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A B S T R A C T   

Gradient nano-grained (GNG) materials, inside which grain size increases gradually from nano- 
scale in the surface to micro-scale in the substrate, have shown synergetic strength and 
ductility. The extra strain hardening of GNG materials is considered to result from both 
geometrically necessary dislocations (GNDs) accommodating nonuniform plastic deformation and 
superior kinematic hardening characterized by back stress. However, few quantitative in
vestigations were performed to evaluate the contribution of various strengthening mechanisms to 
the mechanical response of GNG materials. In this work, we develop a multiple-mechanism-based 
constitutive model, in which constitutive laws for GNDs and back stress at both grain level and 
sample level are established. Microstructure-based finite element simulation successfully predicts 
the uniaxial tensile behavior of a GNG interstitial-free (IF) steel sheet. The simulation results 
demonstrate that GNDs and back stress at sample level have little influence on the strengthening 
of the GNG IF-steel, while the back stress induced by pileup GNDs contributes about 35% to the 
flow stress. The uniform elongation of the GNG sample is improved by the constraint of coarse- 
grained core on GNG layer. This work helps to understand the contributions of deformation 
mechanisms to the synergetic strength and ductility of GNG materials and to guide the micro
structure design and optimization for improved strength-ductility combination.   

1. Introduction 

Mechanical properties of materials are dictated by their components, microstructures, and underlying deformation mechanisms. 
Great efforts have been made to adjust the components or microstructures to manufacture simultaneous strong and ductile materials 
(Cheng et al., 2018; Lu, 2014; Ma and Zhu, 2017; Ovid’ko et al., 2018). However, strength and ductility are always mutually exclusive. 
For instance, tuning the grain size of metals to nano-scale elevates their strength generally, but ductility decreases drastically since 
nano-grains retain less space to accommodate dislocations (Meyers et al., 2006). Gradient nano-grained (GNG) materials, inside which 
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grain size increases gradually from nano-scale in the surface to micro-scale in the substrate, have shown superior mechanical prop
erties including high strength and hardness, considerable ductility and enhanced fatigue resistance (Cheng et al., 2018; Fang et al., 
2011; Huang et al., 2015; Lin et al., 2018; Long et al., 2019; Shao et al., 2017; Wei et al., 2014; Wu et al., 2014a). For example, a GNG 
copper bar with GNG layer of volume fraction of 41.2% exhibits a yield strength of ~130 MPa, twice of its coarse-grained (CG) 
counterpart, meanwhile preserving a ductility of about 30% (Fang et al., 2011). The yield strength of a GNG interstitial-free (IF) steel 
sheet is 1.6 times higher than its CG counterpart and reserves comparable uniform elongation (Wu et al., 2014a). Recently, the grain 
size of nickel was controlled by electrodeposition to prepare GNG architectures, which show enhanced strength-ductility synergy (Lin 
et al., 2018). The strength-ductility relations of homogeneously-grained and GNG metals discussed above are summarized in Fig. 1. 
Conspicuously, GNG metals show a linear relation between strength and ductility, instead of the nonlinear curve typical of 
homogeneously-grained ones. These results demonstrate that GNG materials exhibit a favorable strength-ductility combination su
perior to their homogeneously-grained counterparts. 

The excellent strength-ductility synergy of GNG materials benefits from their unique microstructure. Due to the gradient distri
bution of grain size, heterogeneous deformation develops at two levels during deformation. At grain level, slip discontinuities arise 
near boundaries of adjacent grains, which are accommodated by GNDs, as schematically shown in Fig. 2(a). Although this also occurs 
in homogeneously-grained materials, larger deformation heterogeneity is introduced in GNG materials due to graded grain size. 
Therefore, in GNG materials studied here and other heterogeneous materials with mechanical incompatibilities between components 
inside, more GNDs are blocked in front of grain boundaries (GBS), giving rise to a stronger back stress strengthening than their CG 
counterparts (Hu et al., 2017; Liu et al., 2018; Wu and Zhu, 2017; Yang et al., 2016). At sample level, macroscopic plastic strain 
gradient develops in GNG materials due to the sequential yielding of different regions and strain localization occurring in the surface 
region (Shao et al., 2018; Wu et al., 2014a; Yuan et al., 2019). Experimental results demonstrated that strain localization occurs in the 
surface nano-grained region at an early deformation stage and then propagates along the tensile direction of a GNG IF-steel, while the 
deformation of CG core is more uniform (Yuan et al., 2019). The unique deformation features induce strain gradient along both the 
tensile direction and lateral direction. To accommodate these strain gradients, GNDs are generated (Wu et al., 2014a; Yuan et al., 
2019), as shown in Fig. 2(b) and (c). Generally, strain gradient effect is considered when the density of GNDs is comparable to that of 
statistically stored dislocations (SSDs), such as metals at micro- or submicron-scale under nonuniform deformation (Fleck et al., 1994; 
St€olken and Evans, 1998). Therefore, in view of the deformation heterogeneities at both grain level and sample level, whether GNDs 
have an influence on the strain hardening of GNG materials and their quantitative contribution need to be clarified. 

Physically-based constitutive modeling is an efficient way to investigate the effects of the involved multiple-deformation- 
mechanisms on the mechanical response of materials. Considering the numerous grains in GNG metals, it is almost impossible to 
conduct a Voronoi-tessellation-based crystal plasticity finite element simulation reflecting the microstructure of a real GNG sample due 
to the computational burden (Wang et al., 2017; Zeng et al., 2015). Alternatively, some researchers adopted the rule of mixture (ROM) 
method (Li and Soh, 2012b; Li et al., 2017) to obtain the overall mechanical response of GNG materials. However, it has been proved 
that the ROM method underestimates the strength (Moering et al., 2016; Wu et al., 2014b; Yang et al., 2015), since the interaction 
between layers was neglected. The mutual constraint between different parts can be considered by a finite element simulation (Li and 
Soh, 2012a; Zhao et al., 2019). Dislocation-mechanism-based finite element modeling, enriched with grain-size dependent constitutive 
law for dislocation evolution, have been employed to predict the tensile mechanical behavior of GNG material, including yield 
strength, strain-hardening and ductility (Li and Soh, 2012a; Li et al., 2017; Lu et al., 2019b; Zhao et al., 2019). The constructed 
strength-ductility mappings, by manipulating the gradient distribution of grain size, also reveal the same inverse linear relationship 
observed experimentally, as shown in Fig. 1 (Lu et al., 2019b; Zhao et al., 2019). However, the GNDs induced by the heterogeneous 
deformation are always neglected. More importantly, no constitutive model has been established so far to predict high-level back stress 
in GNG materials. 

In this paper, we aim to establish a multiple-mechanism-based constitutive model, which involves the effects of GNDs and back 

Fig. 1. Relationship between normalized uniform elongation and normalized yield stress of homogeneously-grained and gradient nano-grained 
copper (Fang, 2014), nickel (Lin et al., 2018) and interstitial-free steel (Wu et al., 2014a). 
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stresses at both grain level and sample level, and to investigate the contributions of different deformation mechanisms to the 
strengthening of GNG materials. Following this goal, the paper is organized as follows. In section 2, the constitutive model for GNG 
materials is established. Section 3 describes the microstructure-based finite element model for a GNG IF-steel sheet under uniaxial 
tension. In Section 4, the simulated tensile response and its comparison with the experimental result are summarized, and the effects of 
multiple deformation mechanisms on the strength and ductility of GNG material are discussed. Finally, the study ends with some 
conclusions in section 5. 

2. A mechanisms-based constitutive model for GNG materials 

In order to predict the relationship between different strengthening mechanisms and mechanical response of GNG materials, we 
develop a deformation-mechanism-based constitutive model. From a modeling point of view, the selection of internal variables is very 
important for constructing a constitutive model. For example, the original Taylor hardening model includes only one internal state 
variable, i.e., the overall dislocation density, as also adopted in this work. This one-variable model has been employed to model 
different kinds of metallic materials successfully (Estrin and Mecking, 1984; Kocks, 1976; Mecking and Kocks, 1981). Later, the 
one-variable model was extended to two-variable ones (Estrin et al., 1998; Mughrabi, 1983) by considering cell walls of high dislo
cation density and cell interiors with poor dislocations, or three-variable ones (Roters et al., 2000) by considering the mobile dislo
cations and immobile dislocations in both cell walls and the cell interiors. These kinds of multi-variable models are more elaborate 
since more detailed microstructure information are considered. However, more parameters are also brought in, accompanying the 
introduction of new internal state variables. 

In this work, we intend to develop a constitutive model with a concise form since this model will be further considered to serve as a 
microstructure design tool for GNG materials. Therefore, only one internal variable, i.e., the dislocation density, is chosen as the 
microstructural state variable to make the model as concise as possible. Then, gain-size-dependent constitutive laws for both initial 
yielding and subsequent strain hardening are constructed to reflect the gradient structure in GNG materials. The effects of GNDs and 
back stress are also incorporated into this dislocation-based model. 

2.1. A viscoplastic framework for elastoplastic solids 

For an elastoplastic solid, the total strain rate can be decomposed into elastic and plastic parts, 

_εij ¼ _εe
ij þ _εp

ij: (1) 

Elastic Hooke’s law gives the relationship between elastic strain rate and stress rate as 

_εe
ij¼

1
2μ

_σ’
ij þ

_σkk

9K
δij; (2)  

where μ and K are shear modulus and bulk modulus; _σ’
ij ¼ _σij � _σkkδij=3 is the deviatoric stress rate, _σkk is the hydrostatic stress rate, and 

δij is the Kronecker’s symbol. 
The plastic strain rate _εp

ij is related to the deviatoric stress according to the J2-flow theory (Hill, 1950), 

Fig. 2. (a) A GNG sheet under tensile deformation. At grain level, GNDs pile up at grain boundaries. (b) During tensile deformation, strain 
localization initiates in the surface nano-grained region at an early deformation stage, while the deformation of the CG core is more uniform. 
Sample-level GNDs are introduced along the tensile direction of the surface region (Yuan et al., 2019). (c) Shrinks of different parts in x-direction 
introduced GNDs along the depth direction. 
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_εp
ij¼

3 _εp

2σe
σ’

ij; (3)  

where _εp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 _εp

ij _ε
p
ij=3

q
is the effective plastic strain rate, σe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3σ’

ijσ’
ij=2

q
denotes the von Mises effective stress. A power law visco

plastic formulation is used to correlate the effective plastic strain rate to the effective stress: 

_εp
¼ _ε0

�
σe

σf

�m

; (4)  

where _ε0 is the reference strain rate, the exponent m describes rate-sensitivity and usually takes a large value (e.g., larger than 20), σf is 
the flow stress controlling plastic deformation, which is related to the microstructure and underlying deformation mechanisms of GNG 

materials. To eliminate strain rate and time dependence, _ε0 is replaced by the effective strain rate _ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 _ε’
ij _ε

’
ij=3

q

(Kok et al., 2002a, b), 

where _ε’
ij ¼ _εij � _εkkδij=3 denotes the deviatoric strain rate. 

2.2. Deformation mechanisms-based flow stress 

For GNG material, the flow stress which employs dislocation density as the internal variable controlling strain hardening is 
expressed in a general form of (Li and Soh, 2012b; Li et al., 2017; Zhu and Lu, 2012) 

σf ¼ σY þMαμb
ffiffiffiρp þ σb; (5)  

where σY is initial yield stress, the Taylor hardening law (Taylor, 1934, 1938) gives the strain hardening resulting from dislocations, 
Mαμb ffiffiffiρp , where ρ represents dislocation density, M is the Taylor factor, α is a material constant and b denotes the magnitude of the 
Burgers vector. In the established constitutive law for flow stress, both isotropic and kinematic hardenings are considered. Specifically, 
the first two terms in the right-hand side of Eq. (5) represent isotropic hardening, while kinematic hardening is reflected by back stress 
σb. 

Dislocations density is an important internal variable that characterizes the strain hardening of metallic material. In deformed 
metallic material, dislocations mainly accumulate by trapping each other in a random way, and the hardening is supposed to be caused 
only by SSDs. However, in GNG materials, GNDs are induced due to their heterogeneous deformation (Wu et al., 2014a; Yin et al., 
2016; Yuan et al., 2019). As stated in the introduction, GNDs develop at two levels in GNG materials, i.e., sample level and grain level. 
Ashby (1970) showed a detailed schematic of the grain-level GNDs near GBs, as re-shown in the right half part of Fig. 3. In most cases, 
the grain-level GNDs are not considered in a constitutive model. However, the heterogeneous microstructure of GNG materials induces 
more pileup GNDs and produces strong back stress (Wu and Zhu, 2017; Yang et al., 2016), which suppresses the subsequent dislocation 
to further move toward GBs (Hirth and Lothe, 1982). Therefore, GND at the sample level and grain level are both considered. 

On the other hand, the macroscopic deformation heterogeneities, as stated before, also require the accommodation of GNDs, i.e., 

Fig. 3. Schematic of the total dislocation density considered in Taylor hardening law.  
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the sample-level GNDs. The sample-level GNDs in each integration point can be calculated by the strain gradient. Since the integration 
point reflects the mechanical response of a cluster of homogeneous grains, these GNDs can be considered to be distributed evenly in the 
grain cluster, as shown in Fig. 3. 

Ashby (1970) pointed that the total dislocation density can be calculated as ρ ¼ ρSSDsþ ρGNDs.Considering that both grain-level 
GNDs and sample-level GNDs should be considered in GNG materials, the total dislocation density in each grain can be calculated as 
the summation of three parts, i.e., 

ρ¼ ρSSDs þ ρsam
GNDs þ ρgra

GNDs; (6)  

where ρSSDs, ρsam
GNDs, ρ

gra
GNDs are the density of SSDs, GNDs at sample level and grain level, respectively. 

The inhomogeneous distribution of the two-level GNDs will introduce the corresponding two levels of back stresses. Thus, the back 
stress in GNG material is comprised of, 

σb¼ σsam
b þ σgra

b ; (7)  

where σsam
b and σgra

b are back stresses at the sample level and at grain level, respectively. 
Substitutions of Eq. (6) and Eq. (7) into Eq. (5), a comprehensive form of flow stress is expressed as 

σf ¼ σY þMαμb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρSSDs þ ρsam
GNDs þ ρgra

GNDs

q

þ σsam
b þ σgra

b : (8) 

It describes the individual contribution of different deformation mechanisms on the strain hardening behavior. However, the most 
distinctive feature of GNG materials, namely the information of gradient distribution of grain size, is absent. As is known, both the 
initial yielding and subsequent strain hardening behavior of materials depend on grain size (Armstrong, 1970; Meyers et al., 2006). 
Therefore, the dependences of yield stress, dislocation density, and back stress on grain size are established in the following 
subsections. 

2.2.1. Dependence of yield stress on grain size 
The pioneering works of Hall and Petch enable the description of yield stress regarding grain size, i.e., the Hall-Petch formula (Hall, 

1951; Petch, 1953), 

σY¼ σ0 þ
kHP
ffiffiffi
d
p ; (9)  

where σ0 is the lattice friction stress, kHP is the Hall-Petch slope and d denotes grain size, kHP=
ffiffiffi
d
p

represents the strengthening effect 
from GBs. Note that for nanocrystalline material, the linear relation between σY and d� 1=2 breaks down (Meyers et al., 2006). A lot of 
experiments and modelings have reported that an inverse Hall-Petch relation exists when the grain size is reduced to tens of nano
meters (Chokshi et al., 1989; Schiotz and Jacobsen, 2003). Therefore, for a GNG material with nano-grains in the surface, a modified 
Hall-Petch relation should be adopted (Zhao et al., 2019). In this work, the smallest grain size in the GNG IF-steel is about 100 nm, so 
the classical Hall-Petch relation in Eq. (9) is still valid for describing the grain-size-dependent yield stress. 

2.2.2. Evolution of SSDs density with grain size 
The evolution of SSDs density for coarse/ultrafine-grained metals can be described according to the Kocks-Mecking-Estrin (KME) 

formula (Estrin, 1998; Kocks, 1976; Mecking and Kocks, 1981) 

∂ρSSDs

∂εp ¼M
�

1
bL
� kannρSSDs

�

: (10)  

The first term describes dislocation multiplication, which is associated with the mean free path of dislocations L ¼ 1= ffiffiffiρp . The second 
term denotes dislocation annihilation, which is assumed to be linear with dislocation density ρSSDs with a proportional parameter kann. 
To describe the dependence of strain hardening on strain rate and temperature, kann is formulated as (Estrin, 1998) 

kann¼ k0
ann

�
_εp� _εref

�� 1=n0
; (11)  

where k0
ann is a material constant, _εref is the reference strain rate and n0 is related to temperature. In the classical formula of the KME 

model, the multiplication and dynamic recovery process of dislocations didn’t consider their dependence on grain size. Thus, in GNG 
material, it is desired to establish a modified evolution law for SSDs density, where the effect of GB on dislocation behaviors should be 
considered. 

With the decrease of grain size, GBs become favorable to impede dislocation movement, so the influence of grain size on the mean 
free path of dislocations is considered, i.e., 

1
L
¼

kg
mfp

d
þ kdis

mfp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρSSDs þ ρGNDs

p
; (12)  

J. Zhao et al.                                                                                                                                                                                                            



International Journal of Plasticity 125 (2020) 314–330

319

where ρGNDs ¼ ρsam
GNDs þ ρgra

GNDs is the total GNDs density, kg
mfp is a geometrical parameter related to grain shape, kdis

mfp is a proportionality 
factor. On the other hand, with the decrease of grain size, dislocation annihilations at GBs increase due to the enhanced absorption of 
dislocations by GBs. The annihilation rate of dislocation at GBs is described by ρSSDs=t _εp (Malygin, 2007; Valiev et al., 1994), where t is 
the time required for dislocation dissolution at GBs. Different time is required for single dislocation and dislocation dipole to be 
dissolved. Specifically, for a single dislocation and a dislocation dipole, t is in proportion to d3 and d2, respectively. It’s known that 
GNDs are dislocations with polarities while SSDs are nonpolar dislocations overall. Considering that in a system including both positive 
and negative dislocations with densities of ρþ and ρ� , if the total dislocation density has a polarity, then GNDs density can be calculated 
as ρGNDs ¼ jρþ � ρ� j, and the left are SSDs with the same amount of positive and negative dislocations. Therefore, for the evolution of 
SSDs we consider dislocation dipole mechanism exclusively; the annihilation rate of dislocations at GBs is further given as 
ðdref=dÞ2ρSSDs (Li and Soh, 2012b), where dref represents the reference grain sizes below which the annihilations of dislocations 
intensify. Finally, a unified evolution of SSDs density for coarse/ultrafine-grained metals in GNG materials is given as 

∂ρSSDs

∂εp ¼M

2

6
4

kg
mfp

bd
þ

kdis
mfp

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρSSDs þ ρGNDs

p
� k0

ann

�
_εp

_εref

�� 1
n0

ρSSDs �

�
dref

d

�2

ρSSDs

3

7
5: (13) 

It should be noted that when grain size in the surface of a GNG material drops to nano-scale, GBs related deformation mechanisms 
become dominated (Khan and Liu, 2016; Van Swygenhoven, 2008). Therefore, for nanocrystal with a grain size of tens of nanometers, 
the dislocation density evolution law should be further established correspondingly (Malygin, 2007; Valiev et al., 1994). In this work, 
the smallest grain size in the studied GNG IF-steel is around 100 nm; thus, the dislocation density evolution described by Eq. (13) is still 
valid. 

2.2.3. Evolutions of GNDs density and the resulting back stresses with grain size 
In this work, the GNG architecture is treated as a multilayer composite, which allows us to calculate the density of both grain-level 

GNDs and sample-level GNDs based on their generation mechanisms independently. The grain-level GNDs in a homogeneous poly
crystalline will be calculated based on the pileup dislocations accommodating slip discontinuities between grains, and then the sample- 
level GNDs can be considered as evenly distributed in the polycrystalline cluster in the integration point. The resulting back stresses are 
also established subsequently. 

At the sample level, GNDs are required to accommodate deformation incompatibilities of different layers, which yield progressively 
or shrink differently in a GNG material. Nye (1953) and Ashby (1970) calculate the GNDs density by the effective plastic strain gradient 
ηp, 

ρsam
GNDs¼ r

ηp

b
; (14)  

where r is the Nye factor. The effective plastic strain gradient ηp is defined as ηp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηp

ijkηp
ijk=4

q
(Fleck and Hutchinson, 1997), where 

ηp
ijk ¼ εp

ik;jþ εp
jk;i � εp

ij;k. In FEM implementation, macroscopic strain gradient (at sample level) is further realized through the gradient of 
shape function (Qu, 2004), e.g., 

εp
jk;i¼

Xn

q¼1

∂Nq

∂x

�
εp

jk

�

q
; (15)  

where Nq is the shape function and n represents the number of Gaussian integration point in the adopted element. The index i, j, and k 
correspond to x, y, and z coordinate direction respectively. 

For the back stress induced by GNDs, Evers et al. (2004a, b) have derived its shear components for edge and screw dislocations on a 
specific slip system. Later on, Bayley et al. (2006) proposed a back stress tensor induced by the spatial variation of GNDs density. 
Following Bayley et al. (2006) and assuming that the sample-level GNDs contain only edge type for simplification, which means the 
dislocation lines of GNDs are parallel to z-direction (loading direction) shown in Fig. 2. Then the back stress tensor σsam

b induced by 
GNDs at sample level can be calculated by 

σsam
b ¼

μbR2

ð1 � νÞ

2

6
6
6
6
6
6
6
6
4

3
8

∂ρsam
GNDs

∂y
�

1
8

∂ρsam
GNDs

∂x
0

�
1
8

∂ρsam
GNDs

∂x
1
8

∂ρsam
GNDs

∂y
0

0 0 �
ν
2

∂ρsam
GNDs

∂y

3

7
7
7
7
7
7
7
7
5

; (16)  

where ν is the Poisson’s ratio, R is a cut-off radius of the circular domain within which GNDs contribute to back stress, and x, y, z denote 
the lateral direction, depth direction and tensile direction of the GNG IF-steel sheet, as shown in Fig. 2(a). The effective back stress σsam

b 
can be calculated in a von Mises form as, 
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σsam
b ¼

μbR2

8ð1 � νÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð7þ 16ν2 � 16νÞ
�

∂ρsam
GNDs

∂y

�2

þ 3
�

∂ρsam
GNDs

∂x

�2
s

: (17) 

It will degrade into the expression given by Li et al. (2017) if the gradient of ρsam
GNDs in lateral direction (x-direction in Fig. 2), i.e., 

∂ρsam
GNDs=∂x, is neglected. 
At grain level, GNDs pile up in front of GBs, their density can be calculated in an average way of 

ρgra
GNDs¼

N
d2; (18)  

where d is the grain size, N is the total number of piled up dislocations. Note that although other dislocation structures may be 
generated to accommodate strain heterogeneity between adjacent grains (Ashby, 1970), only pileup configuration is considered in this 
work for clarity and simplicity. The evolution of N with plastic strain is proposed by Sinclair et al. (2006), in this work, it is modified to 
be, 

∂N
∂εp¼NΔ

�

1 �
N
N*

�

; (19)  

where N* is the saturation number of dislocations that GBs can sustain, NΔ the initial evolution rate of pileup dislocations. In larger 
grains, more space near GBs is provided for the formation of pileups. The saturation number of pileup dislocations N* should also have 
a positive correlation with grain size d. However, it is hard to acquire a precise correlation due to the lack of microscopic measurements 
and modelings. In this work, a linear relationship between N* and d is assumed, i.e., 

N*¼ λd þ Nextra; (20)  

where λ is a proportional coefficient and Nextra is a constant. Zhu et al.’s work (2012) also implies that grains with larger sizes possess 
larger NΔ. In this work, a linear relationship between NΔ and d is employed to deal with this relation, i.e., 

NΔ ¼ kNd þ NA: (21) 

It’s noted that a special case of NA ¼ 0 has been adopted by Sinclair et al. (2006). Combinations of Eqs. (18)-(21) give a 
grain-size-dependent evolution law for pileup GNDs inside a grain as 

∂ρgra
GNDs

∂εp ¼
∂ρgra

GNDs

∂N
∂N
∂εp¼

kNd þ NA

d2

�

1 �
N

λd þ Nextra

�

: (22) 

The pileup GNDs inside a grain will generate back stress to suppress the subsequent dislocations to further move toward GBs. 
However, the distribution of GNDs in grains is very difficult to be captured. Assume the N pileup edge dislocations distribute in a 
double-ended way that one half is on one side of GB and the other half is on the opposite side, then the induced back stress at grain level 
is calculated according to (Hirth and Lothe, 1982) as 

σgra
b ¼

MμbN
πð1 � νÞd; (23)  

with the Taylor factor M linking the macroscopic stress to the shear stress on slip systems. 
This section established the grain-size-dependent evolution laws of yield stress, dislocation densities, and back stresses. In the 

following section, the model is implemented into the finite element software ABAQUS (2014) by using the user material subroutine to 
predict the overall mechanical response of a GNG IF-steel sheet under uniaxial tension. 

Fig. 4. (a) Geometry of the finite element model, a small notch is set in the surface region. (b) Finite element mesh of the model.  
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3. Microstructure-based FEM model for GNG IF-steel sheet under uniaxial tension 

3.1. Geometric model and boundary conditions 

Wu et al. (2014a) fabricated a GNG IF-steel sheet by surface mechanical attrition treatment (SMAT), and tested its tensile me
chanical property. To construct the finite element model reasonably, the model’s geometry and boundary conditions should be 
consistent with the experimental one. The experimentally investigated GNG IF-steel sheet has a dimension of 2500 μm ​ � ​ 1000 
μm ​ � ​ 8000 μm (x� y� z) (Wu et al., 2014a). To simplify the simulation, it’s reasonable that we used a 1/8 model (1250 μm ​ �
​ 500 μm ​ � ​ 4000 μm) with symmetric constraints applied, as shown in Fig. 4(a). Uniaxial tension with a strain rate of 5 � 10� 4/s 

was applied along the z-direction. 
SMAT inevitably introduces surface roughness into GNG IF-steel. To mimic the roughness and imperfection on the surface, an initial 

notch with a size of 1250 μm ​ � ​ 1000 μm ​ � ​ 10 μm (x� z� y) was set on the surface as illustrated in Fig. 4(a). Considering the 
imperfect notch region in the nano-grained surface, we used a gradually refined mesh towards the notch with the smallest mesh size of 
27 nm. The overall finite element model was meshed with 8-node brick (C3D8) elements with 50 nodes in the x-direction, 20 nodes in 
y-direction and 40 nodes in z-direction to ensure the mesh independence of simulated results, as shown in Fig. 4(b). 

3.2. Microstructure-based multilayer composite 

The GNG architecture has been usually treated as a multilayer composite with each layer being an equivalent homogenous 
microstructure (Jin et al., 2018; Li et al., 2010; Li and Soh, 2012a, b; Li et al., 2017; Zhao et al., 2019), as shown in Fig. 5(a). To a 
certain degree, the accuracy of the modeling prediction depends on the number of discretized layers. Thus, a continuous distribution of 
grain size along depth is preferred. Based on the experimental results (Wu et al., 2014a) shown in Fig. 5(b), the grain size increases 
from 96 nm to 35 μm along the depth direction, and the relation between the average grain size d and the depth h of the GNG IF-steel 
can be mathematically fitted as 

d ¼

8
<

:

exp½4:49þ 0:122 expð0:035hÞ �; h < 110;
35000 � 5832ð120 � hÞ; 110 � h � 120;
35000; h > 120:

(24) 

To reflect the real distribution of grain size in the investigated GNG IF-steel sheet, the above mathematical relations were adopted 
in the modeling. 

3.3. Constitutive parameters 

In the established constitutive model for GNG materials, most of the constitutive parameters are endowed with physical meanings, 
such as the shear modulus G, the magnitude of the Burgers vector b and the Hall-Petch constant kHP, etc. The values of these parameters 
are almost constant and can be extracted from literature, as summarized in Table 1. Other constitutive parameters for GNG IF-steel are 
calibrated by simulating the tensile behavior of the homogeneously-grained IF-steel with grain sizes in the range from 100 nm to 
35 μm, which are exactly the grain size in the topmost surface layer and bulk core respectively. The details of determining these 
parameters are given below. 

Although there are eight parameters needed to be determined in this work, almost all of them can be obtained exclusively by the 
stress-strain curves of homogeneously-grained IF-steel with grain sizes of 96 nm, 650 nm, and 35 μm. Firstly, we divide the eight 

Fig. 5. (a) A multilayer structure of the GNG sample with different layers endowing different grain sizes. (b) Experimentally-measured grain size 
distribution function is used to obtain a continuous distribution of grain size along the depth direction (Wu et al., 2014a). 
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parameters into two groups. The first group includes kg
mfp, kdis

mfp, k0
ann, and dref as shown in Eq. (13), which describes the evolution of 

ρSSDs. The second group controlling the evolution of back stress includes λ, Nextra, kN and NA, where λ and Nextra codetermine the 
saturation numbers of pileup dislocations; kN and NA describe the initial evolution rate of pileup dislocations. 

Since the flow stresses shown in Fig. 6(a) include back stress, so the parameters related to the back stress in Table 1 are determined 
primarily. As indicated by Eq. (19), the back stress evolution is only dominated by N� and NΔ, so for IF-steel with specific grain size, e. 
g., d ¼ 35 μm, these two parameters can be exclusively determined by its back stress evolution curve. As shown in Eqs. (20) and (21), 
N* ¼ λdþ Nextra, NΔ ¼ kNdþ NA. Here, we determine λ and Nextra related to N� firstly. Two boundary conditions are required for 
determining λ and Nextra. For the CG material with d ¼ 35 μm, as stated before, N* can be obtained by making a good fit to its back stress 
evolution curve (Wu et al., 2014a), which provides the first boundary condition. When the grain size drops to the nano-scale regime, 
the pileup mechanism breaks down, emission and absorption of dislocations at GBs are believed to dominate (Khan and Liu, 2016; 
Kumar et al., 2003; Van Swygenhoven, 2008). Therefore, for the IF-steel with a grain size of 100 nm, we assume that only one 
dislocation can be piled up, which provides the second boundary condition, i.e., d ¼ 100 nm; N* ¼ 1. With these two boundary 
conditions, λ and Nextra can be determined. NΔ, which controls the initial evolution rate of pileup dislocations, is equal to NΔ ¼ kNdþ
NA. When the grain size is very small, NΔ is determined by NA, with the increase of grain size NΔ becomes to be dominated by kNd. The 
stress-strain curve of IF-steel with a grain size of 100 nm shows that the stress saturates immediately after yielding, indicating the back 
stress also saturates at a small strain, which helps to determine NA. As NΔ of the IF-steel with a grain size of 35 μm has been obtained 
from the back stress evolution curve, then kN can also be determined. 

Table 1 
Material parameters for the developed model in section 2.  

Parameter Symbol Value Ref. 

Taylor factor M 3.06  
Taylor constant α 0.3  
Shear modulus (GPa) G 77 Li et al. (2004) 
Poisson’ ratio v 0.28 Li et al. (2017) 
Magnitude of Burgers vector (nm) b 0.26 Li et al. (2004) 
Lattice friction stress (MPa) σ0  65 Wu et al. (2014a) 

Hall-Petch constant 1(MPa � μm1=2)  kHP  95 Wu et al. (2014a) 

Rate sensitively exponent m 20 Huang et al. (2004) 
Geometric factor kg

mfp  0.06  

Proportionality factor kdis
mfp  

0.008  

Dynamic recovery constant 1 k0
ann  

1.5  

Dynamic recovery constant 2 n0 21.25 Li et al. (2017) 
Reference strain rate (s� 1)  _εref  1 Li et al. (2017) 

Reference grain size (μm) dref  2  
Nye-factor r  1.9 Huang et al. (2004) 
Pileup dislocations constant 1 (μm � 1) kN  46.15  
Pileup dislocations constant 2 NA  307.7  
Pileup factor related to grain size (μm � 1) λ  3.78  
Correction parameter of pileup dislocations Nextra  0.62  
Cut-off radius of the GNDs domain (μm) R 3  
Initial dislocation density (m� 2)  ρ0  2 � 1011   

Fig. 6. The predicted curves of (a) true stress versus true strain and (b) back stress versus plastic strain for homogeneously-grained IF-steels with 
grain size changing from 100 nm to 35 μm, the experimental results are also shown for comparison (Wu et al., 2014a; Yang et al., 2016). 
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As we have obtained the parameters related to the evolution of back stress, the back stress evolution curves for different grain sizes 
can be drawn. Then the stress-strain curves eliminating the influences of back stresses and grain-level GNDs are obtained. The strain 
hardening of these curves is dominated by ρSSDs. Although there are four parameters needed to be decided in the evolution law of ρSSDs, 
all of them can be determined exclusively since they are responsible for the description of the dislocation density evolution of different 
grain sizes clearly. For example, when the grain size is large enough, the influence of the first and fourth terms on the evolution of SSDs’ 
density can be neglected. So the evolution of ρSSDs is merely controlled by kdis

mfp and k0
ann. Correspondingly, when the grain size is small 

enough, the influence of the second and third terms can be neglected, and the evolution of ρSSDs is mainly controlled by kg
mfp and dref . 

Note that the two sets of parameters are exclusive since for determining a nonlinear curve, we need two unique parameters. In this 
work, kdis

mfp and k0
ann are determined by simulating the stress-strain curve of CG copper with a grain size of 35 μm in Fig. 6(a); kg

mfp and 
dref are obtained by simulating the copper with a grain size of 96 nm. All the four parameters are adjusted slightly for making good fits 
to the three stress-strain curves of 35 μm, 650 nm, and 96 nm simultaneously in Fig. 6(a). 

Once these parameters are determined, they are employed to model the GNG IF-steel with grain size gradually changing from 
100 nm to 35 μm from the surface to the core. 

Fig. 6(a) indicates that the predicted results match the experimental data well for both the initial yielding and subsequent strain 
hardening. The yield strength increases from about 60 MPa to 530 MPa with the decrease of grain size from 35 μm to 100 nm, con
firming the Hall-Petch relation. The strain hardening behavior becomes insignificant with the decrease of grain size since smaller 
grains have less space for dislocation accumulation. It is noted that the experimental data show that the elastic modulus seems to 
depend on the grain size. However, previous experimental and theoretical works (Kim and Bush, 1999; Sharma and Ganti, 2003) 
demonstrated that the elastic modulus decreases with the decrease of grain size, however, only in the nano-scale regime. So the de
viation of elastic modulus may be attributed to the fluctuation during the preparation of IF steels. In this work, the elastic modulus we 
adopted coincides with that of the GNG IF-steel and thus is not tuned artificially to match the experiment for homogeneously-grained 
IF steel with different grain sizes. The predicted back stress evolution in Fig. 6(b) fits the experimental one well for IF-steel with a grain 
size of 35 μm. It is found that the evolution of back stress with strain is grain-size-dependent. When grain size is larger than 0.242 μm, it 
follows a nonlinear way. But for nanocrystal, it saturates immediately after the initiation of plastic deformation. This finding agrees 
with the experimental results, where the back stress of a CG copper increases with strain until a level of 20% (Mahato et al., 2016), 
while the back stress saturates at a small strain of about 1% when nanoscale twins are induced to impede the dislocation movement 
(Wang et al., 2018). The modeling predicts that the saturation value of back stress increases from 100 MPa to 270 MPa with grain size 
decreases from 35 μm to 100 nm. The inverse dependence of σgra

b on grain size is consistent with the findings of experiments and 
discrete dislocation dynamics modeling, i.e., back stress introduced by pileup dislocations increases with the decrease of grain size 
(Espinosa et al., 2006; Lu et al., 2019a; Mahato et al., 2016; Massart and Pardoen, 2010). 

The constitutive model with the calibrated constitutive parameters has successfully predicted the tensile response of 
homogeneously-grained IF-steel with grain size changing from 100 nm to several tens of microns. With such success, it will be further 
applied to simulate the tensile response of the GNG IF-steel sheet, and the relation between the underlying deformation mechanisms 
and macroscopic responses will be systematically investigated. 

4. Macroscopic mechanical behavior and strengthening mechanisms of GNG materials 

4.1. Stress and strain response of the GNG IF-steel 

The uniaxial tensile response of GNG IF-steel under uniaxial tension is predicted using the developed model in Section 2 and the 

Fig. 7. (a) True stress versus true strain and (b) evolution of back stress predicted by the mechanism-based constitutive model for the GNG ma
terials, the corresponding experimental results of the GNG IF-steel under tensile loading are also shown for comparison (Wu et al., 2014a; Yang 
et al., 2016). 
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microstructure-based finite element model in Section 3. The same set of constitutive parameters, as used for homogeneously-grained 
IF-steel, are also used here for GNG IF-steel. Fig. 7(a) shows both the modeling predicted and experimentally measured true stress- 
strain curves of the GNG IF-steel under tensile loading. It turns out that the modeling predication is comparable to the experi
mental test. The predicted ultimate tensile strength of the GNG IF-steel is as high as 330 MPa, which is ~20 MPa higher than the 
experimental one; and the predicted uniform elongation is ~18% (indicated by the cross, and the strain at this point is calculated by 
the relationship ∂σ=∂ε ¼ σ), which is smaller than the experimental one of ~22% (Wu et al., 2014a). To systematically understand the 
deformation process of GNG materials, it is necessary to study the stress, strain and displacement field in the deformation stages 
following initial linear elastic deformation, i.e., elastic-plastic transition stage, plastic flow stage, plastic instability stage. 

4.1.1. Elastic-plastic transition stage 
Fig. 8 shows the distributions of stress/strain and displacement at a true tensile strain of εz ¼ 0.00287. At this moment, the GNG 

layer deforms elastically while the CG region has already yielded, as manifested by the dash area in Fig. 8(a). Fig. 8(b) shows the 
absolute value of the lateral strain jεxj. It increases from the surface to the core, giving rise to a macroscopic strain gradient along the 
depth direction. The reason lies in that the plastically deformed CG core manifests a Poisson’s ratio of 0.5 under the condition of plastic 
incompressibility, while the elastically deformed GNG layer retains a Poisson’s ratio of 0.28. So under tensile loading along the z- 
direction, the CG core shrinks more than the GNG layer in the lateral (x) direction. The lateral displacement increases from about 
1.73 μm to 1.85 μm from the surface to the core, which is quantitatively shown in Fig. 8(c). The incompatible deformation between the 
GNG layer and CG core leads to a conversion of the stress state from uniaxial to biaxial. As demonstrated by Fig. 8(d), the stress σx, 
which is supposed to be zero in homogeneously-grained material, is negative in the GNG region and positive in the CG core. Multiaxial 
stresses help to activate more slip systems, thus promotes dislocation accumulation to strengthen the GNG material (Wu et al., 2014a). 

4.1.2. Plastic deformation stage 
With the increase of tensile strain, the GNG layer also enters into plastic deformation regime. Due to the low strain hardening ability 

of top surface layers and the small notch in the surface region, strain localization occurs almost right after yielding in this region. The 
lateral strain εx along the depth direction shown in Fig. 9(a) indicates that, contrary to what shown in Fig. 8(b), GNG layer shrinks more 

Fig. 8. (a) Schematic curves of true stress versus true strain of CG core and GNG layer, respectively. (b) Distribution of lateral strain εx along the 
depth direction, where the four paths are marked in Fig. 4(b). (c) The contour of lateral displacement ux and its distribution along the depth di
rection. (d) Distribution of lateral stress σx along path 1 to path 4. 

J. Zhao et al.                                                                                                                                                                                                            



International Journal of Plasticity 125 (2020) 314–330

325

significant than CG core at a true tensile strain of 0.05. Fig. 9(b) further gives the lateral displacement difference at different true 
strains. At a true strain of 0.00287, the CG core shrinks about 0.12 μm larger than the GNG layer since the plastic deformation occurs in 
the core region firstly. With the increase of tensile strain, strain localization occurs in the GNG layer. This region shrinks more 
significantly than the CG core, e.g., a maximum displacement difference of 0.77 μm is predicted at a true strain of 0.05. The elevated 
lateral displacement difference induces a raised strain gradient, which should be accommodated by GNDS. 

4.1.3. Plastic instability stage 
With the further increase of strain, the sample will lose stability. Experiments (Wu et al., 2014a; Yuan et al., 2019) demonstrate that 

although strain localization initiates in the surface region at an early deformation stage, the whole sample can sustain further 
deformation to a finial uniform elongation of about 0.22, as shown in Fig. 7(a). In the following, we reveal the underlying mechanisms 
for the superior ductility of GNG materials by analyzing the plastic instability occurring in the surface region and the whole sample. 
Fig. 10(a) shows the axial strain εz along path 5, path 6, and path 7 as marked in Fig. 4(b) at different tensile strains. With the increase 
of tensile strain from 0.01 to 0.15, the difference of εz between uniform region and imperfect region along path 5 increases from 0.004 
to 0.06, indicating the evolution of nonuniform deformation in the surface region. Due to the mutual constraint between the GNG layer 
and CG core, the CG core also deforms nonuniformly. But from GNG surface to CG core, the degree of strain localization is reduced. For 
example, at a true strain of 0.15, the strain difference between the strain localization region and the uniform region is 0.06 in the 
surface (path 5), while this value reduced to 0.046 in CG core (path 7). 

Fig. 10(b) gives the evolutions of maximum and minimum axial strains εz; max and εz; min along path 5 with respect to the applied 
strain εz. When εz ¼ 0.007 (marked by the blue spot), the evolution pathway of εz; max starts to deviate from that of εz; min. Such de
viation indicates the beginning of strain localization in the surface. However, the strain localization in the surface region does not 
develop arbitrarily to result in the collapse of the whole GNG sample immediately. Both εz; max and εz; min increase with the increase of 
the applied strain in an approximately linear way until εz ¼ 0.18, indicating the strain localization is effectively suppressed due to the 
constraint effect of CG core. This finding coincides with the result of molecular dynamics simulations (Lin et al., 2018), where the 
strain localization in the surface nano-grained region is inhibited by the mutual constraint between the GNG region and CG core. After 
εz ¼ 0.18, εz; max increases faster while εz; min stops increasing with the further increase of εz, and necking behavior initiates in the 
imperfect region where the notch is set. 

4.2. Distribution and evolution of deformation state variables 

The excellent mechanical responses of GNG materials benefit from their unique microstructures and deformation mechanisms. In 
order to obtain an in-depth and comprehensive understanding of the underlying mechanisms for the superior strain hardening, 
strength and ductility of the GNG IF-steel, deformation state variables such as SSDs, GNDs, and back stress, at different deformation 
stages are analyzed in detail. 

4.2.1. SSDs 
Fig. 11 shows the distribution and evolution of SSDs. When the tensile strain is lower than 0.03, the density of SSDs in the GNG layer 

is larger than that in the CG core. It is because of the density of SSDs for small grains increases at a faster rate than large grains at 
smaller strains, coinciding with the stress-strain curves, as shown in Fig. 6(a). With the increase of tensile strain, the density of SSDs in 
the surface layer saturates while that in coarse grains continue to accumulate and exceed that in the surface layer. Furthermore, it is 
found that ρSSDs increases from the GNG layer to CG core with a peak recorded at the border demarcating the GNG layer and CG core. 
For example, at the true strain of 0.18, from the surface to the core ρSSDs increases firstly from 6.47�1012=m2 to 1.02� 1014= m2 and 
then decreases to 5� 1013=m2. Experimentally, a peak of hardness increment is also detected there (Wu et al., 2014a). Recall the stress 

Fig. 9. (a) Distribution of lateral strain εx along depth at a tensile strain of 0.05. (b) Evolution of height profile in the lateral surface with ten
sile strain. 
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distribution shown in Fig. 8(d), multiaxial stresses present in the GNG material and the highest lateral stress σx occurs at the border 
demarcating the GNG layer and CG core. Thus, it is suspected that the multiaxial stresses help to promote dislocation multiplication 
and elevate the hardness at the border. 

4.2.2. GNDs 
The strain gradient at the sample level develops not only along the lateral (x) direction but also along the loading (z) direction. The 

non-uniform deformation at sample level gives rise to the construction of GNDs. Fig. 12(a) shows the distribution and evolution of 
ρsam

GNDs. It can be seen that the sample-level GNDs distribute mainly in GNG layer, and the maximum GNDs density appears at the border 
demarcating the GNG layer and the CG core. With the true strain increases from 0.00287 to 0.18, the maximum GNDs density increases 
from 1.7�1011=m2 to 1.96� 1012=m2. Comparing with the density and distribution of SSDs, ρsam

GNDs can be neglected. 
Fig. 12(b) illustrates the distribution and evolution of ρgra

GNDs. Although the pileup dislocations in the GNG layer with smaller grain 
sizes are fewer than that in CG core, ρgra

GNDs in GNG region is higher since ρgra
GNDs∝d� 2, as indicated by Malygin (2007). So ρgra

GNDs in the 
topmost surface layer with a grain size of 100 nm and with only one pileup dislocation inside grain is as high as 1014=m2 at a true strain 

Fig. 10. (a) Evolutions of axial strain εz along path 5 to path 7 with tensile strain. (b) Evolutions of the maximum and minimum axial strains εz; max 

and εz; min with applied strain εz. 

Fig. 11. Evolution of ρSSDs with tensile strain.  
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of 0.18, which is two orders of magnitude higher than ρsam
GNDs. Moreover, ρgra

GNDs saturates at an early deformation stage, i.e., the 
maximum value of ρgra

GNDs remains as a constant after a tensile strain of 0.03. It is because the pileup space for dislocations is limited in 
the surface grains, so the pileup dislocations saturate faster than that in the CG core. 

4.2.3. Back stress 
If back stress is not considered in the established constitutive model, the simulated flow stress in Fig. 7(a) is much lower than the 

experimental result. It’s found that back stress increases progressively during the initial deformation stage. Thus, it influences not only 
the subsequent strain hardening behavior but also elevates the initial yield stress. To evaluate the effect of grain size gradient on back 
stress, the results of CG IF-steel with a grain size of 35 μm, both predicted by modeling and measured by experiments, are shown in 
Fig. 7(b). It is natural that the modeling prediction is also effective for CG material. The back stress of GNG material is about 50 MPa 
larger than the CG IF-steel, indicating that the GNG layer contributes to the extra strain hardening through back stress. 

Fig. 13(a) and (b) show the evolutions of σsam
b and σgra

b with tensile strain. Fig. 13(a) indicates that σsam
b mainly distributes in the 

outer surface, and its maximum appears at the border demarcating the GNG layer and the CG core, where the largest gradient of ρsam
GNDs 

occurs. The maximum of σsam
b is only 0.28 MPa. In comparison, σgra

b can be as high as 271.5 MPa in the surface region and 91.2 MPa in 
the CG core at a tensile strain of 0.18, as shown in Fig. 13(b). Comparing Figs. 13(b) and 12(b), it’s found that both the distribution and 
evolution of σgra

b are akin to that of ρgra
GNDs, which is consistent with the constitutive descriptions that σgra

b and ρgra
GNDs are both controlled 

by the number of pileup dislocation N in a similar way, as indicated by Eqs. (23) and (18). 

4.3. Strengthening mechanisms of the GNG IF-steel 

To further quantify the individual contribution of ρsam
GNDs, σsam

b , ρgra
GNDs, σ

gra
b and ρSSDs to the overall stress-strain response of GNG IF- 

steel under uniaxial tension, five modeling cases are designed to separate their respective contribution, as shown in Table 2. Where 
“√” means consider this factor and “ � ” denotes eliminate its influence. Thus, case I indicates all mechanisms are included. Physically, 
σsam

b and σgra
b are introduced by ρsam

GNDs and ρgra
GNDs, respectively. Therefore, case II to case V are hypothetic cases to help to distinguish the 

individual contribution of GNDs density and the resulting back stress. 
Fig. 14(a) shows the simulated stress-strain curves corresponding to the five cases presented in Table 2. It’s found that the pre

dictions of the case I, case II, and case III are almost the same. In comparison, the flow stress for case IV is a little lower than that for 
cases I, the main contribution of ρgra

GNDs comes from the accumulation of pileup GNDs in the surface region, as shown in Fig. 12(b). 
Furthermore, the stress-strain curve for case V is much lower than that of case I, demonstrating σgra

b has a significant contribution to the 
strengthening of GNG IF-steel. 

Fig. 14(b) further quantifies the evolution of flow stress from ρsam
GNDs, σsam

b , ρgra
GNDs, σ

gra
b with strain by analyzing the differences of the 

curves in Fig. 14(a). GBs strengthening according to the Hall-Petch relation and the strengthening from SSDs are also provided. It is 
found that the flow stresses originated from ρsam

GNDs and σsam
b are almost 0 MPa, demonstrating ρsam

GNDs and the resulting σsam
b have hardly 

any influence on the strain hardening of GNG IF-steel. The negligible effects of ρsam
GNDs and σsam

b on the overall strain hardening can also 
be inferred from their low values and limited distributions, as shown in Figs. 12(a) and 13(a). These findings agree with the strain 
gradient plasticity theory (Fleck et al., 1994; Gao et al., 1999; Huang et al., 2004), where the macroscopic strain gradient has hardly 
any influences on the strain hardening when the sample size is in millimeter-scale. The contribution of ρgra

GNDs increases at first and then 
saturates at a small strain about 0.02 with a maximum of ~13 MPa. σgra

b increases gradually to ~110 MPa at a true strain of 0.18, 
demonstrating a significant influence on the flow stress of GNG IF-steel. Furthermore, since the CG core possesses a strong strain 

Fig. 12. (a) Distribution and evolution of ρsam
GNDs and (b) ρgra

GNDs with increasing tensile strain.  
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hardening capacity, strengthening comes from SSDs increases with the strain increasing throughout the entire deformation process to 
about 117 MPa eventually. The contribution of GBs keeps a constant of about 120.7 MPa because grain sizes are assumed to be constant 
during deformation. 

The quantitative estimation of the effects of kinds of strengthening mechanisms on the stress-strain response of GNG IF-steel under 
tensile loading indicates that: the initial yielding is mainly controlled by the grain size effect characterized by the Hall-Petch relation, 
while the strain hardening is controlled by the SSDs, the pileup GNDs induced back stress σgra

b and the pileup GNDs themselves. 
Throughout the whole tensile deformation process of GNG material, it turns out that the strain gradient effect at the sample level (the 
GNDs accommodating macroscopic nonuniform deformation and the resulting σsam

b ) is negligible. 

5. Conclusions 

We develop a deformation-mechanism-based constitutive model considering the effects of grain size, GNDs and back stress on the 

Fig. 13. (a) Evolution of σsam
b and (b) σgra

b with tensile strain.  

Table 2 
Modeling cases set to investigate the individual contribution of different strengthening factors.  

Case ρsam
GNDs  σsam

b  ρgra
GNDs  σgra

b  

Case I ✓ ✓ ✓ ✓ 
Case II � ✓ ✓ ✓ 
Case III ✓ � ✓ ✓ 
Case IV ✓ ✓ � ✓ 
Case V ✓ ✓ ✓ �

Fig. 14. (a) Simulated stress-strain curves corresponding to the five cases in Table 2. (b) Quantitative contributions of different factors to the flow 
stress of GNG IF-steel. 
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strengthening and strain hardening of GNG materials and implement the developed model into a finite element framework to predict 
the tensile response of a GNG IF-steel sheet. Main conclusions of this work are drawn as follows: 

(1) Multiaxial stresses develop due to mechanical incompatibilities of grains with different sizes and promote dislocation multi
plication and strain hardening. The highest lateral stress appears at the border demarcating the GNG layer and CG core, where a 
peak ρSSDs and sample-level GNDs ρsam

GNDs occur by modeling prediction and a peak of hardness increment is also detected in 
experiments. The constraint between coarse-grained core on the GNG layer helps to suppress strain localization in the surface 
GNG layer from an arbitrary development along the depth direction, enabling the failure of GNG IF-steel to be delayed.  

(2) At sample level, nonuniform deformation develops along both the depth and tensile directions, but the density of GNDs induced 
by the macroscopic strain gradient and the resulting back stress are too low to affect the strain hardening and strengthening of 
the GNG IF-steel.  

(3) At grain level, strain gradient generates due to the slip discontinuities of adjacent grains, giving rise to pileup GNDs. The back 
stress resulting from pileup GNDs is demonstrated to contribute as high as 35% to the strain hardening of the GNG IF-steel. 

In the future, by manipulating the microstructure and sample size, the established model can be used to predict the relationship 
between microstructure and the strength-ductility of other kinds of GNG materials. The mechanical properties under complicated 
loading cases can also be analyzed. 
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