , ) ( )d (6 ln 2 1)

2 ln(1 )x x

x

1
2 π

9 0
1

2 1 1
2 7π ln 2

36
2 π

36
2

3 0

1 1
7π ln 2

36
2

9 0
1

2 1 1 1
2 2 π

3 2 1

π
9

2 π
3 0 1

2 π
2 1 1

1 1
2 7π ln 2

36
2

9 0
1

2 1 1
2 π

36
2

3 0

2 π
24

3 arccos

1 1
2

5/3 2/3 3 2
3

4/3 2 5/3 1
3

1
3

2 4/3 1
3

2/3 1
3

7/3 1
3

5/3 2 2/3 1
3

1/3 8/3 1
3

2
3

2/3 2 1 1

1
2

1
3

(30)

with

W. Shen et al. Engineering Fracture Mechanics xxx (xxxx) xxx–xxx

6



̃ ̃ ̃
̃̃∫= −

I x
ζ ζ

ζ
( )

arccos d

1x1 1
1

21 (31)

̃ ̃ ̃
̃

̃ ̃ ̃
̃ ̃

̃∫= ⎡

⎣
⎢
⎢ −

− −
⎤

⎦
⎥
⎥

− + −

−
I x

ζ ζ

ζ
ζ

x ζ

x ζ
ζ( )

3 arccos

1
2 ln(1 ) ln

1 1

| |
d2 1 0

1

2

2 1
2 2

1
2 2

(32)

Here, ̃ = −τ π /30
2 . There is only one dimensionless parameter, ̃Q in the asymptotic expansions. The zeroth-order asymptotic

expansion represents a crack driven by an inviscid fluid, and the corresponding results are the same as those from the pressure-only
model. The effect of the shear stress is present in the first-order asymptotic expansion, in which the pressure is expressed as ̃− xln(1 )1

2

in accord with the toughness scaling [11].
Let ̃=Q 0, Eqs. (29) and (30) degenerate to the asymptotic solution of the pressure-only model. According to the first-order

asymptotic expansion, the effect of the viscous dissipation consists of the pressure drop and the shear stress, while the pressure-only
model considers the contribution of the pressure drop only. The pressure drop causes the decrease of the crack length, increases the
crack opening and the pressure at the crack center.

The effects of shear stress are two folds according to the first-order asymptotic expansion. The terms containing ̃τ0 represent the
effect of shear stress on the crack propagation criterion, and the other terms containing ̃Q represent the effects of shear stress on the
crack opening. The former takes effect at a large ̃t , leading to a higher pressure, a wider crack opening and finally a longer crack. This
effect passes from Eq. (27) to Eq. (26) and finally to Eq. (24). The latter dominates at a small ̃t , and results in an opposite effect. This
effect passes from Eq. (26) to Eq. (24) and finally to Eq. (27). Negative crack opening can be detected for a small ̃t and ̃> >Q 1,
which is in accord with results in references of [6,7]. Although the crack-closure phenomenon exists mathematically, it is hardly to
find a situation where ̃> >Q 1 in the toughness-dominant regime according to Eq. (23).

3.2. In viscosity-dominant regime

3.2.1. Normalization
In the viscosity-dominant regime, the viscous dissipation is used to measure the fracturing toughness. There are

⎜ ⎟⎜ ⎟= ⎛
⎝

′
′

⎞
⎠

= ⎛

⎝
⎜

′ ′ ⎞

⎠
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⎝

′
′
⎞

⎠

+ +
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+
+

+

+
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q C
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q C E

l
T

C l
q E

,
4

4
and

4n

n

n n n

n n

n
n

n

n
0

0
2

1/(2 2)
0

2 1

2 1
0
2

1/(2 2)
0
2 4

0
2

1/(2 2)

(33)

with two dimensionless quantities,

̃ ̃ ⎜ ⎟= ⎛

⎝
⎜ ′ ′

⎞

⎠
⎟ = −

−
⎛
⎝

′
′

⎞
⎠

+ −

+

+ +

K K
l

E q C
Q ν

ν
q C

E l
4 π

and 1 2
2(1 )

4n n n

n n

n n

n

n

IC IC

1
0

1

2 1
0

1/(2 2)
0

0
2

1/(2 2)

(34)

The governing equations are the same as those in the viscosity-dominant regime except for Eqs. (25) and (27), which are replaced
by the following equations

̃ ̃ ̃
̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃

̃ ̃ ̃ ̃ ̃ ̃ ̃
̃ ̃

̃∫
∂
∂

= − ⎧
⎨⎩

⎡

⎣
⎢

∂
∂

− ′ ∂
∂

⎤

⎦
⎥

⎫
⎬⎭

+p x t
x

w x t l t l t
w ζ t

t
l t ζ

w ζ t
ζ

ζ
( , )

[ ( , )] ( ) ( )
( , )

( )
( , )

dn
x

n
1

1
1

2 1 1

1 (35)

̃ ̃ ̃ ̃ ̃
̃

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃
̃ ̃∫

−
+ −

∂
∂

⩾
→ −

l t
p ζ t

ζ
ζ Q x w x t

p x t
x

K( )
( , )

1
d π

4
lim 1 ( , )

( , )
x l0

1

2 1
2

1
1

1
IC

1 (36)

The criterion for the crack propagation, Eq. (36), is modified to allow for the singular shear stress.

3.2.2. Numerical implementation
The stress singularities, especially in the fracturing fluid, lead to many difficulties in numerical calculations. Various efforts have

been done to remove the stress singularities for pressure-only models [4,28,29]. We develop a robust numerical scheme in which a
series of adaptive singular interpolation functions are used.

Here, two numerical constraints are used to ensure a finite result. First, the last term in Eq. (36) is removed, so that

̃ ̃ ̃ ̃ ̃
̃

̃ ̃∫
−

⩾l t
p ζ t

ζ
ζ K( )

( , )

1
d

0

1

2 IC

(37)

Second, negative crack openings are eliminated with an increment of ̃w1.1 | |min . The former is used to avoid an infinite value of the
second term in Eq. (36), which is proportional to ̃

̃
−

→∞
−xlim (1 )

x
1

1/3

1
in the viscosity-dominant regime [6,7]. This constraint is based on a

negligible shear stress, so that the contribution of the second term in Eq. (26) is disabled automatically when the effect of shear stress
is negligible. The latter is used to avoid negative crack openings due to the second term in Eq. (26). This constraint is detectable in the
calculation. Both constraints make it possible to obtain a result even if there is no physical solution including the negative crack
opening and the potential presence of infinite stress singularity predicted in Refs. [6,7] and in Section 3.1.
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Spectral method is used to solve Eqs. (24), (35), (26) and (36). Singular basis functions are presented using the Gauss-Chebyshev
interpolation. A proper numerical scheme is needed for Eq. (26). A common numerical scheme is based on the inverse of Eq. (26), and
uses the crack opening as an independent variable to calculate the pressure. Such a method is likely sensitive to the initial-condition
[28,29]. Here, an iterative numerical scheme is used to limit the sensitivity to initial condition. The initial crack opening and its
temporal increment are determined by assuming a self-similar crack propagation, and numerical results show the error introduced by
the initial conditions decreases rapidly. The pressure and the shear stress are calculated from Reynolds’ equation with the crack
propagation criterion. The integral equation is used to calculate the crack opening, and the mass conservation is used to find the crack
length. The numerical calculation is terminated when the maximum relative error of the crack opening is less than a pre-determined
value. Implicit Euler method is used for the time integration, and adaptive time step is used to improve the calculation. The details of
the numerical scheme are given in Appendix B.

A pressure-only calculation was performed to validate the program for the numerical analysis. For a Newtonian fracturing fluid,
the problem is self-similar, and the crack length, maximum crack opening and maximum pressure are power-law functions of time,
with the power indexes being 2/3, 1/3 and −1/3, respectively [11]. Fig. 2 shows the numerical results, which are in accord with the
analytical solution, and the relative errors of the power indexes are less than 0.3%. There is no mesh-dependent result for the
pressure-only model, and the two numerical constraints do not take effect.

3.2.3. Crack-closure phenomenon
Mesh-dependent phenomenon is obtained with the developed numerical scheme. Fig. 3 shows temporal evolution of both the

crack length and the crack opening, which are mesh-dependent, for ̃ =K 0IC , ̃=Q 1 and =n 1 in the early time of hydraulic fracturing.
It is evident that the results are mesh-independent for large time. The second numerical constraint takes effect at small times when
the numerical results are mesh-dependent. Note that the crack growth of pressure-only model is self-similar, and the numerical results
are mesh-independent. The mesh-dependent phenomenon is due to the shear stress, which fails the first constraint of negligible shear
stress. Consequently, the effect of shear stress is dominant at small times and becomes negligible at large times. There is a criterion for
the occurrence of mesh-dependent phenomenon, suggesting the dominant effect of shear stress. It is rational to conclude that the

Fig. 2. Temporal evolution of the crack length, maximum crack opening and maximum pressure without fluid-lag zone for the validation of the
program.

Fig. 3. Mesh-dependent results of (a) crack length, and (b) crack opening at the wellbore.
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mesh-dependent results are due to the crack-closure phenomenon induced by shear stress at small times, as shown in Refs. [6,7] and
in Section 3.1. The mesh-dependent criterion is therefore a necessary condition for the crack closure.

There is a critical minimum mesh length for the presence of a mesh-dependent result. As discussed above, the crack opening
consists of the contribution from both the pressure and the shear stress. The numerical calculation gives the asymptotic solution of the
crack opening near the crack tip as

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃= + ≃ −
+ +
+ +

− +
+

−+ +w x t w w
e e e p

e e
x Qτ

e
x( , )

( 4)Γ(1/2 )
5(2 1) Γ(1 )

(1 )
2( 1)

(1 )e e
1 p t

p p p 0

p p

2 1 0

t

2 1p t

(38)

for ̃ ̃ ̃≃ − + + −p p e e x[1 π Γ(1 )/Γ(1/2 )(1 ) ]e
0 p p 1

2 p and ̃ ̃ ̃≃ −τ τ x(1 )e
0 1

2 t, where ̃ >p 00 , ̃ <τ 00 , − < <e1/2 0p and − < <e1 0t .
The relative error of the coefficient of ̃wp is less than 4% for > −e 0.1p . With >e ep t, there is no crack closure only for ̃ ̃< <τ p0 0, and
the near-crack-tip mesh size is too large to reveal any possible negative crack opening for large ̃t . There is a critical length of ̃xΔ cr for
a constant ̃Q , and a mesh-dependent result is obtained when the mesh size near the crack tip is smaller than ̃xΔ cr; equivalently, there
exists a critical ̃Q for a constant ̃xΔ .

The critical ̃Q is estimated as below. For a constant mesh size near the crack tip, increasing ̃Q from a sufficiently small value to the
critical value leads to the presence of the crack closure. A small value of ̃Q has a negligible effect on the crack opening, and the
asymptotic solution of the crack opening can be obtained with ̃=Q 0. The shear stress and ̃wT are calculated by using the asymptotic
solution. Assume that ̃=Q 0 is valid before the onset of the crack closure. The ̃Qcr is calculated with ̃ ̃=w wp t at the mesh point near
the crack tip. For a constant ̃Q , substituting Eq. (38) into Eqs. (24)–(27) yields the ̃xΔ cr as

̃ ̃
= ⎡

⎣
⎢

+
+ −

⎤

⎦
⎥

+

x n Q
n n

Δ 25( 2)
2 π(3 8) (2 )

n n

ncr
2 2

4 2

n
1

(39)

For Newtonian fracturing fluid, Eq. (39) gives ̃ ̃≈x QΔ 0.037cr
3. It is evident that ̃xΔ cr is very sensitive to ̃Q , and it is very difficult to

reveal the crack closure for ̃<Q 0.01.
Numerical calculations are conducted with a constant minimum mesh size near the crack tip. ̃xΔ cr is calculated with the relative

error of the crack length being ∼5% between =N 30 and =N 70, and a larger ̃xΔ cr can be obtained for a smaller critical relative
error. Fig. 4 shows the critical mesh size of the mesh near the crack tip for the crack closure. The estimated ̃xΔ cr is much smaller than
the numerical value. Thus, Eq. (39) is very conservative to determine whether there exists the crack closure, and reveals a power-law
relationship between the critical mesh length and ̃Q . From the numerical calculations, an empirical criterion is obtained as

̃ ̃= − +
+

x n n QΔ (0.1421 0.1369 0.0323)cr
2

n
n

1
(40)

which is valid for the relative error of the crack length being less than 5%.

3.2.4. Energy analysis: the shear-stress-dominant regime
All of the powers in Eqs. (17)–(20) are normalized with q P0 , which is defined in Eqs.(22). For pressure-only problems without

fluid-lag zone, the scaling laws of the powers (energy rates), which represent the temporal evolutions of powers, can be calculated by
using the scaling laws of the crack length, the crack opening and the pressure. The power-law relationships are ̃ ̃ −̃ +η t n n

tot
/( 2) ,

̃ ̃ −̃ +η t n n
visc

/( 2) and ̃ ̃ −̃ +η t n
frac

1/( 2) [11], which are valid in the viscosity-dominant regime. For shear thinning fracturing fluid, the ratio of
the viscous dissipation to the fracturing energy increases with the increase of time, the viscous dissipation is dominant for large times,
and the fracturing energy is dominant for small time. For a shear thickening fracturing fluid, the fracturing work is dominant for large
time. For a Newtonian fracturing fluid, the problem is self-similar during hydraulic fracturing.

For the full-stress model, it is impossible to calculate the powers for the early stage due to the mesh-dependent behavior. As shown
in Fig. 5, the full-stress model degenerates to the pressure-only model for large times, and the exponents of the power-law re-
lationships are in accord with the analytical value of −1/3. For small times, the exponents of the pressure-only model are constant,

Fig. 4. Critical mesh size for the mesh near crack tip for crack closure (Solid lines are the estimated value, and the dot line is the minimum mesh size
used in numerical calculation.)

W. Shen et al. Engineering Fracture Mechanics xxx (xxxx) xxx–xxx

9



which indicates no dominant-regime transition. The mesh-dependent behavior of the full-stress model reveals that the viscosity-
dominant regime is different from the shear-stress-dominant regime in accord with the scaling analysis.

3.3. Effect of lubrication theory

A method for eliminating the stress singularity in a fracturing fluid is to use the theory of two-dimensional flow [15]. The vertical
component of the fluid velocity is not negligible near the crack tip. In their work [15], Bui and Parnes used potential flow in an
elliptical fluid channel, leading to a non-singular pressure at the crack tip. Currently, two-dimensional flow has not been widely
accepted; however, two-dimensional flow plays a great role at the tip of the fluid flow. The assumption of the elliptical crack profile is
not necessary due to the process zone with the crack opening being −O l x[( ) ]1

3/2 [14]. Here, both elliptical and sharper crack profiles
are used as the fluid channel in the numerical analysis, and the fracturing fluid is Newtonian.

Analyzing the viscous flow in the channel between crack surfaces is a challenging task. The solution needs to be of high precision
to capture the details near the crack tip, and the crack opening is about 3 to 5 orders of magnitude smaller than the crack length. A
numerical simulation involving in the complete crack is not preferred. Note that this subsection aims at presenting the critical length
for a negligible effect of the vertical velocity, so that the lubrication theory is applicable if the distance from the fluid tip is larger than
this critical length. The crack tip is therefore enlarged to capture the details of the flow. A moving coordinate system, which is
attached to the crack tip with a constant velocity of V , as shown in Fig. 6. The crack profile is expressed as ×b f X a( / )1 where a and b
are the length and width of the crack, respectively, and =f x x( ) | | /2ew , where ew is the constant power-law index of crack opening. A
large value of b a/ will enlarge the crack.

The flow of the fracturing fluid in the crack satisfies the Stokes equation

= −∇ + vp μ0 Δ (41)

with μ being the dynamic viscosity, ∇ = ∂ei i and = ∂Δ kk. Non-slip boundary conditions are used on the crack surfaces as

Fig. 5. Variation of energy dissipation rates with time for ̃ =K 0IC , ̃=Q 1 and =n 1 (Dashed lines represent the pressure-only model, and solid lines
represent the full-stress model.)

Fig. 6. Ratio of v2 to v1 at = −X a/21 ( =e 1/2w corresponds to an elliptical crack, and =e 3/2w corresponds to the crack-tip region with a process
zone. A larger value of b a/ represents a higher-level enlargement of the crack tip.)
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= − = ′v V v b a f X a Vand ( / ) ( / )1 2 1 (42)

for the upper crack surface. The velocity of the lower crack surface is obtained by using the symmetric characteristic of the problem.
At the entrance of the fluid channel, the velocity is approximated as

= ⎡
⎣⎢

⎛
⎝
− ⎞

⎠
− ⎤

⎦⎥
= ′ −v X

b
V v X

a
f V3

4
1 2 1 and 2 ( 1)1

2
2

2
2

(43)

where v1 is used to ensure the mass conservation. Note that an alternative boundary condition at the entrance is the surface
traction which limits the constant stress discrepancy introduced by Eqs.(43). Eqs. (41)–(43) are solved by BEM with quadratic
isoparametric discontinuous boundary elements [30].

Fig. 6 shows the ratio of the vertical component of the velocity to the horizontal component of the velocity on the cross section of
an elliptical crack profile or a slit crack with a process zone. The numerical simulation was performed for =b a/ 1/5 and =b a/ 1; the
one with =b a/ 1 represents a greater enlargement of the crack-tip region. The ratio was calculated on the cross section of the crack at
= −X a/21 . A small ratio was obtained for the cross section being far away from the crack tip. There must be a critical distance for the

velocity ratio being negligible, and the lubrication theory is valid in the region with a distance being larger than the critical distance.
The critical distance is comparable to the crack opening, which is much smaller than the crack length. In the viscosity-dominant
regime, the effect of the pressure at the near-tip region on the crack propagation criterion is negligible because the stress singularity is
integrable. Hence, the effect of lubrication theory on the crack-closure phenomenon is negligible.

3.4. Discussion on the full-stress model without fluid-lag zone

The mesh-dependent results were obtained for the crack opening due to the shear stress. Fig. 7 shows the reopening of the crack
with continuous injection of the fracturing fluid after the crack closure in the fluid-tip region. In the numerical calculation, the crack
length remains unchanged, and the crack opening changes with the interaction between the pressure and the shear stress. The mesh-
dependent results were used as the initial conditions for a slit crack in the numerical calculation with ̃ ≈t 10.520 , and the time step
being limited up to 1% of the total time. The continuous flow of the fracturing fluid enlarges the crack opening and increases the
possibility for the crack to propagate. The crack regains the ability to propagate when the stress intensity factor is larger than the
fracture toughness. The result shows that the stress intensity factor increases greatly at the onset of the reopening.

4. Hydraulic fracture with a fluid-lag zone

The presence of a fluid-lag zone at the crack tip eliminates the stress singularity in the viscous fracturing fluid, which is essential
to the asymptotic analysis of crack-closure phenomenon [6,7]. For the pressure-only model, the crustal stress reduces the size of the
fluid-lag zone [29]. The following analysis is focused on if the fluid-lag zone can introduce crack-closure phenomenon in the fluid-tip
region.

4.1. Scaling analysis

Hydraulic fracturing is an initial-boundary value problem and can be expressed mathematically as

⎧

⎨
⎪

⎩⎪

⎫

⎬
⎪

⎭⎪
= ′ ′ ∞f

l
l
w
p

x t C n E ν K γ θ q p σ l( , ; , , , , , cos ; , , ; )f
1 IC 0 v f0

(44)

Fig. 7. Temporal evolution of the crack opening of a slit crack during hydraulic fracturing with ̃=Q 1 without the crack propagation.
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The shear stress is not included in Eq. (44) because it is related to the crack opening and the pressure in Eq. (3). In the scaling
analysis, the system starts from infinitesimal to infinity in the parameter space, and the crack profile is self-similar [27]. Thus, the
initial-condition of Eq. (9) is not needed.

We introduce the following transformations,

̃ ̃ ̃ ̃= = − =l t L t L t w x t W t w x p x t p t p xΣ( ) ( ) ( ), ( , ) ( ) ( ) and ( , ) ( ) ( )f 1 1 1 v 1 (45)

where L t( ), L t( )f , W t( ) and tΣ( ) are of either power-laws or exponentials, corresponding to the power-law and exponential boundary
conditions, respectively. Equation is used to find the zero-order asymptotic solution with respect to time for =l t L t( ) ( )f f . Here,
transformations for the power-law type are used, and there are seven dimensionless quantities as,

= = = =
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v f
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whereV , P ,M ,K , Q ,S and R are the dimensionless volume of the fluid channel between the crack surfaces, the crack opening
due to the pressure, the viscous dissipation, the fracture toughness, the crack opening due to the shear stress, the crustal stress, and
the surface tension, respectively. The effect of wettability is represented by R , in which W t( ) is the characteristic wellbore crack
opening and the surface tension is at the fluid tip.

It is of great importance to use proper dimensionless quantities to simplify the equations. Similar to the derivation of Eq. (33), the
mass conservation is preserved, the pressure-induced crack opening is used to measure the overall crack opening, and the energy of
crack propagation is used to measure that of viscous dissipation. In the stage where the fluid-lag zone is very large, the length of the
fluid channel is much shorter than the crack length. The length of the fluid-lag zone decreases under the action of the crustal stress
[29], indicating that the change of stress intensity factor caused by crustal stress is comparable to that induced by the pressure.
Because the fracture toughness is constant and negligible in the viscosity-dominant regime, it is rational to assume that the stress
intensity factor due to the pressure is equivalent to that due to the crustal stress, and S is therefore used. Eliminating the four
dimensionless quantities,V , P , M and S , we obtain the scaling laws and other dimensionless quantities as
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Note that the scaling laws are approximate because there is L t( ) in the integral equations of the crack opening and the stress
intensity factor. In Eq. (48), the dimensionless quantities Q ,K andR represent the ratio of the crack opening due to the shear stress
to that due to the pressure, the ratio of fracture toughness to the combined effects of the crustal stress and the viscous dissipation, and
the ratio of surface tension to the combined effects of the pressure and the viscous dissipation. BothQ andK are decreasing functions
of time, so both the shear stress and the fracture toughness are negligible at large times in comparison with the pressure and the
viscosity, respectively. If there is the crack closure in the fluid-tip region or deflection, it occurs at a small time. This analysis
demonstrates a key point that the viscosity-dominant regime is different from the shear-stress-dominant regime. R is a decreasing
function of time and negligible at large times for a shear thinning fracturing fluid, is an increasing function of time and is dominant at
large times for a shear thickening fracturing fluid, and is constant for a Newtonian fracturing fluid.

4.2. Numerical implementation

Similar to the normalization scheme in Section 3.1, we use the following normalization scheme

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃= = − = =Px l l t x w x t εl w x t p x t p p x t t Tt( ) , ( , ) ( , ), ( , ) ( , ),1 f0 f 1 1 f0 1 1 v 1 (49)

with the crack length being normalized by ̃ ̃l l t( )f0 f . Either the initial crack length or the initial fluid-tip position can be included in the
unit system. The initial fluid-tip position is used to take into account the effect of the viscous dissipation. In the viscosity-dominant
regime, there are
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with the dimensionless parameters as
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where ∞̃σ is the dimensionless crustal stress, and ̃γ is the dimensionless surface tension. It is evident that the effect of the crustal stress
is dependent on the position of the fluid tip, and the effect of the surface tension is dependent on the flow behavior index in accord
with the scaling analysis. With the dimensionless parameters and the assumption of no backflow, Eqs. (1) –(9) become

̃ ̃ ̃ ̃ ̃ ̃ ̃∫=t l t w ζ t ζ( ) ( , )df 0

1

(52)

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃
̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃̃∫= − ⎡

⎣
⎢

∂
∂

+ ′ ⎤

⎦
⎥ + ′q x t l t

w ζ t
t

l t w ζ t ζ l t x w x t( , ) 1 ( )
( , )

( ) ( , ) d ( ) ( , )
x

1 0 f f f 1 1
1

(53)

̃ ̃ ̃
̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃

̃ ̃ ̃
∂
∂

= − +
p x t

x
q x t l t

q x t
w x t

( , )
sgn { ( , )} ( )

| ( , )|
[ ( , )]

n

n
1

1
1 f

1

1
2 1 (54)

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃
̃ ̃

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃
̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃̃∫ ∫=

− + −

−
+

∂
∂

+ −∞w x t l t p ζ t ln
l t x l t ζ

x ζ
ζ Q w ζ t

p ζ t
ζ

ζ σ l t l t x
π

( , ) 2 ( ) ( , )
( ) ( )

| |
d ( , )

( , )
d ( ) ( )

x1 f 0

1
2

1
2 2 2

1
2 2

1
f

2
1
2

1

(55)

̃ ̃ ̃ ̃ ̃ ̃ ̃ ̃
̃ ̃ ̃

̃ ̃ ̃ ̃ ̃ ̃∫=
−

+ ∞K l t l t
p ζ t

l t ζ
ζ l t l t σ( ) ( )

( , )

( )
d π

2
( ) ( )IC f 0

1

2 2 f

(56)

̃ ̃ ̃ ̃ ̃
̃ ̃ ̃ ̃=p l t t

γ
w l t t

( ( ), )
( ( ), )

f
f (57)

and the initial condition becomes ̃ ̃ =l t( ) 1f 0 . For a small fluid-lag zone, the fluid tip coincides with the crack tip, and Eqs. (52)–(57)
degenerate to Eqs. (24)–(27); the full-stress model with a fluid-lag zone degenerates to that without fluid-lag zone.

An adaptive mesh is used with a constant number of mesh nodes in the fluid channel and no less than 10 nodes in the fluid-lag
zone. Lagrange quadrature is used, and the variable nodes coincide with the mesh nodes to reduce the error introduced by extra-
polation. The implicit Eulerian method is used for the integration of time. Using two iterative loops in a single step, we can obtain the
convergent result. First, the crack opening and the crack length are calculated from the previous step with Eqs. (47), and the fluid-tip
position is calculated from Eq. (52). Then, the flow rate and the pressure gradient are calculated. Eq. (57) is used to determine the
new crack opening. If the relative error between the newly calculated crack opening and the previously calculated one is less than the
pre-given error, the inner loop ends; otherwise, the new crack opening is used for the subsequent numerical calculation. In the
numerical calculation, the relaxation factor is 10−3. After finishing the calculation in the inner loop, we obtain a new crack length
from Eq. (47). The outer loop ends when the relative error between the two crack lengths is sufficiently small.

A comparison study has been performed to validate the numerical scheme. Fig. 8 shows the evolution of the positions of the crack
tip and the fluid tip calculated from the models with and without a fluid-lag zone. The numerical calculation is focused on the
pressure-only model with ̃ = −∞σ 0.1, =n 1, and ̃ =K 0IC . For the model with a fluid-lag zone, the size of the fluid-lag zone is large at

Fig. 8. Comparison between the results with and without a fluid-lag zone. The crack tip coincides with the fluid tip at large times under the crustal
stress for the model with a fluid-lag zone. The model with a fluid-lag zone degenerates to the model without a fluid-lag zone at large time.
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early time, and decreases under the action of the crustal stress to a negligible value at large times, where the model with a fluid-lag
zone degenerates to the model without the fluid-lag zone.

4.3. Unstable crack growth

It is very difficult to demonstrate the crack closure for the full-stress model with a fluid-lag zone because no physical solution can
be obtained. The numerical calculation is divergent once crack closure occurs, and there is no further information available for the
analysis. According to the model without fluid-lag zone, a mesh-dependent result is present under the following conditions of (1)

̃ ̃⩽t tcr, which is equivalent to ̃ ̃⩽x xΔ Δ cr, with certain values of ̃Q , and (2) ̃ ̃>Q Qcr at certain times. Two numerical schemes can be
used according to the two conditions. For a constant ̃Q , a time reversal calculation is needed to achieve the first condition from a large
time, and for a constant time, divergent results are obtained by increasing ̃Q from a small value.

Hydraulic fracturing is a diffusion process [31] with phase transition. The first numerical scheme is inapplicable because the time
reversal problem of a diffusion process is ill-conditioned. Here, an iterative process is used to achieve the second condition. For each
iteration, the calculation starts with the same initial fluid-tip position in individual calculation. Several time steps are used to examine
whether the calculation is divergent. The loop ends if a divergent result occurs; otherwise, the calculated results are mapped to the
initial fluid-tip position according to Eqs. with ̃Q being increased with a multiplier, and other dimensionless parameters remain
unchanged.

Fig. 9 shows the divergent result of the fluid-tip position, indicating that the fluid-lag zone cannot eliminate the crack-closure
phenomenon. A plausible mechanism is that the crack-closure phenomenon is due to the interaction of elastic deformation and
viscous flow which is independent of the crack-tip asymptotics. From this perspective, branching near the fluid tip on the crack
surfaces and away from the crack tip may appear. The other reason is likely due to the inapplicability of the lubrication theory at the
fluid tip since the flow near the fluid tip is two-dimensional. Lubrication theory is invalid in the near-fluid-tip region with its length
comparable with the crack opening. However, such a region is much shorter than the crack, and the lubrication theory is therefore
valid.

In the calculation, the multiplier of =a 1.05 has been used to increase ̃Q step by step. The other parameters are ̃ =K 0IC , =n 0.7,
̃ = −∞σ 0.1, ̃=γ 0. Uniform mesh is used with 60 nodes for the fluid channel. Negative crack opening is observed for ̃=Q 0.4, which is

slightly larger than the result of ̃ =Q 0.23cr for the model without fluid-lag zone. This value decreases with the increase of the crustal
stress. The fluid-lag zone may decrease the possibility of the crack closure, which cannot be revealed precisely with the numerical
scheme used in this work.

4.4. Effect of fluid-lag zone

The existence of a fluid-lag zone leads to the failure to eliminate the crustal stress by the superposition principle. The fluid surface
and moving contact line appear near the front of the fracturing fluid [5]. According to Eq. (47), the dimensionless crack length
decreases with time during the hydraulic fracturing. For a small fraction of fluid, the dimensionless length of the fluid-lag zone can be
approximated as

= − ≈L t L t L t( ) ( ) 1 ( )lag (58)

where =L t l t L t( ) ( )/ ( )lag lag f . The dimensionless parameter, K , gives a characteristic time as
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which represents the characteristic time for the fluid-lag zone being negligible. For large times, the size of the fluid-lag zone can be

Fig. 9. Divergent result (negative crack opening) from the full-stress model with a fluid-lag zone. An iterative numerical scheme has been used. For
each iteration, ̃Q is increased by a multiplier.

W. Shen et al. Engineering Fracture Mechanics xxx (xxxx) xxx–xxx

14



predicted using the Galilean transform for a Newtonian fracturing fluid [11]. Note that a large dimensionless crustal stress may
introduce large error in initial condition in the numerical calculation, and increasing crustal stress is mathematically equivalent to
increasing the initial time according to Eq. (51).

The problem is self-similar for Newtonian fracturing fluid if the crustal stress, the vapor pressure, the shear stress, and the
wettability are negligible. The size of the fluid-lag zone increases with increasing time for shear thinning fracturing fluid and de-
creases for shear thickening fluid. There is a scaling law for the evolution of the fluid-lag zone. Using the transformations in Eq. (45)
and equating the fracture toughness to the stress intensity factor introduced solely by the pressure, one obtains
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with the other scaling laws being the same as those in Eq. (47). From numerical calculations, Eq. (60) gives the same power-law
exponents as the numerical results only for =n 1. There exist slight differences of the power-law exponents for ≠n 1 between the
numerical results and the scaling laws due to the existence of the dimensionless crack length in the boundary integral equation and
the stress intensity factor.

In general, the effects of the wettability are time-dependent. The shear-stress-dominant regime is limited to the early time of
hydraulic fracturing in the case that the crack closure in the fluid-tip region may occur. A small size of the fluid-lag zone is detected
due to the negative effect of the shear stress on the crack opening. According to Eq. (48), the effect of the surface tension is significant
at large times for a shear thickening fracturing fluid, or at small times for a shear thinning fluid. Note that the surface tension is often
neglected in the simulation and design of hydraulic fracturing because of small order of magnitude. However, the effect of wettability
on the crack opening is crucial for microcracks which have large curvature [5].

4.5. Discussion on the full-stress model with a fluid-lag zone

The analysis has revealed the possible occurrence of the crack-closure phenomenon in the hydraulic fracturing with a fluid-lag
zone, although it occurs more difficultly than the case without a fluid-lag zone. According to Eqs. (2) and (3), shear stress is pro-
portional to − +w n( 1) , i.e., the smaller the crack opening, the larger is the shear stress. The numerical results also suggest that there is
local crack closure near the tip of the fracturing fluid. Thus, the crack-closure phenomenon is not due to the singularity of the shear
stress. A different structure of boundary layer shown in Fig. 10 is presented by using the full-stress model. The shear stress leads to a
higher stress singularity in the outer solution. Different from the inner solution which is derived to interpret the failure of material,
the outer solution is the result of the solid-fluid coupling. According to the stress distribution shown in Refs. [6,7], the maximum
tensile stress in the outer solution is σ11 indicating potential presence of mode-I cracks perpendicular to the original crack surfaces.

Note that the crack closure in the fluid-tip region has not been reported in the laboratory and field experiments [16–19]. There are
multiple reasons for the lack of observations of the crack-closure phenomenon, which likely include (1) structural instabilities in
addition to the crack closure, (2) experimental conditions not suitable for the occurrence of the crack closure, and (3) the short
duration of the crack closure. For the first case, the straight crack at the state of plain strain make it impossible to introduce structural
instabilities, such as the deflection, branching, fingering and nonplanar propagation of the crack, while it is possible to have unstable
crack propagation. For the second case, the characteristic length is physically limited by the grain sizes of rocks. According to Eqs.
(34) and (40), the viscosity of the fracturing fluid is too small for the crack closure during the hydraulic fracturing of a well-prepared
specimen with a crack. Also, the slow injection tends to prevent the occurrence of the crack closure since the dimensionless fracture

Fig. 10. Schematic of the boundary layers at the crack tip. The inner solution is in accord with the linear elastic fracture mechanics, while the outer
solution is abnormal (the fracturing fluid is Newtonian); a) In a pressure-only model, maximum stress components in the two layers are σ22, and b) in
a full-stress model, the maximum stress component in the outer solution is σ11.
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toughness is large enough to counterbalance the effect of the shear stress. However, there are corners and variations in the fluid
channel of which local resistance may be larger than the friction resistance [32]. An underestimated hydraulic resistance arises by
simply using the fluid viscosity from laboratory experiments and the straight-crack assumption. For the third case, the duration of the
crack closure may be so small that the associated pressure fluctuations measured are possibly treated as measurement errors. Further
quantitative studies are required to consider the inertia effect and capture the details of crack closure including its duration.

Understanding the unstable crack growth caused by flow-induced shear stress likely provides valuable insight into the formation
of hydraulic crack networks. There likely exist a variety of instabilities, such as deflection and non-planar propagation of a crack,
which can create complex crack networks in rocks. In a hydrocarbon reservoir with depth larger than 3 km under the ground, where
the crustal stress is larger than 50MPa, the fluid-lag zone is negligible according to Eq. (47). Consequently, Eq. (40) can be used to
predict unstable growth of cracks. In the perspective of numerical simulation, the crack-tip issues have long been the difficulties in
developing computer programs [29], and the stress singularities and the potential instabilities discussed here are essential to develop
novel numerical schemes. In the perspective of realistic hydraulic fracturing treatments of shale reservoirs, potential unstable crack
growth is predicted. Even though producing a large number of instabilities is a method to form large-scale fracture networks, the
model developed here is so simple that does not include the highly heterogeneous properties of shale rocks [33]. Further studies are
needed to incorporate the heterogeneous properties of shale reservoirs and full-stress coupling at the solid-fluid interfaces.

5. Conclusions

The pressure-only model is extended to the full-stress model which takes into account of the combined effects of pressure and
shear stress on the crack surfaces. The stress intensity factor is modified, and the strain energy release rate is derived, in which there is
an additional contribution from singular shear stress. The full-stress model incorporates the physical effects of fracture, viscosity,
shear stress, crustal stress and surface tension. Scaling analysis reveals the conditions when each effect is negligible. All the five
physical effects play important roles in the crack propagation with the fluid-lag zone, and there are only three physical effects
(fracture, viscosity and shear stress) determining the crack propagation without the fluid-lag zone. The effect of the shear stress
gradually becomes less important during the fracturing, and the effect of fracture and surface tension depends on the flow behavior
index of the fracturing fluid. For a shear-thinning fracturing fluid, the surface tension is negligible at large time; for a shear-thick-
ening fracturing fluid, the surface tension becomes dominant at large time; and for a Newtonian fracturing fluid, the effect of the
surface tension remains unchanged during the fracturing. The full-stress model degenerates to the pressure-only model for large times
when the crack opening caused by the shear stress is negligible in comparison with that caused by the pressure. According to the full-
stress analysis, the following conclusions can be drawn:

• Unstable crack growth can occur in the shear-stress-dominant regime. With the assumption of a straightly propagating fluid-
driven crack, shear stress may lead to the crack closure near the fluid tip in the shear-stress-dominant regime. Due to two
numerical constraints, shear stress leads to mesh-dependent results in the numerical calculations. For the cases without fluid-lag
zone, an empirical necessary criterion for the crack closure is obtained. A fluid-driven crack with no fluid-lag zone closes much
easier than that from the same model with a fluid-lag zone.

• The unstable crack growth is independent of the fluid-lag zone, indicating that the crack-closure phenomenon is not due to stress
singularities. A new structure of boundary layer at the crack tip is predicted by the full-stress model. Shear stress leads to a higher
stress singularity compared with hydrodynamic pressure in the outer solution. The outer solution predicts potential mode-I cracks
in the direction perpendicular to the original crack surfaces.

• The lubrication theory is valid to describe the flow of fracturing fluid. The effect of two-dimensional flow is limited in the region in
which the fluid-channel width is comparable with the length. Vertical velocity removes the pressure singularity. However, the
singular pressure is integrable in the lubrication theory, and its effect on the crack propagation criterion is negligible for a crack
with length much larger than its opening width. The discrepancy introduced by vertical velocity is negligible.

• In the toughness-dominant regime, the effect of shear stress are two folds. On the one hand, the shear stress leads to a narrower
crack opening, a longer crack (mass conservation) and a lower wellbore pressure (crack propagates more easily for a longer
crack); on the other hand, the shear stress decreases the stress intensity factor, resulting in a larger wellbore pressure, then a wider
crack opening, and finally a longer crack (mass conservation). The former dominates the hydraulic fracturing for small times, and
the latter takes effect for large time.

• There are multiple factors determining the size of the fluid-lag zone. The size of fluid-lag zone is estimated for small times, when
the length of the fluid channel is much smaller than that of the fluid-lag zone. A small fluid-lag zone is obtained due to the shear
stress and the crustal stress on the crack opening. The fluid-lag zone becomes increasingly negligible with time under the action of
the crustal stress. The effect of the shear stress on the fluid-lag zone is limited to small time. The surface tension plays an important
in microcracking, and a larger fluid-lag zone is obtained for a hydrophobic rock.

In the full-stress model, the rock is modeled as homogenous, isotropic, and linearly elastic, and incompressible fracturing fluid
with power-law rheology is used. In hydraulic fracturing, multiple cracks can propagate at the same time, shale rocks are highly
heterogeneous with a large number of joints and natural fractures, the shear-stress-induced volume dilatation can occur near crack
tips, and the fracturing fluid flows together with an enormous amount of proppant [8,9]. The proposed model may not capture the
details of unstable crack propagation including the crack paths, the evolving stress field and the duration. Further studies are needed
to extend this model to simulate a more realistic hydraulic fracturing process.
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This study provides a systematic analysis of the effect of the flow-induced shear stress on the unstable growth of a fluid-driven
crack. The results shed insights into hydraulic fracturing in the hydrocarbon reservoirs of low permeability. It also suggests that there
is a divergent solution in numerical simulation for an over-refined mesh being used near the crack tip.
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Appendix A. Energy release rate and stress intensity factor in the toughness-dominant regime

In the toughness-dominant regime, the square-root singularity of stress field remains unchanged. The normal displacement
component behind the crack tip and normal stress component in front of the crack tip for = −τ τ x l/ 1 /0 1
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. Substituting +u x( , 0 )2 1 and σ x( , 0)22 1 into the following strain energy release rate [14],
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and using the result of the definite integral, ∫ − =l ζ ζ ζ l(Δ )/ d πΔ /2l
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The stress intensity factor can be also calculated as = −
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The first term in Eq. (A.5) is the same as that from +σ x( , 0 )22 1 , which gives the stress intensity factor as KIp. For = −τ τ x l/ 1 /0 1
2 2 ,

the second term can be evaluated using
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Thus, the stress intensity factor from +σ x( , 0 )11 1 is
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Appendix B. Numerical scheme for the model without fluid-lag zone

The Chebyshev polynomials are used to approximate the unknown functions as

̃ ̃ ̃ ̃̃= = = ∂ =w a T p b T τ c T p d T· , · , 2 · , and ·x
p t d

1 (B.1)

where a, b, c and d are constant vectors to be determined.
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where N is the number of polynomials used, a larger N gives a higher accuracy of the numerical results; ep and et are two auxiliary
constants representing the exponents of the pressure and the shear stress at the crack tip, respectively. The terms of ̃− x(1 )e

1
2 p and

̃− x(1 )e
1
2 t are used to represent the singularities at ̃ =x 11 and to improve the numerical calculation. Thus, the integro-differential

equations reduce to algebraic equations which can be numerically solved. Here, ̃− x1 j1
2 is used due to the symmetric characteristic of

the crack about the ̃Ox2 axis; all of the variables are even functions of ̃x1. In the interval (0, 1), ̃− x1 2 1 is used to satisfy the domain
requirement of the Chebyshev polynomials. The constant vector of a for an arbitrary known function of f x( ) in (0, 1) is calculated as

=a f A· (B.3)
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in which = − +A δ i j N Nπ(2 ) cos[ ( 1/2)/ ]/ij i0 , δ i0 is the Kronecker delta, =f f x( )i i , and = − +x i Nπ1/2 cos[(2 1) /2 ]/2i (the i - th
point in Gaussian quadrature). From Eq. (B.3), the function of f x( ) can be approximated as

∑= −
=

−

f x a T x( ) (1 2 )
i

N

i i
0

1

(B.4)

The numerical analysis was focused first on the calculation of the constant vectors of a, b, c and d.
Using the Chebyshev approximation of Eq. (B.1), one obtains the discretized Eqs. (24)–(27) as

̃ ̃
=

f a
l t

1 (B.5)
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l l
tΔ Δ

·
Δ

·
Δ

.x n
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2 1
0

5 0 5
0

1
(B.6)

̃ ̃ ̃ ̃ ̃ ̃ ̃= +w a f c fl Q· ·3 4 (B.7)

̃ ̃
̃= ⎛

⎝
⎜ − ⎞

⎠
⎟ +p d f d fK

l

2
π

· ·IC
2 6

(B.8)

and the shear stress is calculated with ̃ ̃ ̃̃= ∗ ∂τ w p( /2). x1 , where a.*b represents the vector a b{ }i i ; the subscript “0” represents the
initial condition in a single time step; and f1 to f6 are defined by

∫= −f T ζ ζ(1 2 )dj j1 0

1
1 (B.9)

∫= − − −f ζ T ζ ζ ζarccos( ) (1 2 )(1 ) dj j
e

2 0

1 2 1p
(B.10)

̃∫= − −
− + −

−
f T ζ ζ ln

x ζ

x ζ
ζ2

π
(1 2 )(1 )

1 1

| |
dij j

e i

i
3 0

1 2 1
2 2

1
2 2

p

(B.11)

̃∫= − −f T ζ ζ ζ(1 2 )(1 ) dij x j
e

4
1 2
i1

t
(B.12)

̃∫= −f T ζ ζ(1 2 )dij x j5
1

i1 (B.13)

̃∫= − − −f T ζ ζ ζ(1 2 )(1 ) dij x j
e

6
1 2 1
i1

p
(B.14)

An iterative method is used to solve the system of linear algebraic equations. The initial crack opening of ̃w0 is assumed as
elliptical and recalculated with Eq. (26). In the numerical calculation, the results from the last step is used as the initial values in the
next calculation. The iterative process includes: (i) the calculation of f1 to f6; (ii) iteration with the calculation of the pressure
gradient, the shear stress, the pressure, and the constant vectors a, b, c; (iii) the calculation of a new crack opening w′ from Eq. (B.7);
and (iv) the calculation of the relative difference, εw, of the crack openings between adjacent iterations; if εw is less than a pre-
determined value, the iteration stops; if not, the crack opening is re-calculated as ̃ ̃− +w w′(1 Δ ) Δw w , with Δw being the relaxation
factor. A new time step starts after finishing the iteration.
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