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Abstract: The analysis shows the passive situation of frequent ice disasters in Ningmeng Yellow River is caused by main channel
shrinkage and glaciation dam formation. Meanwhile the flood damage and water security problem are generally triggered by capri—
cious river regime and sand dam induced by sudden flood of sandy tributaries entering main stream. Therefore in order to effec—
tively restore the flood and sediment releasing capacity of the Ningmeng main channel realizing the goal of sedimentation reduc—
tion restoration and maintenance of river channel for medium flood and flood control safety herein the influence of various fac—
tors on the evolution characteristics of Ningmeng Yellow River was analyzed from the perspectives of sediment production sedi—
ment transport and control mechanism. In term of sediment production the distribution of different sediment source areas in the
upper reaches of Yellow River was determined through the combination of sediment-producing geomorphology division remote
sensing image analysis and watershed water system division. Based on the proposed calculation method of wind-erosion sediment
flux and inflow amount of wind sediment combined with the measured data of regional wind speed and vegetation coverage it was
found that the decrease of wind speed and the increase of regional vegetation coverage in recent 30 years were the main reasons for
the gradual decrease of wind-sediment erosion and blown into channel. In addition the analysis results of observed average daily
wind speed daily rainfall and erosion in Ningmeng reach show that the geomantic two-phase erosion in Ningmeng area is mainly
reflected in the alternating existence and mutual promotion of wind erosion and water erosion. Wind erosion mainly occurred from

March to May while water erosion usually relatively concentrated from July to September. Field observation and model test of lo—
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ess rainfall erosion show that gravity erosion occupies a crucial part in the whole erosion process of loess plateau and runoff
formed by rainstorm is the main external force of loess erosion as well as an essential influencing factor to stimulate and intensify
the development of gravity erosion. In general sediment production in the Yellow River basin of Ningmeng reach presents the typ—
ical characteristics of wind-water-gravity multi-battalion interaction. On basis of the revealed runoff gathering process channel
flow and riverbed adaptation and non-equilibrium sediment transport mechanism through physical model and field observation
the dynamic model of sediment yield and runoff in small watershed with complex landform was constructed and the effects of dif—
ferent vegetation characteristics and distribution were successfully simulated. The simulation results indicate that the effect of veg—
etation on water and sediment reduction and the effect of delayed runoff and flood peak are positively correlated with the canopy
density and the effect of vegetation on delayed runoff and flood peak in steep slope area is greater than that in gentle slope area.
In term of sediment transport based on the basic theories of incipient sediment motion bed load transport and riverbed equaliza—
tion adjustment both the numerical simulation method of water and sediment two-phase flow and the similarity law of physical
model for alluvial river are proposed. Numerical calculation and physical test results show that the altered runoff distribution in—
duced by joint operation of Longyangxia Reservoir and Liujiaxia reservoir is the main reason causes the severe shrinkage in main
channel of Ningmeng reach. Coordinating the relationship between water and sediment is an effective way to repair the function of
flood and sediment transport capacity in the Ningmeng Yellow River. Meanwhile the threshold of water and sediment regulation in
Ningmeng Yellow River and the flow threshold of the main stream with sandy tributaries flowing into the inlet are given and deter—
mined through analysis. That is the critical regulation discharge of Ningmeng Yellow River should be between 2 000 and 2 500
m’/s the critical sediment concentration should be between 5.4 and 10.5 kg/m® and the regulation time should be between
15 and 20 days. It is proved that the function of flood and sediment transport in Ningmeng Yellow River can be repaired and
maintained by coordinating the relationship between water and sediment regimes. The flow threshold of the Yellow River preven—
ting heavy sedimentation in junction of main stream and sandy tributary is 2 500 m> /s with the dredger measures the effective
erosion threshold flow of sand dam is 3 000 m’ /s. According to decreasing trend of the threshold of sediment inflow coefficient a—
long the channel given by model tests under the current riverbed boundary conditions of the Ningmeng reach the required flow
discharge is at least 2 600 m’ /s. It shows that the Heishanxia Reservoir must reserve sufficient water and sediment control capaci—
ty. In term of macroeconomic regulation accounting for the characteristics of diverse underlying surface conditions numerous
sediment sources and significant influence of reservoir operation in river sediment transport the main reservoir group is used as
regulator and runoff and sediment are used as regulating objects in this research. Through the method of modular development the
wind-water-gravity erosion model sediment transport model ice forecast model all were integrated on the reservoir alignment
model and a digital basin model platform for the Ningmeng Yellow River is built which can accurately simulate and forecast the
water and sediment processes in large range and has been successfully debugged and applied in Xiaheyan-Shizuishan reach. In ad—
dition in view of the river situation of Ningmeng Yellow River such as the complicated river type the ice knot dam during flood
season and the “sand dam” formed by the sudden flood of sandy tributaries in summer the treatment mode of “water and sedi—
ment regulation tributaries sediment intercept and dredging outside the dike” was put forward. In stable branching reach large
tributary inflow reach and reach restricted by sand and pebble bed composition it is pointed out that the micro-curved manage—
ment scheme is not suitable but the policy of “engineering guide ( referred to as “guide”) jamming tributaries and strengthe—
ning main rivers ( referred to as “jam”)  dig and lead dredging ( referred to as “dig”) ” can be adopted which means the coun—
termeasures of “guide jam and dig simultaneously ”. The constructions of Heishanxia Reservoir and western route of the South-to—
North Water Transfers Project are the fundamental countermeasure of long term management of Ningmeng Yellow River. Only by
increasing the runoff during flood seasons and carrying out water-sediment regulation to restore and maintain the channel section
and provide enough transgression containment the ice flood disaster in Ningmeng reach can be solved completely. It is concluded
that the establishment of the “immobilization-resistance-transportdocation” comprehensive control system of the upper Yellow
River with fixed sediment source sediment interception in tributaries sediment transport the main stream and sediment disposal
outside the embankment is a feasible control strategy at present.

Keywords: Yellow River; Ningmeng reach; flow and sediment regulation; control measurement; sandy tributary; soil erosion

and sediment yield; channel sediment transport
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