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•  Several neural networks are trained to classify wakes produced by self-propelled fish- like swimmers.
•  The wakes are generated by using high-fidelity numerical simulations and local measurements of flow variables are used in training the
neural networks.
•  A remarkably high accuracy in wake classification can be achieved if the neural networks are trained by using the combination of velocity
components and vorticity.
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We  consider  the  classification  of  wake  structures  produced  by  self-propelled  fish-like  swimmers
based  on  local  measurements  of  flow  variables.  This  problem  is  inspired  by  the  extraordinary
capability  of  animal  swimmers  in  perceiving  their  hydrodynamic  environments  under  dark
condition. We train different neural networks to classify wake structures by using the streamwise
velocity component, the crosswise velocity component, the vorticity and the combination of three
flow  variables,  respectively.  It  is  found  that  the  neural  networks  trained  using  the  two  velocity
components perform well in identifying the wake types, whereas the neural network trained using
the vorticity suffers from a high rate of misclassification. When the neural network is trained using
the combination of all three flow variables, a remarkably high accuracy in wake classification can
be  achieved.  The  results  of  this  study  can  be  helpful  to  the  design  of  flow  sensory  systems  in
robotic underwater vehicles.
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The long-lasting  wake  structures  left  behind  active  swim-
mers  and  inanimate  objects  contain  useful  hydrodynamic  cues
about  the  sources  that  produce  them.  Such  information  can  be
extracted and exploited by other swimmers to accomplish a vari-
ety of tasks [1]. For example, with the help of the lateral line sys-
tem, even blind fish can school [2] and avoid obstacles in the wa-
ter [3, 4]. By using the whiskers, harbor seals can track the preys
by  detecting  the  wake  signals  [5].  This  remarkable  capability  in
animal swimmers also inspired the development of artificial flow

sensory systems [6–10].
The wake structures behind a bluff body and an active swim-

mer are often characterized by the von Karman and reverse von
Karman vortex streets, respectively. Based on the number of vor-
tices that are shed per flapping cycle, the wakes produced by an
active swimmer can also be further classified into different sub-
types. The “2S” and “2P” wakes are the two most commonly seen
sub-types. Here “2S” refers to the situation in which two vortices
of  opposite  sign  are  shed  per  cycle;  whereas  “2P”  refers  to  the
situation in  which  two  pairs  of  vortices  are  shed  per  cycle.  Be-
sides,  some  higher-order  exotic  wakes,  with  up  to  16  vortices
shed per  cycle  have also been observed [11].  The types of  wake
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produced  by  the  swimmers  are  intimately  associated  with  the
swimming characteristics.

For an animal (or artificial) swimmer, the capability of distin-
guishing  between  different  wake  types  lays  the  groundwork  for
motion  planning  and  navigation.  However,  this  seemingly  easy
task is actually an inverse problem which poses great challenges
to the flow sensory system. The reason is that the data of meas-
urements  are  only  available  at  discrete  locations  within a  small
sub-domain  of  the  entire  flow  field.  This  is  in  contrast  with  the
situation faced by an outside observer to whom the globally spa-
cial-temporal flow patterns are accessible.

With  the  rapid  progress  of  machine  learning,  fundamental
methodologies  in  machine  learning  have  been  used  to  handle
the  tasks  of  fluid  mechanics  [12].  Recently,  some  pioneering
works have been conducted to solve this inverse problem by us-
ing machine learning algorithms. Wang and Hemati [13] gener-
ated  “2S”  and  “2P”  wakes  with  the  point  vortices  by  using  the
ideal-flow  model.  The  wake-induced  velocities  were  measured
on the surface of a fish-like body that was immersed in the vor-
tical wakes. The K-Nearest Neighbors (KNN) algorithm was then
used to classify  the wake types.  Colvert  et  al.  [14]  generated the
wakes  behind  a tethered rigid pitching  foil  placed  in  an  other-
wise steady  stream  by  solving  the  Navier-Stokes  equations  nu-
merically. The neural networks were then trained to distinguish
between three distinct wake types from the time histories of vor-
ticity  measured  at  discrete  locations.  Alsalman  et  al.  [15]  used
the  same  wakes  as  those  generated  by  Colvert  et  al.  [14],  and
went  one  step  further  to  investigate  how  the  accuracy  of  wake
classification  was  affected  by  the  types  of  sensors  (i.e.,  sensors
measuring different flow variables). They also trained the neural
networks  to  classify  wake  types  from  the  data  of  “one  time”
measurements at a spatially-distributed array of sensors. Motiv-
ated  by  the  aforementioned  studies,  in  this  work,  we  train  the
neural networks to classify wakes behind a self-propelled fish-like
swimmer.  Similar  to  the  studies  of  Refs.  [14]  and  [15],  in  the
present study  the  wakes  are  also  produced  by  high-fidelity  nu-
merical  simulations.  However,  the  wakes  considered  here  and
those  in  the  two  aforementioned  works  are  very  dissimilar,  in
terms of  the  spatial-temporal  patterns.  Clearly,  the  wakes  con-
sidered here bear a much closer resemblance to those produced
by  an  animal  (or  an  artificial)  swimmer  under  free-swimming
condition.

We  consider  continuous  and  intermittent  self-propelled
swimming of a flexible fish-like swimmer which is driven by flu-
id-structure  interaction  (FSI)  [16, 17].  The  localised  actuation
consists  of  the  coupled  heaving  and  pitching  motions  that  are
imposed  at  the  leading  edge  (see Fig.  1).  For  the  continuous
swimming, the driving motions are:

ys=0 (t ) = A cos(2π f t ), (1)

θs=0 (t ) = Aθ cos(2π f t −ϕ), (2)

ys=0 θs=0

A Aθ

f
ϕ

where  and  are  the  instantaneous  heaving  and  pitching
displacement of the leading edge.  and  are the heaving and
pitching  amplitudes,  respectively.  is  the  actuation  frequency,
and  is  the  phase  lag  between  the  heaving  and  pitching
motions. In this study, the phase lag is set to 90 degrees. For the
intermittent swimming, certain time duration of passive coasting
is  interspersed  between  two  half-periods  of  active  bursting
(flapping)  [16].  The  degree  of  intermittency  is  characterised  by
the  duty  cycle  (DC),  which  is  defined  as  the  ratio  of  the  time
duration of active flapping to the time duration of one full cycle
of burst-and-coast locomotion.

The  incompressible  Naiver-Stokes  equations  and  nonlinear
dynamics  equations  constitute  the  governing  equations  of  the
system. These equations can be written in a dimensionless form
as:

∂u

∂t
+∇· (uu) =−∇p + 1

Re f

∇2u + f , (3)

∇·u = 0 , (4)

β(s)
∂2 X

∂t 2
− ∂

∂s

(
ξ(s)

∂X

∂s

)
+ ∂2

∂2s

(
γ(s)

∂2 X

∂s2

)
=−F , (5)

∂X

∂s
· ∂X

∂s
= 1, (6)

u p X

s f
F

L Ur e f = L f

Re f β

ξ γ

where  is the fluid velocity,  is the pressure,  is the position
vector  for  the  Lagrangian  (marker)  point  on  the  flexible
swimmer  and  is  the  Lagrangian  coordinate  along  the  arc. 
and  are  the  dimensionless  Eulerian  and  Lagrangian  forces
which  represent  the  interaction  between  the  flow  and  the
structure.  We  select  the  chord  length  and  as  the
reference  length  and  reference  velocity  for  scaling  the  system.
The  four  dimensionless  quantities  that  arise  in  the  governing
equations  are:  flapping  Reynolds  number ,  mass  ratio ,
dimensionless  tension  and  dimensionless  rigidity .  The
definitions of these four dimensionless quantities as:

Re f =
Ur e f L

ν
,β= ρsδ

ρ f L
,ξ= T

ρ f (Ur e f )2L
,γ= B

ρ f (Ur e f )2L3
, (7)

ν ρ f ρs

δ

where  is the kinematic viscosity of the fluid,  and  are the
densities  of  the  fluid  and  the  filament,  respectively.  is  the
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Fig. 1.   Schematic diagram of the wake classification problem: an array of sensors is placed in the wake behind a self-propelled fish-like swim-
mer.
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thickness  of  the  filament.  and  are  the  tension  and  bending
rigidity  of  the  structure,  respectively.  Here  is  a  Lagrangian
multiplier  which  is  determined  to  enforce  the  inextensibility
condition  (Eq. (6))  [18].  and  are  two  exponential  functions
with respect to  [16, 17]. In this study,  is fixed to , which
is  the  same  as  the  highest  Reynolds  number  considered  in  Ref.
[16]. The Reynolds numbers based on the swimming velocity lie
in  the  range  of  to .  The  coefficients  in  the  two
aforementioned exponential functions are tunable.

u(x , t )
ωz = (∇×u) ·k k

∇×

This  FSI  problem  is  simulated  by  using  a  loosely-coupled
solver  in  which  the  flow  equations  and  structure  equations  are
advanced sequentially in time. In solving the flow equations, the
immersed boundary method is used to impose the no-slip con-
dition  on  the  surface  of  the  swimmer.  In  solving  the  structure
equations, a finite difference method is  used for the spatial  dis-
cretization and  a  three-time-level  scheme  is  used  for  the  tem-
poral advancement.  This  FSI  solver  has  been  extensively  valid-
ated  in  the  earlier  works  of  our  group  [16–20].  After  solving  for
the velocity field , the scalar vorticity field is computed by

,  where  is  the  unit  normal  vector  which  points
towards  the  “outside”  of  the  two-dimensional  plane.  Here  the
second-order central-difference scheme is used to discretize the
curl operator ( ).

β γ

A/L Aθ

DC

We conducted nine cases of simulation by tuning some con-
trol  parameters.  These  parameters  include:  coefficients  of  the
exponential  functions  that  govern  the  distributions  of  and ,
dimensionless  heaving  amplitude ,  pitching  amplitude ,
and  duty  cycle .  Among  all  simulation  cases,  three  distinct
wake types, namely, “2S”, “2P”, “2P+2S”, are identified. The val-
ues  of  the  control  parameters  and  wake  type  corresponding  to
each  simulation  case  are  listed  in Table  1.  It  is  seen  that  each
wake  type  can  be  observed  in  three  different  simulation  cases.
The  representative  vortex  structures  for  the  “2S”,  “2P”  and
“2P+2S” wakes are shown in Fig. 2.

5L×2L

L

The wake detection zone is of rectangular shape and has the
dimensions  of . It  is  symmetric  with  respect  to  the  hori-
zontal centerline and is placed downstream of the swimmer with
a distance of  from the trailing edge. Unlike the previous stud-
ies  in  Refs.  [14]  and  [15], where  the  time  histories  of  flow  vari-
ables were used for wake classification, here we only use the data
of  “one time" measurements.  The reasons for  this  choice in the

ωz

ux uy

present study are twofold. First, in the wake produced by a self-
propelled swimmer, “decaying with time” is the salient feature in
the  time  histories  of  flow  variables,  while  temporal  periodicity
does not show up in the signals. Second, the wake classification
based  on  the  data  of  “one  time”  measurements  implies  that
there  is  no  time  delay.  This  is  certainly  more  favorable  in  the
design of  flow  sensory  systems  in  animal  (or  artificial)  swim-
mers.  For  each  simulation  case  listed  in Table  1,  the  data
sampling frequency is 20 times per flapping cycle, and the dura-
tion of sampling is 5 flapping cycles. As a result,  the data of 100
snapshots are collected. For each snapshot, the vorticity ( ) and
two  velocity  components  (  and )  at  the  grid  points  of  the
computational  mesh  are  saved.  Before  later  usage  in  training
and testing  the  neural  networks,  all  flow  variables  are  prepro-
cessed by scaling with the root-mean-square (RMS) values of the
collected data.

L

6 861

41×21

0.1L
861×20×5 = 86100

A spatially distributed array of  senors with the length of  is
then used to measure the flow variables (see Fig. 1). The sensor
array is in align with the x-axis and the number of sensors is set
to .  For  each  snapshot,  the  measurements  are  conducted 
times,  by  placing  the  first  (leftest)  sensor  on  the  vertices  of  a

 lattice which occupies part of the detection zone. The ver-
tices  of  the  lattice  are  uniformly  distributed  and  the  interspace
between two neighboring vertices is . Thus, for each simula-
tion  case,  measurements  are  conducted  by
the sensor array. Since the positions of sensors are not necessar-
ily in coincidence with the positions of grid points, bilinear inter-
polations are performed to obtain the values of flow variables at
the positions of sensors.

We  train  fully  connected  neural  networks  (FCNs)  to  classify
the wake  structures.  The  hyperparameters  of  the  neural  net-
works  are  listed  in Table  2.  Specifically,  the  FCNs  consist  of  3
hidden  layers  and  1  output  layer  and  each  hidden  layer  has  32
units (neurons). We test the effects of the numbers of hidden lay-
ers and units on the performance of the networks. It is found that
the networks  exhibit  little  variation  in  performance  if  the  num-
ber of hidden layers or the number of units is further increased.
The output of each unit is the input of ReLU activation function.
The output  layer  is  a  softmax  function  which  can  map  the  out-
put  of  the  last  hidden  layer  to  a  probability  distribution  vector.
This vector  has  three  components  which  indicate  the  probabil-

Table 1   The control parameters of the fish-like swimmers used to produce the wakes.

Wake type Case ID ¯(s) °(s) A=L A µ DC

2S

A1 0:05e¡3s 2
0:10e¡9s 2 0.010 8± 1

A2 0:10e¡3s 2
0:30e¡9s 2 0.005 5± 1

A3 0:15e¡3s 2
0:20e¡9s 2 0.009 6± 1

2P

B1 0:15e¡3s 2
0:30e¡9s 2 0.005 6± 0.9

B2 0:15e¡3s 2
0:30e¡9s 2 0.007 6± 0.9

B3 0:15e¡3s 2
0:30e¡9s 2 0.009 6± 0.9

2P+2S

C1 0:10e¡3s 2
0:20e¡9s 2 0.005 8± 0.6

C2 0:10e¡3s 2
0:25e¡9s 2 0.005 7± 0.6

C3 0:10e¡3s 2
0:30e¡9s 2 0.005 6± 0.6

B.L. Li et al. / Theoretical & Applied Mechanics Letters 10 (2020) 1-6 3



ity  of  the  three  predicted  wake  types.  Thus,  the  values  of  the
three components lie in the range of 0 to 1. The loss function of
the FCNs is the cross-entropy function which can be written as:

L
(
p,q

)=−
n∑

i=1

pi (x) log qi (x), (8)

pi (x)
qi (x)

where  is  the  true  probability  distribution  vector  by  using
one-hot  encoding  that  identifies  the  wake  type  and  is  the
predicted  distribution  vector  obtained  from  the  FCNs.  The
training  of  the  FCNs  is  performed  by  minimizing  the  loss
function  to  approach  the  real  distribution  of  the  target.  In  this
work,  the  neural  networks  are  implemented  using  the  open
source machine learning package TensorFlow.

The  FCNs  are  trained  and  tested  by  using  the  approach  of
three-fold  cross-validation.  More  specifically,  for  each  wake
type, the measurement data obtained from two simulation cases
are used for training and the data from the remaining case is re-
served for testing. Altogether, three distinct data sets (Data set 1,
Data set 2 and Data set 3) are created by different combinations
of the simulation cases for training and testing (see Table 3).

ux uy ωz

Four  types  of  FCNs  are  trained  using  the  measurements  of
different flow variables as the input data. The first three FCNs are
trained by using ,  and , respectively, while the fourth FCN
is trained by using the combination of all three flow variables. In
Fig. 3, we show the progress to convergence in training the FCN
using  all  three  flow  variables  as  the  input.  It  is  seen  that  100
epochs are  sufficient  for  the  network  to  reach  its  best  perform-
ance, since both the loss function and accuracy exhibit little vari-
ation with the increase of  epoch number.  Similar  behaviors  are
also observed in the training of other three FCNs (the progress to
convergence for them are not shown here for brevity).

ux uy ωz

We then evaluate the performances of the four FCNs in clas-
sifying  the  wake  structures.  The  performances  of  the  FCNs  are
visualized using the normalized confusion matrices. The defini-
tion of confusion matrix is as follows. Each row of the confusion
matrix  represents  the  instances  in  an  actual  class,  while  each
column  represents  the  instances  in  a  predicted  class.  Thus,  the
diagonal and  off-diagonal  entries  of  the  matrix  show  the  in-
stances of  correct  classification  and  misclassification,  respect-
ively. A normalized confusion matrix is constructed by normaliz-
ing the entries of each row of the confusion matrix using the total
instances in the actual class (i.e., the summation of all entries in
that row). The normalized confusion matrices for the three FCNs
trained  by  using ,  and  are  shown  in Fig.  4. The  ac-
curacies shown in the normalized confusion matrices are the av-

Table  2     The  hyperparameters  of  the  FCNs  used  in  the  wake
classification.

hidden layer activation unit optimizer batch size epoch

3 relu 32 adam 256 100

Table 3   Different combinations of simulation cases in the three-
fold cross-validation for training and testing the neural networks.

Data set 1 Data set 2 Data set 3

Training data
A1, B1, C1 A1, B1, C1 A2, B2, C2

A2, B2, C2 A3, B3, C3 A3, B3, C3

Testing data A3, B3, C3 A2, B2, C2 A1, B1, C1
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eraged  results  obtained  by  using  three  different  data  sets.  It  is
seen  that  the  FCN  trained  using  performs  very  well.  For  all
three  wake  types,  the  percentage  of  correct  identification  are
higher than . For the “2S” wake, the rate of correct identifica-
tion  can  even  reach .  The  FCN  trained  by  using  per-
forms comparably with the FCN trained using .  For these two
FCNs,  the  highest  rate  of  misclassification  is  around  to .
The performance of the FCN trained using  is much worse. In
identifying the “2S”, ”2P” and “2P+2S” wakes, the percentages of
misclassification are 6.1%, 58.6%, and 24.4%, respectively.

ωz

ωz

ωz ux uy

ux

uy

The  poor  performance  of  the  FCN  trained  using  (espe-
cially in identifying the “2P” wakes) can be explained as follows.
By  examining  the  vorticity  contours  shown  in Fig.  2,  it  is  seen
that  for  the  “2P”  wake,  in  a  large  portion  of  the  wake  detection
zone,  the  vorticity  magnitude  is  very  small  (close  to  zero).  This
makes it very difficult for the FCN to extract the intrinsic feature
of the wake from local measurements of . In contrast with the
contours of , the contours of  and  look very different (see
Fig.  5).  It  is  seen  that  the  contours  with  high  magnitudes  of 
and  are less concentratedly distributed in the wake detection
zone. This makes it easy for the FCNs to uncover the salient fea-
ture of each wake type.

ux uy ωz

3%

Figure 6 shows the normalized confusion matrix for the FCN
trained by using the combination of all three flow variables (i.e.,

,  and )  as  the input  data.  It  is  seen that  remarkably  high
accuracies  in  identifying  all  three  wake  types  have  been
achieved.  The highest  rate of  misclassification is  reduced to 
(which is observed in identifying the “2P+2S” wakes). The super-
ior performance of the FCN trained using all three variables can
be  explained  as  follows.  The  spatial  distributions  of  the  three
flow  variables  measured  by  the  sensor  array  can  complement
each other and result in reduction of confusion among the three
wake types.

In  this  work,  we  trained  four  types  of  FCNs  to  distinguish
among  three  types  of  wakes  produced  by  a  self-propelled  fish-
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Fig. 6.   Normalized confusion matrix for the FCN trained using the
combination of ,  and .
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like  swimmer.  We  used  the  “one  time”  measurements  of  some
flow  variables  (including  the  two  velocity  components  and  the
vorticity)  as  the  input  data  in  training  the  neural  networks.  It
turned  out  that  the  FCN  trained  using  streamwise  or  crosswise
component  of  velocity  performs  much  better  than  the  FCN
trained using  vorticity.  The  FCN  trained  by  using  the  combina-
tion of all three flow variables outperforms the other three FCNs
and achieves a remarkably high accuracy in wake classification.

There are  a  number  of  interesting  avenues  for  future  re-
search. First, the sensitivity of the performance of the neural net-
works  to  the  number  and  arrangement  of  sensors  needs  to  be
studied.  Second,  the  neural  networks  can  be  used  to  discern
more useful information of the swimmer from the wake, such as
the  body  size,  species,  swimming  speed  and  swimming  style.
This  is  achievable only if  a  solid link between such information
and the localized flow measurements can be established. Third,
one limit  of  the  current  study  is  the  assumption  that  the  place-
ment of sensors in the detection zone does not disturb the flow.
The two-way interactions between the sensors and the flow need
to be considered.
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