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Abstract

The present work investigates the corrosion resistance of as-cast FeCoCrNiMn high-entropy alloy in
borate buffer solution. Compared with 304 and 316L stainless steels steel, as-cast FeCoCrNiMn high-
entropy alloy exhibited excellent passivation ability. This should be attributed to homogenization of
alloying elements. Highly corrosion-resistant elements in as-cast FeCoCrNiMn alloys, for example,
Cr, Co and Nij, could promote the formation of protective passive film in borate buffer solution.
Moreover, combined effect of high mixing entropy and sluggish diffusion also could improve the
corrosion resistance. The formation mechanism of the passive films on the surface of as-cast
FeCoCrNiMn alloys satisfied the point defect model.

1. Introduction

Yeh etal[1] firstly proposed a very novel design concept called high entropy alloys (HEAs) which is a multi-
component alloy containing five or more metallic elements with nearly equiatomic ratios and at the same time
can stabilize as a single-phase solid solution [2]. George et al [3] found that FeCoCrNiMn HEAs exhibited
excellent strength, ductility and work hardening rate in cryogenic temperature due to earlier forming nanotwins.
Ritchie et al [4, 5] also found that equimolar FeCoCrNiMn HEAs had excellent fracture toughness in cryogenic
temperature due to deformation nanotwins. Recently, new additive manufacturing technologies have also been
used to prepare HEAs. For example, compared with the conventional fabrication method, dense FeCoCrNiMn
HEAs obtained by selective laser melting exhibited excellent strength and ductility due to cellular structures [6].
Xiang et al [7] fabricated FeCoCrNiMn high entropy alloys by the laser melting deposition technique and found
that obtained FeCoCrNiMn HEAs showed more homogeneous element distribution than that obtained by
casting technique. This technique induced high strength and ductility of FeCoCrNiMn high entropy alloys.

Although the mechanical performance is important, the corrosion resistance is also important for the HEAs.
There are few studies about the corrosion resistance of FeCoCrNiMn HEAs. Rodriguez et al [8] found that the
FeCoCrNiMn HEAs showed better corrosion resistance than commercial alloys UNSN10276, UNS K03014,
and UNS 31600 in NaCl solution. Ye et al [9] found that the FeCoCrNiMn HEA coating obtained by laser surface
alloying exhibited lower corrosion rate than 304 stainless steel in 3.5 wt% NaCl solution and 0.5 M sulfuric acid.
However, it was found that the passive films on FeCoCrNiMn HEA in 0.1M H,SO, solution showed lower
corrosion resistance than 304L stainless steel [ 10]. This was attributed to depletion in Cr and more hydroxides in
the passive films, which could result in more point defects in passive films. The HEAs could be widely applied in
nuclear power plants owing to their novel atomic structure based on high irradiation resistance [11, 12].
However, understanding of corrosion resistance of the FeCoCrNiMn HEAs is still necessary. In this work, we
evaluate the corrosion resistance of FeCoCrNiMn HEAs by electrochemical experiment in borate buffer
solution.

© 2020 The Author(s). Published by IOP Publishing Ltd
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Figure 1. (a) Optical image and (b) XRD pattern for as-cast FeCoCrNiMn alloys.

2. Experimental

Solid pieces (99.5 wt% purity) of Co, Cr, Fe, Mn and Ni were taken in equiatomic proportions and arc melted to
form FeCoCrNiMn alloys. The melting was carried out in a highly purified Ar atmosphere with 10> mbar
pressure. The alloy was remelted 4 to 5 times to improve the chemical homogeneity. Phase characterization was
carried out by x-ray diffraction using a Rigaku Ultima IV diffractometer with Cu K (0.154056 nm) and
radiation at 40 kV and 40 mA. Optical microscope (OM, Olympus BX51) was used to observe the
microstructural characteristics of as-cast FeCoCrNiMn alloys. Scanning electron microscope (SEM, Hitachi SU-
70)) equipped with an energy dispersive spectrometer (EDS) was further employed to analyze homogeneity of
each alloying element. Electrochemical experiments in borate buffer solution were measured at room
temperature using CHI660D electrochemical workstation. Saturated calomel electrode and platinum electrode
was used as reference and auxiliary electrode, respectively. The electrochemical experiments were performed in
borate buffer solution with pH 9.2.

3. Results and discussion

Figure 1 shows the microstructure of the as-cast FeCoCrNiMn alloys. Both dendrite and interdendrite phases
with distinct boundaries are observed. Moreover, the as-cast FeCoCrNiMn alloys have a grain size of 50-120
pm. Similar microstructure for as cast high entropy alloys has been found [13]. In addition, according to the
XRD pattern in figure 1(b), a single face-centered cubic solid solution is formed in the as-cast FeCoCrNiMn
alloys.

The detail distribution of the elements in the as-cast FeCoCrNiMn alloys is shown in figures 2(a)—(e),
respectively. It is obvious that there is no segregation of alloying element in the as-cast FeCoCrNiMn alloys, and
each element is evenly distributed.

Figure 3(a) presents the typical dynamic potential polarization curve of as-cast FeCoCrNiMn alloys in borate
buffer solution. For comparison, potentiodynamic polarization curves of 304 and 316L stainless steels in borate
buffer solution are also shown [14, 15]. Firstly, it could be seen that there is evident different in the shape of the
polarization curves. Different alloying compositions may affect the polarization process in borate buffer
solution. Although as-cast FeCoCrNiMn alloys have narrower passivation region than 304 and 316L stainless
steels, the former exhibits higher corrosion potential and lower corrosion current. A lower corrosion current
density should reveal a lower corrosion rate. This indicates higher stability of the passive films on the surface of
as-cast FeCoCrNiMn alloys than that on stainless steels. The high stability of the passive films on the surface of
as-cast FeCoCrNiMn alloys could be attributed to the both of synergistic effect of high mixing entropy and
sluggish diffusion [16]. In addition, Cr, Co and Ni which are highly corrosion-resistant elements in as-cast
FeCoCrNiMn alloys, can facilitate to form protective passive film in alkaline solution [17]. For example, Qiu et al
[18] suggested that easy combination of Co element with Fe, Ni, and Cr elements will also induce to form protect
passive film. Moreover, the homogeneous alloying elemental distribution in HEAs also can improve its
corrosion resistance [19]. In order to understand the passivation behavior of as-cast FecCoCrNiMn HEAs in
borate buffer solution, the EIS measurement also was conducted. In figure 3(b), all the Nyquist plots reveal
unfinished semicircle in the whole frequency region. Obviously, and the diameter of the semicircle is potential
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Figure 3. (a) Potentiodynamic polarization curves and (b) The Nyquist plots of as-cast FeCoCrNiMn alloys in borate buffer solution.

dependent and decreases with higher passive potential. The lower diameter of the capacitive semicircle of as-cast
FeCoCrNiMn alloys with the increasing of passive potential indicates the decrease in the corrosion resistance.

The Mott-Schottky measuring technique is also used to evaluate the electronic structure characteristic of the
passive films [20]. The space charge capacitance C and the applied potential E should satisty the following
relationships based on Mott-Schottky theory:

1 2 T .
— = (E — Ep — k—) forn — type semiconductor (1)
C?  egpeNp e

1 -2 kT
— = E — Eg5 — — | forp — type semiconductor 2
Cc? az-:oeM( e ) P op &

where eis the electron charge; e refers to the relative dielectric constant of the passive film [21]; g is the vacuum
permittivity; E and Eg, is the applied potential and the flatband potential, respectively; k is Boltzman constant; T
is the absolute temperature. Donnor N, and acceptor N, densities are obtained from the slope in linear region of
the Mott-Schottky plots.

According to Mott-Schottky results in figure 4(a), the primary passive films on as-cast FeCoCrNiMn alloys
should be an n-type semiconductor and p-type semiconductor due to a straight line with positive and negative
slopes. Doping concentration in passive films strongly depends on passive potential. Donnor N4 and acceptor N,
densities are order of magnitude 10*' cm . Ngand N, values both increase significantly with higher passive
potential in figure 4(b). This indicates that higher passive potential will induce more defective passive film and
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Figure 4. (a) The Mott-Schottky plots and (b) donor and acceptor densities for passive films on as-cast FeCoCrNiMn alloys in borate
buffer solution, (c) Schematic diagram of physicochemical processes based on PDM model. m is metal atom, V’ﬁ,j is cation vacancy,
My is metal cation in cation site, Vi, is vacancy in metal site, M is cation interstitial, V¢ is oxygen vacancy, M+ (aq) is metal cation
in electrolyte, O is oxygen ion in anion site.

decrease its corrosion resistance. These results are consistent to the potentiodynamic polarization curves and the
Nyquist plots.

Macdonald et al [22, 23] proposed the point defect model (PDM) about the formation of the passive films
and movement of point defect in the passive films, as shown in figure 4(c). The oxygen vacancies, cation
interstitials and cation vacancies occur at the metal/film interface and film/electrolyte interface, respectively.
Then they move in the opposite direction. The PDM demonstrated that the higher passive potential increased
the generation rate of oxygen vacancies and cation vacancies. Good exponential relationships are satisfied
between doping concentration in passive films and passivation potential in figure 4(b). This indicates that the
formation mechanism of the passive films on the surface of the as-cast FeCoCrNiMn alloys and the movement
of point defects in borate buffer solution can be explained by the PDM. As the passive potential increased,
corrosion current densities increased for as-cast FeCoCrNiMn alloys in figure 3(a), which meant that the passive
films degraded and corresponding corrosion resistance decreased. This indicated that the higher passive
potential in as-cast FeCoCrNiMn alloys increased the point defect density in the passive films and reduced its
corrosion resistance. The oxygen vacancies and cation interstitials at the metal /film interface and cation
vacancies at the film/electrolyte interface will migrate across the passive films, and finally annihilated at the
opposite interfaces. The higher passive potential will increase the generation and diffusion rate of cation
vacancies based on reaction (4) in figure 4(c). At the same time, their annihilation rate decreases based on
reaction (1) in figure 4(c). This will result in the breakdown of passive film and decrease corrosion resistance
[24]. The higher passive potential will increase oxygen vacancies based on reaction (3) in figure 4(c), and more
oxygen vacancies could also accelerate the adsorption of borate ion. Then the strain in the passive film will
promote its breakdown and reduce its corrosion resistance.

4, Conclusions

The as-cast FeCoCrNiMn HEAs exhibited excellent passivation ability in borate buffer solution. Homogeneous
alloying elements and highly corrosion-resistant elements induced protective passive films on the surface of the
as-cast FeCoCrNiMn alloys. In addition, the corrosion resistance also was improved due to synergistic effect of
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the high mixing entropy and sluggish diffusion. The formation mechanism of the passive films due to movement
of the oxygen vacancies, cation interstitials and cation vacancies has been explained by the PDM.
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