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The last three decades have witnessed a global surge in nano-
and micro-mechanics driven by the rapid development of
nanotechnology, microelectromechanical systems (MEMS)
and nanoelectromechanical systems (NEMS) [1]. Although a
generally accepted framework is still lacking for mesoscopic
mechanics, four broad categories of viewpoints have been
agreed upon [2]:
(1) Continuum mechanics works quite well even for a few

atoms in diameter. In 1997, Richard E. Smalley (1943
−2005), the late Nobel laureate, and Yakobson [3] once
commented: “The behavior of the hollow tubules is complex,
but still predictable with continuum-elastic methods. In its
applications to nanotubes, the correspondence between the
elastic model and molecular dynamics is remarkable. The
laws of continuum mechanics are amazingly robust and al-
low one to treat even intrinsically discrete objects only a few
atoms in diameter.”
(2) The classical continuum mechanics is modifiable by

surface or interface terms due to huge surface-to-volume
ratios [4]. It keeps working when the surface or interface
terms such as van der Waals (vdW) and Casimir interactions
are introduced [5–11].
(3) The quasi-continuum method is based on the bottom-

up method [12,13].
(4) The Nobel Prize in Chemistry 2013 was awarded jointly

to Martin Karplus, Michael Levitt and AriehWarshel “for the
development of multiscale models for complex chemical

systems”. The QM/MM hybrid method has been widely used
as a typical multiscale in mechanical systems [14,15].
Kallmann and Willstaetter [16] ascribed the mutual at-

traction between particles to the vdW-London forces in 1932.
They made use of the additivity of the atomic interaction
energies, which were proposed shortly before by Fritz
Wolfgang London (1900–1954), to calculate the attraction
between particles, but only for very large separations (for the
purpose of the point approximation) while disregarding the
medium. Bradley published a calculation for spheres and
arbitrary power laws of attraction in 1932 [17], which used
symbol A for the material constant but contained some
mistakes. Sparnaay [18] claimed that Sir Isaac Newton
(1643–1727) had already made similar calculations.
In 1936, Jan Hendrik de Boer (1899–1971) considered the

role of vdW forces in material cohesion and correctly cal-
culated the interaction of flat slabs [19]. Just one year later,
Hugo Christiaan Hamaker (1905–1993) published a heavily
cited paper in Physica [20] on the double three-dimensional
integration required in evaluating the London dispersive
interaction between two spheres of arbitrary radii and dis-
tances, including the planes when the sphere radius ap-
proaches infinity and a general discussion of the role of the
medium. The interaction energy obtained by the above in-
tegration is highly condensed into an expression consisting
of two factors, i.e., a geometric factor depending on the size,
shape, and separation of the bodies involved, and a material
factor depending only on the material properties⎯the
“constant” A. Thus the Hamaker constant with a dimension
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of energy was born, and this constant A of the order of (0.4–
4)×10−19 J can serve as the landmark energy to cross from
continuum mechanics to mesoscopic mechanics.
Nowadays, instead of summing the effects of atoms, the

absorption spectra are used to directly calculate the interac-
tion between electromagnetic fluctuations in the bodies. This
leads to a more reliable value of constant A; nevertheless, in
the first-order approximation, the geometric factor remains
unchanged.
The importance of Hamaker’s formulation is evident in the

modern designation of A as the “Hamaker constant” as ap-
proved by the International Union of Pure and Applied
Chemistry (IUPAC) [21] on July 23, 1971.
In 2019, we utilized the bottom-up method to study the

peeling processes of a heterostructure bonded by the vdW
force, the graphene/MoS2 bilayer structure as illustrated in
Figure 1. Firstly, some fundamental parameters such as lat-
tice mismatch, strain energy densities and potential between
graphene and MoS2 were obtained from density functional

theory calculations with dispersion corrections (DFT-D2)
[22]. Secondly, the peeling process was investigated sub-
jected to various kinds of loadings by using molecular dy-
namics simulations. The changes in the total energy, elastic
energy, vdW interaction potential and peeling force were
obtained, and then the peeling forces obtained from these
simulation results were compared with those from classical
continuum methods. Thirdly, a mechanistic analysis of the
peeling process was conducted and a quasi-continuum
method was developed to describe the evolution of the
peeling force. Finally, a new characteristic length, a crucial
parameter that reflects the bending and interfacial properties
of layered materials during peeling, was suggested by using
the Hamaker constant. This study may assist in under-
standing the atomic-level mechanisms during the peeling of
layered materials, and such mechanisms may provide some
new insights into the automatic mechanical assembly of the
vdW heterostructures by robots [23,24].
Table 1 shows how the vdW interactions compete with

Figure 1 (Color online) Mechanical peeling of graphene/MoS2 vdW heterostructures [22].

Table 1 Some characteristic length scales related to the Hamaker constant A

Length scale Formula Physical interpretation

Thickness of precursor film
(by de Gennes) a A=

6p
lv

Competition between the vdW interaction and capillarity. Typical thickness of precursor
film is of the order several Å. γlv− liquid-vapor surface tension

Length of precursor film
(by de Gennes) L Ca

SA=
1

6p
lv
2

Competitions among spreading inertia, spreading parameter and vdW interactions.
S− spreading parameter, Ca− capillary number

Mesh size A
E

A
G

~ ~3 3 Competition between the vdW and elastic deformation energies

Detachment length of cantilever
(by the author) [25] L g Et

A
= C×detach

3
4

Bending of cantilever under the action of the vdW force. Adhesion/stiction occurs when
the cantilever length is longer than this length

Peeling length
(by the author) [22] L D

A
= 4 2

peeling 0
D

Eh
= 12(1 )

3

2 − bending rigidity of plate, σ0− atom equilibrium distance

Bending length
(by the author) l

EI
A=bending

Beam bending under the action of the vdW force. EI− bending rigidity of beam. Some
typical scales for the single-walled carbon nanotubes are presented in Table 2

Electrostatic length
(by the author) l

e
A= 4 r

electric

2

0

Competition between electrostatic and vdW interactions

Impact length
(by the author)

l A
V

=
6impact 23 Competition between the vdW interactions and impact inertia ρV2
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capillarity, elastic deformation, electrostatic interaction and
impact inertia. Some characteristic scales are summarized
and some new length scales are suggested by the author for
the first time. These length scales will play vital roles when
they are comparable with the characteristic length of the
system in study.
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Table 2 Length scales for single-walled carbon nanotube with different
diameter D

D (nm) lmin (nm) lmax (nm)

1 0.293 2.93

2 2.63 26.3

3 9.21 92.1

4 22.26 222.6

5 43.97 439.7

6 76.55 765.5
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