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Abstract Lightweight design is important for the Thermal Protection System (TPS) of hypersonic

vehicles in that it protects the inner structure from severe heating environment. However, due to the

existence of uncertainties in material properties and geometry, it is imperative to incorporate uncer-

tainty analysis into the design optimization to obtain reliable results. In this paper, a six sigma

robust design optimization based on Successive Response Surface Method (SRSM) is established

for the TPS to improve the reliability and robustness with considering the uncertainties. The uncer-

tain parameters related to material properties and thicknesses of insulation layers are considered

and characterized by random variables following normal distributions. By employing SRSM, the

values of objective function and constraints are approximated by the response surfaces to reduce

computational cost. The optimization is an iterative process with response surfaces updating to find

the true optimal solution. The optimization of the nose cone of hypersonic vehicle cabin is provided

as an example to illustrate the feasibility and effectiveness of the proposed method.
� 2019 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Reusable Hypersonic Vehicle (RHV) is a fully reusable

transportation system that operates at hypersonic speed
(Ma > 5) for a significant part of its trajectory. During reentry
into the atmosphere at hypersonic speed, one of the main chal-

lenges is that the RHV is subjected to severe aerodynamic
heating upon the surfaces which are exposed to the surround-
ings, especially, the harshest heating environments locate on
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the nose of the vehicle and the wing leading edges due to the
stagnation point heating. In order to successfully achieve
hypersonic flight, a Thermal Protection System (TPS) is

designed to protect the inner structures of hypersonic vehicles
from extreme temperature. The research into thermal protec-
tion technology is ongoing and becomes a hot issue.1–3

In order to make hypersonic vehicles more durable, opera-
ble and cost effective, the current design of TPS is mainly car-
ried out to realize the minimum weight and better insulation

performance by defining the material, arrangement and thick-
ness.4–6 For instance, Garcia and Fowler7 used a first-order
optimization algorithm to minimize the weight of the TPS
for reentry space shuttle. Shi et al.8 investigated the optimiza-

tion design of TPS formulated with mass per unit area of the
TPS as the objective function considering the relationships of
multi-discipline in the TPS. Xie et al.9 investigated the weight

optimization for a corrugated sandwich panel which served as
an Integrated Thermal Protected System (ITPS). Normally,
these existing studies were carried out under the assumption

that all of the parameters involved in the heat transfer analysis
were deterministic. However, due to the materials dispersion,
manufacturing process constraints and operating condition

deterioration of production stages, the presence of uncertainty
in material properties and geometry is intrinsic and it markedly
affects the temperature response of TPS. The uncertainty of
temperature response is significant to the design of TPS in

which even a few degrees of temperature variability may cause
serious consequences.10 Sachin and Mahulikar11 pointed out
that there were physical complexities and uncertainties associ-

ated with the analytical models which were used for TPS per-
formance. It is critical to consider these variations during the
optimization, in order to ensure the safety of the final design

and the performance constraints even in the presence of uncer-
tainty. Wright12 and Ravishankar et al.13 proposed the uncer-
tainty analysis approaches by using Monte Carlo method for

probabilistic sensitivity and uncertainty propagation analysis
of TPS material responses. Therefore, it is requisite to include
uncertain analysis into the design optimization for TPS.

Traditional deterministic optimization considers the uncer-

tainties through the use of empirical safety factors based on
experience. This practice often leads to over-designed prod-
ucts. It cannot provide insights into the actual margin of safety

of a design, and the effects of individual uncertainties cannot
be distinguished either. Therefore, uncertainty-based design
methods, which combine optimization approaches with uncer-

tain analysis,14–17 have been developed in recent years. The
uncertainty-based design generally includes structural reliabil-
ity design,18,19 robust design,20,21 etc. The structural reliability
design converts the deterministic constraints into reliability

constraints by reliability analysis. The reliability analysis eval-
uates the probability of failure or reliability index of the design
with respect to specific structural performance constraints. The

uncertainty-based analysis and optimization design for TPS is
promising, yet insufficient up to now. Some researchers have
made a few attempts in this field. Kolodziej and Rasky22 used

the non-dimensional load interference method for estimating
thermal reliability from an assessment of TPS uncertainties.
Kumar et al.23 investigated the probabilistic optimization of

ITPS that combines the thermal protection function with the
structural load carrying function. Antonio and Marchetti24

presented a statistical methodology based on the Monte Carlo
method to perform a size optimization of an ablative thermal
protection system for atmospheric entry vehicles. However, the
objective of the reliability-based optimization is evaluated at
the mean value point. The design only accounts for the shift

of the mean values of responses from constraint boundaries,
but not considers the size of the response distributions and
the possibility of reducing the variation of response.

Recently, the six sigma robust optimization has been widely
applied to quality engineering.25–27 Six sigma robust optimiza-
tion is an advanced design method combining six sigma quality

management theory and robust optimization, which aims to
minimize the objective and satisfy the reliability design require-
ments. The six sigma robust optimization considers both the
optimality and robustness of the objective to achieve lower

sensitivity of objective performance to the uncertainties. Many
scholars have carried out a lot of studies in this field. Roger
et al.28 proposed a conceptual definition and underlying theory

of six sigma based on the grounded theory and previous liter-
ature available. Patrick et al.29 presented a six sigma based
probabilistic design optimization formulation that combined

the structural reliability and robust design with six sigma phi-
losophy. He pointed out that design quality came at a cost and
the tradeoff between the optimization objective and the relia-

bility (or sigma level) should be considered in the design. On
the basis of the ‘‘Design For Six Sigma” (DFSS), a new
method ‘‘Design For Multi-Objective Six Sigma (DFMOSS)”
that combined the theory of DFSS and Multi-Objective Evolu-

tionary Algorithm (MOEA) was presented.30,31 In order to
improve both the reliability and robustness of the design, this
paper proposes a six sigma robust optimization model to carry

out a probabilistic optimization for the TPS of hypersonic
vehicles.

In the transient heat transfer analysis for TPS along the

entire trajectory, the Finite Element (FE) analysis needs to
be continued for long time to capture the peak temperature,
which seriously reduces the efficiency of optimization. Since

the optimization process for TPS needs plenty of repeated indi-
vidual FE simulations, the computation may be extremely
expensive for broad design space. Moreover, probabilistic
analysis and reliability-based optimization will further increase

the computation cost and the fact that TPS components are
generally made of composite materials further increases the
uncertainties in material properties.13 To reduce the computa-

tional cost, many approximation models were put forward to
generate surrogates of the FE simulations. The sampling data
are chosen by Design of Experiment (DOE) and the surrogate

models can be utilized for optimizations as substitutes of FE
simulations. There are many types of surrogate models, such
as Kriging model,32 Neural Networks model,33 Response Sur-
face Approximation (RSA),34–37 etc. As the form of an

approximate function is assumed first, the Response Surface
Method (RSM) often serves as an effective statistical method.
It uses fewer resources and quantitative data to solve a multi-

variate optimization problem. Theodore et al.38 utilized RSM
to achieve the deterministic and reliability optimizations for
the integrated cryogenic propellant tank of a reusable launch

vehicle. Ravishankar et al.13 studied the uncertainty character-
ization and predicted the probability of failure for an ITPS by
using RSAs. The accuracy of response surface approximation

has a great influence on the optimal solution. In some cases,
though the quality of the approximation is acceptable across
the entire design space, the error near the design point may
be high resulting in a poor optimum design. In the past



Fig. 2 Multi-blocks structure of TPS.

Fig. 3 Loads and thermal boundary conditions imposed on the

outer surface of TPS.
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decades, many methods have been actively studied to improve
the accuracy and computational efficiency of RSM for opti-
mization problem, one of which is the Successive Response

Surface Method (SRSM).39 Generally, the smaller the design
space is, the greater the accuracy of approximation will be.
In addition, the researchers have developed other methods that

can iteratively improve the accuracy of the response surface
modeling. Kim and Na40 proposed an improved sequential
response surface method to evaluate the reliability inherent

in nonlinear functions. Giunta et al.41 utilized the variable-
complexity response surface modeling method to reduce the
design space for the region of interest, which has been widely
used in structural designs. Wang42 presented an improved

Adaptive Response Surface Method (ARSM) with global con-
vergence and high optimization efficiency for high-dimensional
design problems. Therefore, this paper employs the successive

response surface method during the six sigma robust optimiza-
tion process to improve the accuracy of response surface,
which is rare in the field of TPS optimization considering

uncertainties to the author’s knowledge.
In this paper, an efficient and effective optimization

approach obtained by coupling six sigma design, TPS thermal

analysis and SRSM is proposed to carry out a probabilistic
optimization for the TPS of hypersonic vehicles. The TPS
model used in this paper is a typical structural component of
the hypersonic vehicle. The presented method will provide

more reliable and robust design for the TPS while considering
the effects of uncertainties on the structural responses, and the
computation cost will be reduced significantly. The remainder

of this paper is organized as follows. Section 2 describes the
configuration of the TPS model of a typical hypersonic vehicle
and the governing equations of heat transfer analysis. The

deterministic optimization model and six sigma robust opti-
mization model for the TPS are established in Section 3. In
Section 4, the optimization approach based on SRSM is pre-

sented and the complete strategy procedure of this paper is
elaborated. In Section 5, a model of the nose cone of a hyper-
sonic vehicle cabin is used to illustrate the application of the
proposed methodology. Finally, some conclusions are summa-

rized in Section 6.

2. Configuration and governing equations of TPS

2.1. Description of TPS configuration

The TPS is attached to the outer surface of the hypersonic
vehicle structure, such as the vehicle cabin as depicted in
Fig. 1. The TPS modeled in this paper consists of three layers,

i.e. an external panel and two insulation layers, which are
Fig. 1 Depiction of TPS configu
bonded together with adhesive. The external panel serves as

a heat shield, which insulates the insulation layers from exter-
nal ambient to protect the insulation layers from the damage
due to high temperature and aerodynamic pressure. The mate-

rial used for the first layer should be capable of withstanding
high temperature and the second layer is filled with the mate-
rial that has prominent insulation capacity at the relatively
lower service temperature.43 Generally, the thickness of the

external panel is much smaller than those of insulation layers.
In practical engineering, the TPS generally adopts the

multi-blocks structure (see Fig. 2), namely the whole TPS is

divided into several blocks, one of which is connected to
another by fastener, and the gap is filled with sealing materials.
Actually, the thicknesses of the insulation layers of different

blocks can be inconsistent with each other due to the complex
thermal environment.

2.2. Transient heat transfer analysis for TPS

The loads and thermal boundary conditions imposed on the
outer surface of TPS are shown in Fig. 3. A large portion of
heat is radiated out to the ambient by the outer surface. The

inner surface of the second insulation layer is assumed to be
perfectly insulated. That is to say, the heat convection between
the TPS and the interior of vehicle is not considered. With this
ration of a hypersonic vehicle.
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assumption, the optimization would lead to a conservative
design. Radiation and convection through the insulation mate-
rial are ignored and only the conduction is taken into consid-

eration. The initial temperature of the whole model is assumed
to be a constant at the start of reentry. Besides the above
assumptions, the effect of the adhesive on heat transfer is

ignored and the interfaces between adjacent layers of TPS
are assumed to be perfectly conductive, which indicates that
there exists no thermal contact resistance. Furthermore, since

the gap between two blocks is filled with insulation materials
with low thermal conductivity, the interfaces of different
blocks are assumed to be adiabatic.

The basic governing equation of heat conduction can be

described by the following partial differential form

@T

@t
¼ k

qc
@2T

@x2
þ @2T

@y2
þ @2T

@z2

� �
ð1Þ

where T is the temperature, t is the time, K, q, c denote the
thermal conductivity, density, and specific heat, respectively,

x, y and z denote the coordinates along x-, y- and z-axes,
respectively.

The initial condition for the thermal analysis is

Tjt¼0 ¼ T0 ð2Þ
where T0 is the initial temperature and assumed to be 300 K in
this paper.

The incident heat flux entering the TPS can be expressed as

qin ¼ �k
@T

@n

����
s

ð3Þ

where qin is the incident heat flux, n denotes the normal direc-

tion of the outer surface s.
The radiation to ambient is determined by

qr ¼ er T4
s � T4

a

� � ð4Þ
where qr stands for the radiation heat flux, e is the surface

emissivity of the outer surface which typically has a value of
0.8–0.85,44 r is Stefan-Boltzmann constant, Ts denotes the
temperature of outer surface and Ta denotes the ambient

temperature.
Based on the surface energy balance condition, the bound-

ary imposed on the outer surface yields

qw ¼ qin þ qr ð5Þ
where qw is the heat flux load caused by aerodynamic heating.

After aircraft touchdown, a natural convection to the ambi-
ent is used as the boundary condition imposed on the outer

surface (see Fig. 3)

qc ¼ a Ts � Tað Þ ð6Þ
where qc represents the convection heat flux, a is the convec-
tion coefficient.

3. Deterministic and six sigma robust design optimization for

TPS

3.1. Deterministic optimization for TPS

The TPS will not only fulfill the required thermal protection

functions, but also must be as lightweight as possible to mini-
mize operational costs. In this section, an optimization model
is defined to determine the optimal thicknesses of insulation
layers aiming at minimizing the total weight while maintaining

the structures with acceptable temperature limits. The design
variables for the optimization are the thicknesses of insulation
layers of the TPS, which can be denoted by a vector d. Two

critical constraints are considered for the optimization to guar-
antee the functions of TPS and underlying structures: (A) the
maximum temperature of each insulation layer must be less

than the service temperature limit of the insulation material
and (B) the maximum temperature of the inner surface of
TPS must be less than the critical temperature that is safe
for the underlying structure/screw compartment of the vehicle.

The optimization problem of the TPS can be described math-
ematically as follows:

find d

min WðdÞ
s:t: T1;max dð Þ � Tlimit

1

T2;max dð Þ � Tlimit
2

Tinner;max dð Þ � Tlimit
inner

dL � d � dU

8>>>>>>>><
>>>>>>>>:

ð7Þ

where d ¼ d1 d2 � � � dn½ �T is the vector of design variables, WðdÞ
represents the weight of TPS, T1;max; T2;max, and Tinner;max are

the maximum temperatures of the first insulation layer, second

insulation layer and inner surface, respectively, Tlimit
1 ; Tlimit

2 ,

and Tlimit
inner are the temperature limits of the first insulation

layer, second insulation layer and inner surface, respectively,

dL; dU
� �

is the range of the vector of design variables.

3.2. Six sigma robust design optimization for TPS

In practice, the solution obtained by deterministic optimiza-
tion is often close to the critical constraints, which will result

in an unreliable design due to the fluctuation existing in input
parameters or environment. Reliability-based optimization
focuses on the effects of random design variables, in which
the optimal solution is shifted away from constraint bound-

aries to improve design reliability. To shrink the performance
variation, robust design is implemented to decrease the sensi-
tivity of design response to uncertainties. By combining

reliability-based optimization, robust design and six sigma phi-
losophy, Design For Six Sigma (DFSS)29,30,45 is proposed to
improve design quality, as illustrated in Fig. 4. In ‘‘shift”,

the performance distribution is shifted until an acceptable level
of reliability (area of distribution inside constraint) is achieved.
In ‘‘shrink”, the performance variation is shrunk to reduce the
potential performance loss associated with the tails of the dis-

tribution and thus reduce the sensitivity and improve the
robustness. In ‘‘shift + shrink”, with both shift and shrink,
the reliability level is achieved and the robustness is improved.

The one consistency between the measures of reliability and
robustness is the measure of variation: sigma. The perfor-
mance variation can be characterized as ‘‘sigma level n”, as

illustrated in Fig. 5. The areas under the normal distribution
associated with each r-level relate directly to the reliability
(e.g. �1r is equivalent to a reliability of 68.26%). Larger r-
level indicates smaller variation, i.e. more robust characteristic.
The DFSS is proposed to achieve 6r quality, which is defined



Fig. 4 Improvement of reliability and robustness.

Fig. 5 Characteristic of sigma level n (LSL: lower specification

limit, USL: upper specification limit).

Fig. 6 Principle of six sigma robust design.

Fig. 7 Temperature profile of TPS with time.
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to maintain six sigma l� 6rð Þ performance variation within
the specification limits.

To improve the reliability and robustness, the deterministic

optimization for TPS is converted to a six sigma robust design
optimization by considering the uncertainties related to the
geometric parameters and material properties. The six sigma
robust optimization is established to minimize the mean and

variation of performance response with constraints imposed
on the input variables and output responses. The input con-
straints are random design variable bounds and the output

constraints can be reliability or sigma level quality striving to
maintain performance variation within the defined acceptable
limits. The formulation can be expressed as follows:

find d

min k1l2
W þ k2r2

W

s:t: lT1;max
þ 6rT1;max

� Tlimit
1

lT2;max
þ 6rT2;max

� Tlimit
2

lTinner;max
þ 6rTinner;max

� Tlimit
inner

dL þ 6rd � ld � dU � 6rd

8>>>>>>>>><
>>>>>>>>>:

ð8Þ

where l and r denote the mean value and standard variation
of structural weight or temperature constraint which are func-
tions of the design variables and random input variables, k1
and k2 are the weight coefficients for the mean and standard

variation of structural weight, dL and dU are the lower limit

and upper limit of design variable vector, respectively. The
principle of six sigma robust optimization is illustrated in
Fig. 6 which shows that the solution B obtained by six sigma
robust optimization has higher reliability and robustness as a
comparison with the solution A obtained by deterministic
optimization.

4. Successive response surface method based design optimization

In this paper, the vehicle is subjected to time varying aerody-

namic heating load in the course of flight trajectory. As shown
in Fig. 7, the TPS was heated up by the heat flux load before t0
in the trajectory. After t0, the aerodynamic heating ends but

the temperature of TPS will continue to rise due to the heat
transfer along the thickness direction. Consequently, the ther-
mal analysis of TPS needs to be continued for long time to cap-

ture the peak temperature. For the probabilistic analysis and
optimization with considering the uncertainties, it would
require numerous simulations to study the uncertain propaga-

tion which may be extremely expensive for broad design space.
In addition, the complexity of the solid model of the TPS of
hypersonic vehicles will also lead to high computational
expense. Therefore, the computation cost will be unbearable

if the analysis was carried out by FE simulation.



2100 J. ZHU et al.
4.1. Construction of response surface approximation

In this work, quadratic RSAs are used to construct the objec-
tive and constraints as functions of input parameters, since it is
simple, easy to implement and has reasonable accuracy for

concept and preliminary design of structure.5 During opti-
mization process, the quadratic response surfaces of objective
function and constraints are constructed as follows:

y
� ¼ b0 þ

XM
i¼1

bixi þ
XM
i¼1

biix
2
i þ

XM
i¼1

XM
j¼1

bijxixj ð9Þ

where y
�
is the approximation of output response including the

objective function W or temperature constraints
T1;max;T2;max;Tinner;max; b, represents the unknown coefficient,

X ¼ ½x1 x2 � � � xM� represents the input parameter vector which
may be design variables, random variables or both, and M is

the total number of input parameters.
Before constructing the RSA, a DOE should be imple-

mented to locate the sampling points in the design space. In

this paper, the Optimal Latin Hypercube (OLH) is chosen
for DOE because of its low computational cost and uniformity
of samples resulting in better approximations.46

4.2. Successive response surface method

In the optimization procedure, the estimations of output
responses are implemented by RSM. Generally, the quality

of the approximation is evaluated by separate data set or
cross-variation to ensure that the approximation has an
acceptable average error across the entire design space. How-

ever, the error near the design point may be high resulting in
a poor optimum design. Therefore, the response surface updat-
ing is needed in the optimization process to obtain a design

with a higher probability of success.
In order to ensure the solution converge to the true opti-

mum, the accuracy of RSA is improved by reconstruction

via adding additional sampling points from the new subregion
centered around the optimal solution into the previous sam-
pling data set. The subregion is updated by shift and reduction
from the previous one, as shown in Fig. 8. Moreover, the opti-

mal point serves as a starting point for the next iteration dur-
ing optimization procedure. The bounds of the i-th design
variable for the k + 1-th subregion can be determined by

dLi;kþ1 ¼ d�i;k � 1
2
kkþ1 dUi;k � dLi;k

	 


dUi;kþ1 ¼ d�i;k þ 1
2
kkþ1 dUi;k � dLi;k

	 
 ð10Þ
Fig. 8 Updating of subregio
where dL
i;k and dU

i;k are the lower and upper bounds of the i-th

design variable for the k-th subregion, respectively, dLi;kþ1 and

dUi;kþ1 are the lower and upper bounds of the i-th design vari-

able for the k + 1-th subregion, respectively, d�i;k is the optimal

point in the k-th iteration, and kkþ1 is the fraction parameter
which can be calculated by

kkþ1 ¼ max
1�i�n

kkþ1
i ð11Þ

where kkþ1
i is the fraction parameter for the i-th design variable

which can be obtained by

kkþ1
i ¼ gþ c� gð Þ

d�i;k �
dL
i;kþdU

i;k

2

��� ���
dU
i;k�dL

i;k

2

ð12Þ

where g ¼ 0:5 and c ¼ 1:0 for quadratic approximations39 in
this study. In addition, c are chosen as c ¼ 0:8 for linear
approximations in order to counter the cycling effect as com-
monly encountered when using successive linear

approximations.
The convergence criterion used in this research is the rela-

tive change in the approximate objective values in the last

two iterations which can be expressed by

G dkþ1ð Þ � G dkð Þ
G dkð Þ

����
���� < e ð13Þ

where e is the convergence control parameter and its value is

considered as 0.001, G dkð Þ and G dkþ1ð Þ denote the approxima-
tions of the objective for the k-th and k+ 1-th iterations,
respectively.

Fig. 9 illustrates the optimization process based on SRSM

and the detailed computational procedure can be summarized
as follows:

Step 1. The first RSA denoted by y
�
1 is established by DOE

for the initial design space. Then the RSA is used to obtain the
optimal point d1 by optimization procedure. From Fig. 9, it
can be seen that there is a relatively large deviation between

y
�
1 and the actual response y around d1. Therefore, the accu-
racy of RSA around d1 needs to be improved to obtain the
actual optimal solution.

Step 2. The optimal point d1 is used as the new center point

to construct a subregion, in which M additional sampling
points are created and added into the previous sampling data
set.

Step 3. A new RSA y
�
2 will be constructed by using the new

sampling data set and the optimization is repeated to obtain
the optimal point d2.
n for RSA reconstruction.



Fig. 9 Optimization process based on SRSM.
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Step 4. By the same way, the processes of RSA reconstruc-

tion and optimization are repeated until the convergence condi-
tion is satisfied and the final approximate optimal solution dfinal
that is very close to the actual solution dactual can be obtained.

4.3. Strategy procedure

In this subsection, we will elaborate the design procedure of

the deterministic optimization and six sigma robust optimiza-
tion for the TPS of hypersonic vehicles as follows:

Step 1. Initialize design variables. The geometric parameters
are selected as the design variables for this optimization and

their nominal values are defined as the initial values.
Step 2. Create RSA. To reduce the computation cost, the

RSAs are created to evaluate the output responses, including

objective function and constraints. The sampling points of
input parameters, including design variables and random
parameters, are generated by using OLH.

Step 3. Construct and solve deterministic optimization prob-
lem. Construct the deterministic optimization and the model
can be mathematically written as Eq. (7). The overall weight

of TPS is set as the objective function to be minimized and
the critical temperatures of insulation layers and inner surface
are considered as the constraints that maintain the functions of
TPS and underlying structure of vehicle.

Step 4. Update RSA. The RSA will be updated in the opti-
mization process to improve the analysis precision. The opti-
mal solution is employed as the sampling center to construct

additional sampling points, which is used to create a new
RSA along with existing sampling points. If the relative change
in the approximate objective values in the last two iterations is

less than e, turn to Step 5, otherwise, turn back to Step 3 to
repeat the optimization process.

Step 5. Perform quality analysis. To analyze the quality of

design, the quality of the deterministic optimum solution is
measured by six sigma analysis to obtain the reliability or
sigma level of the design.

Step 6. Establish six sigma robust optimization model. To

improve the quality of design, the deterministic optimization
is converted into a six sigma robust optimization formulated
as Eq.(8). The objective is to improve the robustness by mini-

mizing both mean value and standard variation of the perfor-
mance response. The constraints are reformulated as quality
constraints which satisfy six sigma level. The six sigma robust

optimization starts with the deterministic optimal solution.
Step 7. Update RSA. After the initial optimal solution is
obtained, the RSA will be updated by the same way used in
Step 4.

Step 8. Obtain optimal solution. Conduct Step 6 to Step 7
until the convergence condition is satisfied and the optimal
solution can be obtained.

The flowchart of the optimization procedure is shown in
Fig. 10.

5. Demonstrative example

5.1. Thermal analysis

The nose cone of a typical hypersonic vehicle cabin (see Fig. 2)
is selected as the application to demonstrate the effectiveness

of the proposed optimization strategy. Since the thickness of
external panel is much smaller than that of insulation layer,
it is not chosen as the design variable and is held at a constant
value of 5 mm. For simplicity, the thicknesses of the first or

second insulation layer of all blocks are assumed to be the
same. Therefore, the geometric parameters to be optimized
include: the thickness of first insulation layer h1 and the thick-

ness of second insulation layer h2 with initial values of 22 mm
and 32 mm, respectively. The material properties of the panel
and insulation layers, including thermal conductivity k, specific

heat c, density q, are listed in Table 1.
To properly represent the heating trend along the entire tra-

jectory, 55 points are selected from the trajectory and the time

interval between adjacent points is 20 s. The heat flux imposed
on the TPS and ambient temperature are schematically illus-
trated in Fig. 11, which are obtained from a real flight test.
As shown in Fig. 11, the incident heat flux load is imposed

on the outer surface before 1100 s (reentry phase) and there
is no heat input after 1100 s (landing phase). As discussed in
Section 2, the outer surface of TPS has radiation boundary

condition during reentry and convective heat loss is also
applied after landing. The radiation is determined by the emis-
sivity e of the outer surface with a value of 0.85 and the con-

vection coefficient a is assumed to be 6:5W= m2 �Kð Þ.43 The
maximum temperature responses of the external panel and

insulation layers are calculated by commercial software
ANSYS and the finite element model is shown in Fig. 12.
Due to the symmetry of the structure, thermal loads and
boundaries, only half the model is built for calculation.

After landing, the transient heat transfer analysis continues
another 5400 s to capture the peak temperatures. The detailed
results are depicted in Fig. 13, which illustrates the maximum

temperature profiles of external panel, insulation layers and
inner surface with time. It shows that the temperatures of
external panel, insulation layers and inner surface increase

because of aerodynamic heating during reentry process. The
external panel reaches its peak temperature rapidly at about
620 s with a value of 1752.77 K and the maximum temperature
of the first insulation layer reaches at 620 s with the same value

as well. After 1100 s, there is no heat flux loading anymore, but
the inner surface will continue to be heated up caused by the
heat transfer along the thickness direction. The peak tempera-

ture Tinner;max is reached at about 5800 s with a value of

411.72 K and then begins to decrease slowly.



Fig. 10 Flowchart of the optimization procedure.

Table 1 Material properties of panel and insulation layers.

Material k W �m�1 �K�1
� �

c J � kg�1 �K�1
� �

q kg=m3
	 


Panel 8 94.2 1750

Insulation I 0.05 1400 440

Insulation II 0.04 1200 330

Fig. 11 Heat flux load and ambient temperature.

Fig. 12 Finite element model of the nose cone.
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5.2. Construction of RSA

Form Fig. 13, it can be seen that the finite element analysis

needs to continue for long time to obtain the maximum tem-
perature of inner surface, which leads to high computational
cost. The quadratic response surfaces of finite element model
are built to express the relationships between input variables

(including design variables and random parameters) and target
responses, as a way to reduce the computation cost in the opti-
mization process. Since we focus on the maximum temperature

of TPS during the entire trajectory rather than the local tem-
perature at a fixed point, the response surfaces of the maxi-
mum temperatures of TPS’s FE model are constructed to

approximate the relations between the input parameters and
temperature constraints. DOE method is used to generate sam-
pling points for RSA construction. By considering the uncer-

tainties in material properties, the following eight parameters
(listed in Table 2) are defined as random variables. The design



Fig. 13 Temperature profiles of the maximum temperatures of

external panel, insulation layers and inner surface.

Table 3 Design space of design variables for DOE.

Bound Lower bound Upper bound

h1 (mm) 10 30

h2 (mm) 20 40
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variables h1; h2 are also selected as random variables with coef-

ficient of variation of 0.02.
The sampling data set for DOE will be created by OLH

with variations of 6r around the random variables and the

design space of design variables are given in Table 3.
The total number of input parameters is 8 and the quadra-

tic (second order) response surfaces are used in this paper.

Accordingly, the minimum number of sampling points is
8þ 1ð Þ 8þ 2ð Þ=2 ¼ 45. Therefore, a sampling data set of 45
points is used to generate the first response surfaces. The pre-

dicted values of 20 error analysis sampling points are com-
pared with the actual values obtained by finite element
analysis, as depicted in Fig. 14. The error estimates of the
response surfaces are given in Table 4 to illustrate the accuracy

of RSA. From Fig. 14 and Table 4, we can see that the pre-
dicted values accord with the actual values across the entire
design space.

In engineering practice, the uncertainty of composite mate-
rial properties will increase, which may be much greater than
0.02. The increase in the uncertainty of material properties will

lead to larger design space for DOE to construct the response
surface. To solve the problems with large uncertainty level,
more sampling points should be generated or some other
DOE methods such as central composite design47 and

improved LHS48 could be employed to obtain desirable
response surface approximation.

5.3. Deterministic optimization

The TPS is first optimized deterministically to identify a feasi-
ble design from which to begin six sigma robust optimization
Table 2 Random variables in material properties.

Parameter Distribution Mean

k1ðW=m �KÞ Normal 0.05

k2ðW=m �KÞ Normal 0.04

q1ðkg=m3Þ Normal 440

q2ðkg=m3Þ Normal 330

c1ðJ � kg�1 �K�1Þ Normal 1400

c2ðJ � kg�1 �K�1Þ Normal 1200

Where subscripts 1, 2 denote the first insulation layer and second insulat
for quality measurement and improvement. The TPS is to be
designed for minimum weight subject to constraints on the

maximum temperatures of each insulation layer and inner sur-
face. The values of the uncertainties are set to be the mean val-
ues. To find the optimal thicknesses of the insulation layers,

the ranges of the thicknesses are assumed as

h1 ¼ 10 to 30mm

h2 ¼ 20 to 40mm

The temperature limits of the insulation layers and inner
surface are 1800 K, 720 K, 473 K, respectively. The RSAs con-

structed in Section 5.2 are used to evaluate the objective func-
tion and constraints during the optimization process.

This study uses the NLPQL method to obtain the optimal

solution. The parametric modeling is carried out by CATIA
and thermal analysis is conducted by ANSYS. The integration
of these two modules is achieved by iSIGHT. The optimal

solution is listed in Table 5 and the actual values of objective
function and constraints at the optimal point obtained by
Finite Element Method (FEM) are also given. We can see that

there are large deviation between the values of constraints
obtained by RSA and FEM, especially for Tinner;max. Therefore,

the response surfaces constructed in Section 5.2 will be
updated by SRSM to improve their accuracies around the
optimal point. The optimization history using SRSM is given
in Table 6. For each iteration, n ¼ 8 (the number of input vari-

ables) sampling points generated from subregion are added
into the previous sampling data set to reconstruct a new
RSA. As seen in Table 6, the optimal solution converges after

5 iterations with optimum values of h1 ¼ 15:301 mm and
h2 ¼ 27:136 mm, resulting in a weight reduction of 13.5%.

However, this design has two active constraints: the maxi-

mum temperatures of the second insulation layer and inner
surface. To analyze the quality of the deterministic design,
the six sigma analysis is performed at the optimal solution with

consideration of the uncertainties existing in material parame-
ters (see Table 2) and design variables h1; h2. By means of RSA,
the six sigma analysis will be implemented by Monte Carlo
method. The quality results are given in Table 7 alongside

the deterministic optimization solution, in which Rel. denotes
Reliability.
Coefficient of variation Standard deviation

0.02 1:0	 10�3

0.02 0:8	 10�3

0.02 8.8

0.02 6.6

0.02 28

0.02 24

ion layer, respectively.



Fig. 14 Comparison between predicted values and actual values.

Table 4 Error values of RSAs (Root mean square).

Parameter Weight T1;max T2;max Tinner;max

Error 2:1129	 10�4 0:03217 0:02333 0:07602
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As Table 7 indicates, the quality of deterministic design has
0:686r level and reliability of 50.70% for T2;max, and 0:643r
Table 5 Optimization results obtained by RSA and FEM.

Solution h1 (mm) h2 (mm) W (kg)

RSA 15.366 32.524 2.847

FEM 2.848

Table 6 The deterministic optimization history based on SRSM.

Iteration number h1 (mm) h2 (mm) W (k

Baseline 22.000 32.000 3.098

1 15.366 32.524 2.847

2 15.877 28.786 2.755

3 15.362 27.313 2.688

4 15.396 27.096 2.682

5 15.301 27.136 2.680
level and reliability of 48.01% for Tinner;max. The probability

distributions of active constraints are displayed pictorially in
Fig. 15. From Fig. 15, the overall quality or sigma level is dif-
ferent from the sigma position of the upper bound. For exam-

ple, with a single upper bound at 0.017r as shown in Fig. 15(a),
the percent of the distribution variation outside the constraint
is equivalent to that with symmetric lower and upper bounds

at ±0.686r around the mean, and thus the overall quality level
is 0.686r. It can be observed that almost entire right half of the
T1;max (K) T2;max (K) Tinner;max (K)

1748.60 720.00 473.00

1748.77 712.10 440.74

g) T1;max (K) T2;max (K) Tinner;max (K)

1748.98 540.85 411.72

1748.60 720.00 473.00

1748.80 720.00 464.04

1748.80 720.00 473.00

1748.80 719.87 473.00

1748.80 720.00 473.00



Table 7 Quality analysis results of deterministic optimization solution.

Baseline Deterministic optimization Six sigma analysis

Temperature l r Rel. (%) Sigma level

T1;maxðKÞ 1748.98 1748.80 0.169 100 >8.0

T2;maxðKÞ 540.85 719.67 18.705 50.70 0.686

Tinner;maxðKÞ 411.72 473.36 7.211 48.01 0.643

Rel. denotes reliability.

Fig. 15 Constraints quality for deterministic optimization solution.
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distribution exceeds the constraint boundary. Obviously, the
reliabilities of the active constraints are less than desirable

values.

5.4. Reliability-based optimization

In the previous step, the probability of success is estimated to
be around 50% for deterministic optimization. To improve the
reliability associated with these active constraints, reliability-

based optimization is implemented by converting the con-
straints to probabilistic constraints as follows:

find d

min lW

s:t: P T1;max � Tlimit
1

� � 
 b1

P T2;max � Tlimit
2

� � 
 b2

P Tinner;max � Tlimit
inner

� � 
 b3

dL � d � dU

8>>>>>>>>><
>>>>>>>>>:

ð14Þ
Table 8 Reliability-based optimization history based on SRSM.

Iteration number h1(mm) h2(mm) W (kg) T1;

l r l

Initial 15.301 27.136 2.680 0.0262 174

1 20.524 27.186 2.898 0.0268 174

2 21.104 25.574 2.871 0.0266 174

3 20.861 25.402 2.856 0.0265 174

4 20.819 25.408 2.854 0.0265 174
where P T1;max � Tlimit
1

� �
; P T2;max � Tlimit

2

� �
, and P Tinner;max �ð

Tlimit
innerÞ denote the reliability indices of T1;max; T2;max, and

Tinner;max, respectively; b1; b2, and b3 are the reliability criteria

for T1;max;T2;max, and Tinner;max, respectively. The reliability cri-

teria are set as 99.9999998%, which is equivalent to the design

for a quality level of 6 sigma with respect to design specifica-
tion limits. The optimization history is given in Table 8. From
Table 8, the 99.9999998% reliability goal is achieved or
exceeded for all constraints. The two active constraints in the

deterministic optimization are no longer active even for the
specified target reliability.

5.5. Six sigma robust optimization

In this subsection, the six sigma robust optimization is imple-
mented based on response surface in this subsection. Similarly,

the RSAs of objective and constraints need to be updated
around the design point to acquire a higher accuracy by the
method established in Section 5.2. The history of six sigma
robust optimization based on SRSM is given in Table 9.
max (K) T2;max (K) Tinner;max (K)

Rel. (%) l Rel. (%) l Rel. (%)

8.8 100 719.67 50.70 473.36 48.01

8.9 100 560.66 100 437.09 100

8.9 100 546.30 100 442.10 100

8.9 100 554.93 100 443.89 100

8.9 100 554.13 100 444.45 100



Table 9 History of six sigma robust optimization based on SRSM.

Iteration number h1 (mm) h2 (mm) W (kg) T1;max (K) T2;max (K) Tinner;max (K)

l r l r level l r level l r level

Initial 15.301 27.136 2.680 0.0262 1748.8 >8.0 719.67 0.686 473.36 0.643

1 18.357 30.054 2.895 0.0263 1748.8 >8.0 620.57 6.01 435.46 6.0

2 18.076 29.885 2.878 0.0263 1748.8 >8.0 628.85 6.0 439.33 6.0

3 18.024 29.881 2.870 0.0263 1748.8 >8.0 628.58 6.0 439.32 6.0

4 18.071 29.512 2.868 0.0263 1748.8 >8.0 627.15 6.0 441.05 6.1

Table 10 Comparison between deterministic optimization, reliability-based optimization and six sigma robust optimization.

Parameter Baseline DO RBO SSRO

Solution Quality Solution Quality Solution Quality

h1 (mm) 22.00 15.301 20.819 18.071

h2 (mm) 32.00 27.136 25.408 29.512

W (kg) 3.098 l 2.680 2.854 2.868

r 0.0262 0.0265 0.0263

T1,max (K) 1748.98 l 1748.8 >8.0 r 1748.9 100% Rel. 1748.8 >8.0 r
r 0.169 (100% Rel.) 0.170 0.167 (100% Rel.)

T2,max (K) 540.85 l 719.67 0.686r 554.13 100% Rel. 627.15 6.0 r
r 18.705 (50.70% Rel.) 17.417 15.471 (�100% Rel.)

Tinner,max (K) 411.72 l 473.36 0.643 r 444.45 100% Rel. 441.05 6.1 r
r 7.211 (48.01% Rel.) 6.577 5.796 (�100% Rel.)
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The comparison between the Deterministic Optimization
(DO), Reliability-Based Optimization (RBO) and Six Sigma

Robust Optimization (SSRO) is given in Table 10. From
Table 10, compared with deterministic optimization, the qual-
ity level is increased for two active constraints by six sigma

robust optimization. The sigma level is improved from
0:686r to 6r for the maximum temperature of second insula-
tion layer and from 0:643r to 6:1r for the maximum tempera-

ture of inner surface. It means that the reliability is nearly
100%. For the reliability-based optimization, the mean value
of the weight is lW ¼ 2:854 and the standard deviation is
rW ¼ 0:0265. By means of six sigma robust optimization, the

mean value of weight is 2.868 and the standard deviation is
0.0263, which is smaller than that from reliability-based opti-
mization. Similarly, the variations of the temperature con-

straints, i.e. rT1;max
; rT2;max

, and rTinner;max
, are also reduced by

the six sigma robust optimization. Therefore, it can be con-

cluded that the variations of objective and constraints due to
uncertain parameters obtained by six sigma robust optimiza-
tion are smaller than those obtained by reliability-based opti-

mization, indicating that the former design is more robust.
Based on the above discussions, compared with deterministic
optimization and reliability-based optimization, the design

quality including reliability and robustness is improved by
six sigma robust optimization. Meanwhile, the trade-off of
increasing the quality is an increase in weight. The weight is
increased over the deterministic optimal solution, but is still

less than the baseline design.

6. Conclusions

In this paper, a SRSM based six sigma robust optimization
approach for the TPS of hypersonic vehicles is proposed to
achieve the reduction of structural weight and improvement
of design reliability and robustness considering the uncertain-
ties in material properties and geometry. The transient heat

transfer analysis for TPS is modeled along the data points
selected from the entire trajectory to capture the peak temper-
atures of the insulation layers and inner surface of TPS. Based

on the thermal analysis, the deterministic optimization model
is established with the total weight of TPS as objective function
and the temperature limitations of insulation layers and inner

surface as constraints, to find the optimal thicknesses of insu-
lation layers. By converting the objective to minimizing both
the variation and mean performance, and reformulating the
constraints as sigma level quality constraints, a six sigma

robust optimization for the TPS is presented. In order to
reduce computation cost, the quadratic RSM is employed to
approximate the values of objective function and constraints.

The SRSM based optimization combining response surface
updating and optimization strategy is proposed to obtain the
true optimal solution. The proposed optimization method is

demonstrated in this paper for a nose cone of hypersonic vehi-
cle cabin. The results show that, by using successive response
surface in optimization process, the computation cost is
reduced and the accuracy of RSA is improved. Compared with

deterministic optimization and reliability-based optimization,
the six sigma robust optimization notably improves the relia-
bility and robustness of the design, which will have important

guiding significance for the optimization design and safety of
the TPS in practical engineering.
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