
Vol.:(0123456789)

Transport in Porous Media (2020) 132:183–199
https://doi.org/10.1007/s11242-020-01386-0

1 3

Coordinated Variation of Contact Angles During Mobilization 
of Double Liquid–Gas Interfaces in a Microcapillary

Da Lei1 · Mian Lin2,3 · Yun Li1 · Wenbin Jiang2

Received: 6 May 2019 / Accepted: 18 January 2020 / Published online: 5 February 2020 
© Springer Nature B.V. 2020

Abstract
Effectively mobilizing displacement and predicting mobilization pressure in a porous-type 
reservoir filled with bubbles or blobs require the knowledge of variation of contact angles 
and capillary pressure. A bubble/blob has two interfaces and thus has two contact angles. 
It has been found that double interfaces cause resistance to displacement, and the resisting 
pressure rises while one contact angle increasing and the other decreasing during mobiliza-
tion. To quantitatively explain how the resistance to flow builds up according to the contact 
angle variations during mobilization, it is assumed that (1) contact points remain unmoved; 
(2) the volume of a bubble or blob maintains constant; (3) once the interface starts mov-
ing at low capillary number, the contact angle remains to be the advancing or receding 
angle; (4) the viscous effect on pressure drop can be ignored; and (5) the two angles of two 
interfaces are equal to an equilibrium angle at the initiation of mobilization. A theoretical 
model is developed based on these assumptions, and the quantitative relationship of the 
two angles is expressed by an implicit function. Combining Young–Laplace equation, the 
capillary pressure induced by double interfaces is obtained. The model’s prediction is in 
good agreement with experiments in studies. The equilibrium angle has strong influence 
on the variation of the two angles. When the equilibrium angle is less than 90 degrees, a 
relatively greater change in the contact angle at the advancing interface leads to a smaller 
change in the other one. Otherwise, the opposite is true. The changes of the two angles are 
equal when the equilibrium angle is 90 degrees. Moreover, a linear trend proposed by a 
previous investigation is incorporated into the model, to predict the ending of mobilization 
stage and to predict the maximum mobilization pressure on a given solid surface.
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1  Introduction

Mobilization of liquid–gas interfaces in a capillary is closely related to industrial appli-
cations like oil recovery from porous-type reservoirs with water-alternating-gas injection, 
solution gas drive and other enhanced oil recovery technologies (Bora et al. 2000; Sohrabi 
et al. 2004), also related to the intrusion of liquid into membranes or fibrous media (Mogh-
adam et  al. 2018; Jamali et  al. 2018). Moreover, a dispersed phase like air bubbles, oil 
blobs (either trapped by air or other immiscible liquids) can be found distributed across the 
porous media during the two-phase displacement, indicating that advancing and receding 
of interfaces can occur simultaneously (Morrow et al. 1988; Bora et al. 2000; Pak et al. 
2015). These entrapped bubbles or blobs can build up substantial resistance to the flow 
and significantly influence the relative permeabilities (Taber 1980; Morrow et  al. 1988). 
Efficiently mobilizing the displacement is of principal economic interest to the petroleum 
industry (Hsu et al. 2012).

Most pore-scale displacement occurs under low capillary numbers Ca (Ca = μV/γ, 
where μ is the viscosity of the liquid, V the interface velocity and γ the interfacial tension) 
ranging from 10−10 to 10−5 and Bond numbers Bo (Bo = ρgh2/γ, where ρ is the density of 
the liquid, g the gravitational constant and h the characteristic length of the flow) less than 
10−4, indicating that the dominating role of capillary pressure and the capillary diameter 
is less than 30 μm (Piri and Blunt 2005). The behavior of a single interface is the basis 
of double interfaces mobilization. Experiments found that in a capillary a single interface 
moves forward when the contact angle reaches an advancing angle, and moves backward 
when the contact angle reaches a receding angle (Morrow and Nguyen 1982; Lei et  al. 
2018). The same phenomenon is also observed in liquid bridge experiments (Chen et al. 
2013). The contact angle remains constant when moving with 10−9 < Ca < 10−5, and the 
capillary pressure of an interface can either resist or assist its movement, depending on the 
contact angle (Lei et al. 2018).

When forming a bubble/blob, will the total capillary pressure of double interfaces also 
resist or assist the movement depending on the contact angles? There are also experiments 
regarding multiple interfaces within a capillary forming bubbles or blobs. It is found that 
air bubbles in microtubes can sustain a certain amount of pressure, which is known as the 
Jamin effect and was ascribed to the contact angle hysteresis (Smith and Crane 1930; Gard-
escu 1930; Uchiyama et al. 2015). The number of bubbles in a capillary has been found 
to positively affect the pressure needed to mobilize the displacement (Smith and Crane 
1930; Uchiyama et al. 2015). But the length of a bubble does not influence the pressure 
needed to initiate the movement (Srinivasan et al. 2013, 2015). In experiments of mobiliz-
ing air bubbles, constant injection rate is often used and the measured data reveal that the 
pressure drop of bubbles keeps rising until bubbles start moving (Srinivasan et al. 2013, 
2015; Uchiyama et al. 2015). Srinivasan et al. (2013) managed to measure the pressure and 
contact angles during bubble mobilization in a 1.5-mm-diameter capillary. During mobili-
zation, the contact angle at the advancing interface increases and the other at the receding 
interface decreases as the rising of pressure drop.

Despite the experimental measurement and observations, there is still a lack of quanti-
tatively description of the variation of contact angles or capillary pressure of double inter-
faces during mobilization.

This work focuses on how the resistance to flow is building up during mobilization 
of a bubble or blob, according to the variation of contact angles. A model is developed 
to describe the coordinated variation of contact angles of double liquid–gas interfaces in 
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a microcapillary. Combining Young–Laplace equation, the capillary pressure of double 
interfaces can be further obtained. The model presented in this work is in good agree-
ment with experiments in the literature. Furthermore, in order to predict the maximum 
mobilization pressure on a given solid surface, an empirical advancing/receding angle 
relationship is incorporated into the presented model.

2 � Theory Basis

2.1 � Mobilization of a Single Interface

A bubble or blob within a capillary consists of two interfaces. Understanding the mobi-
lization of a single interface is the bridge to understanding the mobilization of double 
interfaces. As defined in the movement of a single interface, when the liquid–gas inter-
face advances, it moves toward liquid side; when the liquid–gas interface recedes, it 
moves toward gas side. Thus, a bubble or blob has an interface that tends to advance and 
the other tends to recede.

It is widely acknowledged that there are two limiting values of the metastable appar-
ent contact angle when the contact point is on the verge of advancing or receding, which 
is commonly attributed to solid surface heterogeneities (Bonn et al. 2009; Ramiasa et al. 
2014). The maximum metastable apparent angle (threshold angle) is the advancing 
angle �adv , and the minimum is the receding angle �rec ; the difference between �adv and 
�rec is also referred to as contact angle hysteresis (CAH) (Marmur et al. 2017). Experi-
ments found that hysteresis occurs the velocity of contact points are below the min-
imum measured velocity, such as 0.135  μm/s in latest experiments (Lei et  al. 2018). 
Contact points can be thus regarded as unmoved. Figure 1 demonstrates the hysteresis 
process of a glycerol–air meniscus in a microcapillary. In Fig. 1, the liquid is pushed to 
advance and the contact angle keeps increasing, while the contact points show no obvi-
ous movement.

After the contact angle reaches beyond �adv , or gets less than �rec , the equilibrium state 
is ended and the contact points start moving. Previous investigations confirm that contact 
angle during the movement of contact points remains constant at low capillary numbers, 
which cover the range of Ca from 10−9 to 10−5, summarizing all experiments (Johnson 
et al. 1977; Morrow and Nguyen 1982; Kwok et al. 1998; Lei et al. 2018). The capillary 
number of 10−9–10−5 is also the range where most pore-level displacement occurs (Piri and 
Blunt 2005), as aforementioned. Hence, the dynamic contact angle �d can be represented 
by an advancing angle �adv and �rec.

The sign of Ca represents the direction of interface movement, positive for advanc-
ing and negative for receding. Artificial smooth surfaces (the root-mean-square rough-
ness < 1  nm measured by atomic force microscopy) created by coating techniques could 
reduce the hysteresis of certain liquids to several degrees (Schneemilch et al. 1998; Petrov 
et al. 2003; Ramos and Tanguy 2006). However, in pores of tight reservoirs or other natural 
porous media without artificial refinement (i.e., coating, polishing), a significant difference 
between �adv and �rec of any liquid is expected.

(1)
{

𝜃d = 𝜃adv Ca > 0

𝜃d = 𝜃rec Ca < 0
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The contact angle hysteresis of a single interface and the velocity independence of con-
tact angle at low capillary number lay the foundation of analyzing the mobilization of dou-
ble interfaces.

2.2 � Mobilization of Double Interfaces

2.2.1 � Model Assumptions

Based on the behavior of a single liquid–gas interface in a microcapillary, several conclu-
sions and assumptions can be utilized:

1.	 Contact points remain unmoved during hysteresis. The transition from advancing angle 
to receding angle occurs below the minimum measured velocity in different experi-
ments, such as 2.5 mm/min in the experiments of Johnson et al. (1977), 0.1 mm/min in 
the experiments of Kwok et al. (1998) and 0.135 μm/s in the experiments of Lei et al. 
(2018). Thus, the contact point can be taken as unmoved during hysteresis.

2.	 The volume of a blob or a bubble maintains constant during the mobilization. In most 
experiments, the magnitude of capillary pressure acting on an air bubble is of 102 Pa 

Fig. 1   Contact angle hysteresis of glycerol in an 80 × 20 (width × depth) μm rectangular capillary when the 
liquid is pushed to move to the right and contact points are stationary. The deformation of meniscus is in 
the sequence of (a–d). The original images can be found in Appendix of a previous investigation (Lei et al. 
2018)
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in a capillary with diameter of millimeters, while the hydrostatic pressure of the air 
bubble is 1 atm (≈ 105 Pa) (Srinivasan et al. 2013; Hsu and Hilpert 2016). Therefore, 
the compression of air bubbles caused by capillary pressure can be ignored in those 
experiments. Considering a reservoir with a depth over 1000 m, the hydrostatic pressure 
may be over 107 Pa. The capillary pressure will increase to the same magnitude as the 
hydrostatic pressure when the diameter of pore space decreases to 10 nm. Therefore, 
this assumption is still valid when the diameter of pores or throats is much larger than 
10 nm (from hundreds of nanometers to micrometers). As for microscale capillaries, 
the assumption still holds.

3.	 During mobilization, if one interface starts moving, it moves at low capillary number 
and the contact angle remains to be the advancing or receding angle. This assumption is 
based on the velocity independence of contact angle at low capillary number 10−9–10−5, 
supported by the experiments (Johnson et al. 1977; Morrow and Nguyen 1982; Lei et al. 
2018);

4.	 The viscous effect on pressure drop can be ignored. Following the assumptions (1) and 
(3), the bulk fluid does not flow along the capillary during hysteresis. And even the 
bulk fluid flows as one interface starts moving, the viscous pressure can also be ignored 
compared with the capillary pressure

5.	 An equilibrium state is assumed for a blob or a bubble in the beginning of the mobiliza-
tion. The initial value of contact angles at two interfaces is assumed to be �e.

2.2.2 � Analysis of Capillary Pressure and Contact Angles

The contact angle for the interface that is inclined to advance is denoted as �′ , and the other 
inclined to recede is denoted as �′′ . The initial values of contact angles are denoted as �e , 
which satisfies 𝜃rec < 𝜃e < 𝜃adv . As the inlet pressure Pi slowly increases, �′ will slowly rise 
from �e to �adv , while �′′ will slowly decrease from �e to �rec (Srinivasan et al. 2013, 2015). 
Before contact points start moving, the viscous pressure drop within bulk fluids can be 
ignored. Thus, pressures (P1, P2, P3 and P4, as shown in Fig. 2) equal at two ends of a bulk 
fluid, as given by:

For a blob, pressure drops across two interfaces are given by:

For a bubble, pressure drops at interfaces are:

(2)Pi = P1, P2 = P3, P4 = Po

(3)

⎧
⎪⎨⎪⎩

P1 − P2 =
2�

R
cos ���

P3 − P4 = −
2�

R
cos ��

Fig. 2   Definition of pressures 
and contact angles of a blob and 
bubble in a capillary
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Combining Eqs. (2), (3) and (4), we could have the total pressure drop, which has the same 
expression for a blob and a bubble.

As demonstrated in Fig. 2, if the microtube is taken as a plane or a gap between two paral-
lel plates, the volume change v(α, β) is solely induced by the change of contact angle from α to 
β and is expressed by the difference of two circular segments. For a circular tube, the volume 
change v(α, β) is expressed by the difference of two spherical caps with contact angles from α 
to β.

Here, the expression of volume change in a circular tube is given in Eq  (6), wherein R 
denotes the radius of the circular tube. Detailed derivation of the volume change can be found 
in “Appendix 1.”

The two angles must satisfy 0 ≤ α≤β ≤ π to obtain a nonnegative value of v(α, β) (Fig. 3).
The variations of �′ and �′′ are linked up with each other, due to the conservation of the 

blob/bubble volume. One interface shrinks and the other enlarges with ΔV1 = ΔV2 , as illus-
trated in Fig. 4. The solid lines indicate the original interfaces, and the dashed lines indicate 
the interfaces when �� = �adv and ��� = �rec.

The advancing interface will finish the hysteresis process when �� = �adv , and the receding 
interface will do the same when ��� = �rec . Interestingly, �′ and �′′ do not necessarily reach 
�adv and �rec at the same time. Only when v

(
�rec, �e

)
= v

(
�e, �adv

)
 , will the two interfaces 

start moving together. Otherwise, if v
(
𝜃rec, 𝜃e

)
< v

(
𝜃e, 𝜃adv

)
 , the receding interface will have 

to slip a distance Ls to even the change of volumes, where ΔV2 = v
(
�rec, �e

)
+ �R2Ls and 

ΔV1 = v
(
�e, �adv

)
 . And if v

(
𝜃rec, 𝜃e

)
> v

(
𝜃e, 𝜃adv

)
 , the advancing interface will have to slip a 

distance Ls ; then, we have ΔV2 = v
(
�rec, �e

)
 and ΔV1 = v

(
�e, �adv

)
+ �R2Ls . These situations 

are depicted in Fig. 4. Thus, before two interfaces move together, the slip distance Ls of one 
interface can be expressed as:

(4)

⎧
⎪⎨⎪⎩

P1 − P2 = −
2�

R
cos ��

P3 − P4 =
2�

R
cos ���

(5)Pi − Po =
2�

R

(
cos ��� − cos ��

)

(6)v(�, �) =

[
(1 − sin �)2(2 + sin �)

cos3 �
−

(1 − sin �)2(2 + sin �)

cos3 �

]
�R

3

3

(7)Ls =

|||v
(
�rec, �e

)
− v

(
�e, �adv

)|||
�R2

Fig. 3   Volume change v(α, β) is 
solely induced by contact angle 
variation from α to β 
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According to Eq. (7), the slip distance can be expressed as a dimensionless form as in 
Eq. (8), which is the ratio of slip distance to the radius of the circular tube:

The relationship in Eq. (8) can be plotted in 3D surface, as given in Fig. 5. Under dif-
ferent �e , �adv and �rec have to satisfy different relations to achieve zero slip distance L̃s . 
The slip distance is closely related to contact angle hysteresis (CAH). When CAH = 0, 
one has �adv = �rec = �e , and obviously, the right side of Eq. (8) is zero and L̃s = 0.

(8)

L̃s =
Ls

R
=

1

3

||||||

(
1 − sin 𝜃

rec

)2(
2 + sin 𝜃

rec

)
cos3 𝜃

rec

+

(
1 − sin 𝜃

adv

)2(
2 + sin 𝜃

adv

)
cos3 𝜃

adv

−
2
(
1 − sin 𝜃e

)2(
2 + sin 𝜃e

)
cos3 𝜃e

||||||

Fig. 4   When a blob or a bubble is mobilized, two contact angles at two interfaces will experience hysteresis 
at the same time. Solid lines indicate the interfaces at time zero, and the dashed lines indicate the interfaces 
on the verge of blob/bubble movement. Threshold angles may not be reached at the same time, and one 
interface might slip a certain distance Ls to remain the constant volume of the blob or bubble

Fig. 5   Distribution of dimensionless slip distance L̃s with different �e
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2.2.3 � Coordinated Variation of Contact Angles

Before neither �′ nor �′′ reaches threshold angles, the volume change at two interfaces is 
equal, which leads to an implicit function of �′ , �′′ and �e in Eq. (9) (take circular tube 
as an example).

�′ and �′′ can be determined by Eqs.  (5) and (9), once the pressure drop Pi − Po and the 
equilibrium angle �e are given.

Figure  6a, b demonstrates the coordinated variation between �′ and �′′ under situ-
ations of different �e . When 𝜃e < 90◦ , for a large change of �′ , there will be a small 
change in �′′ ; when 𝜃e > 90◦ , for a small change of �′ , there will be a large change 
in �′′ . Only when �e = 90◦ , �′ and �′′ will change equally. If �e = 90◦ , �′ and �′′ will 
start off at �� = ��� = 90◦ and follow the trajectory predicted by the implicit function 
v
(
���, 90o

)
= v

(
90o, ��

)
 which is line A–B in Fig. 6b. If threshold angles 

(
�adv, �rec

)
 are 

located at point C, then variations will go down through line B–C, which is parallel 
to the Y-axis. Similarly, variations will go straight through line B–D parallel to the 
x-axis, if threshold angles are located at point D. In line B–C, �′′ keeps decreasing while 
�� = �adv meaning the advancing interface is slipping, corresponding to the situation of 
v
(
𝜃rec, 𝜃e

)
> v

(
𝜃e, 𝜃adv

)
 . In line B–D, the receding interface will slip with ��� = �rec while 

�′ keeps increasing, corresponding to the situation of v
(
𝜃rec, 𝜃e

)
< v

(
𝜃e, 𝜃adv

)
 . Therefore, 

(9)

v
(
���, �e

)
= v

(
�e, �

�
)

⇒

(
1 − sin ��

)2(
2 + sin ��

)
cos3 ��

+

(
1 − sin ���

)2(
2 + sin ���

)
cos3 ���

=
2
(
1 − sin �e

)2(
2 + sin �e

)
cos3 �e

Fig. 6   Variation of two angles of a bubble or blob during. Starting from �e , �′ increases and �′′ decreases, 
which obeys the implicit function v

(
���, �e

)
= v

(
�e, �

�
)
 . Trajectory A–B–C demonstrates an example of var-

iation of �′ and �′′ when �′ reaches �
adv

 first; trajectory A–B–D demonstrates the situation where �′′ reaches 
�
rec

 first. Trajectories A–B′–C′ and A–B′–D′ are projections of A–B–C or A–B–D, and they both climbing up 
the surface of cos ��� − cos �� , indicating that the capillary pressure is rising during the process
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according to the location of threshold angles 
(
�adv, �rec

)
 , the mobilization of a blob/bub-

ble will finish, through trajectories A–B–C or A–B–D on the �� − ��� plane.
Figure 6a also shows the 3D surface of cos ��� − cos �� , which reflects the magnitude 

of pressure drop Pi − Po as in Eq. (5). Trajectories A–B′–C′ and A–B′–D′ are projections 
of A–B–C or A–B–D on the surface of cos ��� − cos �� . It is obvious that both trajectories 
A–B′–C′ and A–B′–D′ are climbing up the surface, meaning that cos ��� − cos �� rises as 
the two angles go through A–B–C or A–B–D. Equations  (5) and (9) together describe 
how the two angles vary during mobilization stage.

To predict the ending of the mobilization stage, the knowledge of �adv∕�rec relationship 
is needed. A previous study proposed an empirical relationship between �adv and �rec based 
on different experiments (Lei et al. 2018). These experiments measure the advancing and 
receding angles of different liquids on the same solid surface. And in some experiments, 
the solid surface is carefully modified to achieve desired roughness. A linear trend between 
�adv and �rec is found and given by (Lei et al. 2018):

The factor k (0 < k < 1) is found to be positively related to the roughness of solid surface 
(Lei et al. 2018).

This linear relationship can be used to mark the area of mobilization stage. The lin-
ear trend is plotted in Fig.  6b as red lines, including a projection on the surface of 
cos ��� − cos �� . The area of mobilization stage is filled with color gray and slashes. Points 
C and D are assumed to satisfy �rec = (1 − k)�adv , so they are plotted on the red lines. Start-
ing from the equilibrium angle �e , �′ and �′′ will finally reach threshold angles 

(
�adv, �rec

)
 

located at line �rec = (1 − k)�adv . The area surrounded by ��=��� and �rec = (1 − k)�adv is 
where the mobilization may occur. Except for marking the possible area of mobilization 
stage, the �adv∕�rec relationship can help predict the maximum blob/bubble mobilization 
pressure for a given solid surface.

2.2.4 � Maximum Mobilization Pressure on a Given Solid Surface

After the movement of a blob/bubble has been initiated, the contact angles remain to be 
�adv and �rec , respectively, for the advancing and receding interfaces with Ca < 10−5. There 
are six scenarios of blob or bubble movement according to categories of �adv∕�rec relation-
ship, as depicted in Fig. 7a.

For category (1) where �adv and �rec are both over �∕2 , the capillary pressure at the 
receding interface acts as a driving force while the one at the advancing interface as a 
resisting force for the movement. Because �∕2 < �rec < �adv < � , the resistance is always 
larger than the propulsion 2𝛾||cos 𝜃adv||∕R > 2𝛾||cos 𝜃rec||∕R . Thus, either blobs or bubbles in 
category (1) possess a mobilization pressure Pm = 2�

(||cos �adv|| − ||cos �rec||
)
∕R . But noted 

that ||cos �adv|| = − cos �adv and ||cos �rec|| = − cos �rec when �∕2 < �rec < �adv < � . So, the 
mobilization pressure can be expressed as Pm = 2�

(
cos �rec − cos �adv

)
∕R . A classic exam-

ple of this category is a water droplet on lotus leaves, where the advancing angle reaches 
160° and the receding angle is 150° (Quéré 2008).

For category (2) where �adv > �∕2,�rec < �∕2 , the capillary pressure at 
two interfaces is both resisting the movement. So, the mobilization pres-
sure is Pm = 2�

(||cos �adv|| + ||cos �rec||
)
∕R . Since 0 < �rec < π/2 < �adv < π, we have 

||cos �adv|| = − cos �adv , ||cos �rec|| = cos �rec and Pm = 2�
(
cos �rec − cos �adv

)
∕R . An 

(10)�rec = (1 − k)�adv
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example of this category is demonstrated in Fig. 6b, where an air bubble is trapped by 
glucose solution in an 80 × 20 (width × depth) μm capillary.

For category (3) where �adv and �rec are both less than �∕2 , the advancing 
interface induces a capillary pressure that drives the movement, but the reced-
ing interface carries a capillary pressure resisting the movement. Thus, the mobi-
lization pressure is Pm = 2�

(||cos �rec|| − ||cos �adv||
)
∕R , which can be reduced as 

Pm = 2�
(
cos �rec − cos �adv

)
∕R , since ||cos �adv|| = cos �adv , ||cos �rec|| = cos �rec for 

0 < 𝜃rec < 𝜃adv < π/2. An example of this category is demonstrated in Fig. 6c, where an 
air bubble is trapped by polyethylene 200 (PEG200) in an 80 × 20 (width × depth) μm 
capillary.

For all three categories, the mobilization pressure of multiple blobs/bubbles can be 
easily added up if they are within the same capillary. The mobilization pressure for n 
blobs or bubbles is given by:

Equation (11) describes the mobilization pressure for different systems of wettability, 
and it is in agreement with the formula mentioned by Smith and Crane (1930).

(11)Pm =
2�n

R

(
cos �rec − cos �adv

)

Fig. 7   Different scenarios of blob and bubble movement: a A blob/bubble has two interfaces, one of which 
advances and the other recedes at the same time. There are six scenarios in total; b the movement of a bub-
ble trapped by 20 wt% glucose solution in an 80-μm-wide rectangular capillary; c the movement of a bub-
ble trapped by PEG200 in an 80-μm-wide rectangular capillary
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To predict the maximum mobilization pressure according to Eq.  (11), the knowledge of 
�adv∕�rec relationship is needed. Once again, the linear trend between �adv and �rec in Eq. (10) 
is incorporated to predict the maximum mobilization pressure.

Firstly, two sides of Eq. (11) are multiplied by R/(2γn) to obtain a dimensionless mobiliza-
tion P̃m:

Incorporating Eq. (12) with Eq. (10), �rec can be eliminated in Eq. (12)

P̃m obtains its maximum value on a given solid surface (k is given) when its derivative is 
zero.

However, no explicit results can be derived from equating Eq. (14) with zero.
An approximation by quadratic function is proposed to replace the derivative of P̃m within 

the range of 0 ≤ �adv ≤ � , given by Eq.  (15). Detailed derivation of the approximation is 
given in “Appendix 2.”

Equating Eq. (15) with zero, the �adv leading to maximum P̃m can be obtained.

Substituting Eq.  (16) in Eq.  (13) gives the maximum mobilization pressure (approxima-
tion) P̃m.

The comparison between the original derivative Eq. (14) and the approximation function 
Eq. (15) is demonstrated in Fig. 8. The maximum values of mobilization pressure are obtained 
by both numerical methods with MATLAB codes and the approximation Eq. (17). As shown 
in Fig. 8, the relative error of the approximation is well below 0.35%, which is acceptable for 
predicting the maximum mobilization pressure. When k = 0, i.e., no contact angle hysteresis, 
the maximum mobilization pressure is zero. However, as k rises to 1, P̃m increases from 0 to 
2. Since k is positively correlated with surface roughness, we could expect that rough surfaces 
possess larger P̃m.

(12)P̃m = cos 𝜃rec − cos 𝜃adv

(13)P̃m = cos
[
(1 − k)𝜃adv

]
− cos 𝜃adv

(14)
𝜕P̃m

𝜕𝜃adv
= −(1 − k) sin

[
(1 − k)𝜃adv

]
+ sin 𝜃adv

(15)
(

𝜕P̃m

𝜕𝜃adv

)

approx.

=
4

𝜋
𝜃adv

[
(1 − k)3 − 1

𝜋
𝜃adv − (1 − k)2 + 1

]

(16)�adv = �
(1 − k)2 − 1

(1 − k)3 − 1

(17)P̃m,max ≈ cos

[
𝜋
(1 − k)3 − (1 − k)

(1 − k)3 − 1

]
− cos

[
𝜋
(1 − k)2 − 1

(1 − k)3 − 1

]
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3 � Comparison with Experiments and Discussions

Srinivasan et al. recorded the variation of two angles of a liquid slug in a dry tube with 
diameter of 1.5 mm, as plotted in Fig. 9a and marked as #1 and #2 (Srinivasan et al. 2013). 
The continuous measurement of contact angles was carried out during the mobilization 
stage (i.e., before the slug starts moving). In another experiment, Srinivasan et  al. only 
measured contact angles at the beginning and the end of the mobilization and obtained two 
points for different liquids in the same tube, marked as #3 and #4 in Fig. 9a (Srinivasan 
et al. 2015). The contact angle at the interface that is about to advance is denoted as �′ , 
and the contact angle at the interface that is about to recede is denoted as �′′ . Symbols of 
different colors represent the measured points from experiments, and curves of different 
colors are the corresponding fitting results computed by the implicit function of �′ and �′′ 
in Eq.  (9). The equilibrium contact angles are computed by averaging the closest values 
of �′ and �′′ for experiments #1 and #2, which gives �e = 53.9° and �e = 52.7°, respectively. 
For experiments #3 and #4, contact angles are measured in the beginning and the end of 

Fig. 8   Maximum mobilization 
pressures obtained by numerical 
method (the red line) and approx-
imation Eq. (17) (red squares). 
Relative errors between them 
are less than 0.35%, indicating 
that the approximation provides 
accurate predictions

Fig. 9   a Variation of �′ and �′′ during the mobilization stage of a liquid slug in a 1.5-mm-diame-
ter tube. Symbols represent the measured data, and solid lines are computed by the implicit function 
v
(
���, �e

)
= v

(
�e, �

�
)
 , Eq. (13). b: The pressure increases during the variation of �′ and �′′ . The solid line 

and the dashed line are computed results; symbols are measured data
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mobilization, and there are only two points under the symbol of Srinivasan #3 and Srini-
vasan #4. �e is the contact angle measured at the beginning of mobilization. All four exper-
iments adequately follow the trend of the implicit function v

(
���, �e

)
= v

(
�e, �

�
)
 , and the 

maximum root-mean-square error (RMSE) is 2.9° for experiment #3.
As the liquid slug is driven by constant flow rate injection, �′ and �′′ continuously vary 

and the capillary pressure is found to be rising during the process (Srinivasan et al. 2013, 
2015). Figure 9b demonstrates the measured data of pressure drop induced by mobilizing 
the liquid slug in the experiments of Srinivasan et al. (Srinivasan et al. 2013). The symbols 
in Fig. 9b are the computational results of capillary pressure. Wherein, �′ and �′′ are cal-
culated by the implicit function Eq. (9), and the pressure drop is computed by Eq. (5). The 
surface tension of water � = 73 mN/m and the tube radius R = 0.75 mm are directly taken 
from Srinivasan et al. (2013). Measured data basically follow the trend of theoretical com-
putation. However, the deviation is obvious and might be caused by the pressure measure-
ment, which is conducted in low pressure range (less than 100 Pa) and is easily influenced 
by system uncertainties.

The linear relationship between �adv and �rec is used in this work to predict the boundary of 
the mobilization stage of blobs/bubbles. The factor k characterizes the area of the mobiliza-
tion stage and also indicates the maximum mobilization pressure that could exist on a given 
solid surface. There are experiments measuring the advancing and receding angles of different 
liquids on the same solid which enables the estimation of k. Figure 10 depicts the relationship 
of �adv versus cos �rec − cos �adv , and the symbols are plotted according to the measured data 
of �adv and �rec from Ramos and Tanguy (2006), Meiron et al. (2004) and Morrow and Nguyen 
(1982). Solid lines in Fig. 10 are computed by Eq.  (13) that replaces �rec with (1 − k)�adv . 
The fitting results of k for the experiments aforementioned are given in Lei et al. (2018). The 
locations of stars in Fig. 10 are computed by Eqs. (16) and (17), which are approximations for 
the maximum mobilization pressure. All experiments well follow the trend of Eq. (13), i.e., 
well predicted by the linear �adv∕�rec relationship. But most experiments do not measure the 
advancing and receding angles that will lead to the maximum mobilization pressure. Equa-
tions (16) and (17) provide a way to predict the maximum mobilization pressure that could 
possibly exist on a given solid surface (with a given k). As seen from Fig. 10, the maximum 
mobilization pressure and the �adv where the maximum pressure occurs are raised as the k 
increases. As the positive correlation between k and surface roughness has been found (Lei 
et al. 2018), rougher surfaces possess larger mobilization pressure under the same �adv , as well 

Fig. 10   Advancing angle �
adv

 
versus dimensionless mobiliza-
tion pressure cos �

rec
− cos �

adv
 . 

Solid lines are computed by 
Eq. (13), wherein ks are given 
in Lei et al. (2018). Star-shaped 
symbols are the maximum mobi-
lization pressure under different 
k. Other symbols are plotted 
according to the measured data 
of �

adv
 and �

rec
 in different experi-

ments
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as larger maximum mobilization pressure. If the mobilization pressure is expected to be as 
small as possible, for a given solid surface, liquid with small contact angle hysteresis (CAH) 
would serve the purpose better. According to the correlation θrec = (1 − k) θadv, small CAH 
indicates that the liquid possesses small θadv on the given solid surface. In all, the liquid–solid 
system with small k and small θadv would be beneficial to obtain small mobilization pressure.

4 � Conclusion

Based on the behavior of a single liquid–gas interface, a model is proposed to quantitatively 
describe the coordinated variation of contact angles of double interfaces during mobilization. 
The capillary pressure of a blob/bubble and the contact angles can be fully obtained through 
the model.

The variation of contact angles of the advancing and receding interfaces can be computed 
by the implicit function Eq.  (9), which is in good agreement with experiments (Srinivasan 
et al. 2013, 2015). Other experiments support the conclusion that the pressure drop during 
mobilization keeps rising when �′ and �′′ continuously vary until they reach threshold angles 
�adv and �rec , which is predicted by Eqs.  (5) and (9) together (Srinivasan et al. 2013, 2015; 
Uchiyama et al. 2015). When �e < 90°, for a large change of �′ there will be a small change 
in �′′ ; when �e > 90°, for a small change of �′ there will be a large change in �′′ . Only when 
�e = 90°, �′ and �′′ will change equally. The mobilization pressure of bubbles/blobs has long 
been recognized as a result of contact angle hysteresis (Smith and Crane 1930; Hsu and Hilp-
ert 2016; Srinivasan et al. 2015), and the model proposed in this work provides an insight into 
how the two contact angles experience hysteresis to maintain the constant volume of a bubble/
blob during mobilization.

Two interfaces appearing in the tube simultaneously, their capillary pressure together baffle 
the mobilization or movement of a bubble or a blob. The scope of mobilization stage under 
different equilibrium angle �e can be specified by a two-angle model proposed in a previ-
ous study (Lei et al. 2018). According to the two-angle model, the maximum mobilization 
pressure of a blob/bubble can be obtained by a quadratic approximation. The dimensionless 
mobilization pressure P̃m on a given solid surface will rise to a maximum before falling as the 
increase in the advancing angle �adv . This trend is predicted by Eq. (13), and different experi-
ments provide data on the rising part of P̃m(Morrow and Nguyen 1982; Ramos et al. 2003; 
Meiron et al. 2004). A rougher surface (with a larger k) will possess a larger maximum mobi-
lization pressure and also a larger �adv where exists the maximum mobilization pressure. It has 
been found that the two-angle model can be used to predict the scope of mobilization stage 
and the maximum mobilization pressure on a given solid surface.
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Appendix 1: The Volume Change Induced by Interface Deformation

As for the volume change in a circular tube, one has to calculate the volume of a spherical 
cap vSC first, depicted in Fig. 11. vSC is given by:
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However, Eq. (18) has been rearranged to calculate vSC as � approaches �∕2 . Noting that 
x∈[0, π], one has:

Thus, Eq.  (19) is continuous within the range of [0, π]. If the contact angle changes 
from � to � , then the volume change in a circular tube is given by:

Appendix 2: The Quadratic Approximation

We used a quadratic function ft(x) = �1
(
x − �2

)(
x − �3

)
 to approximate a sine function 

fo(x) = �1 sin
(
�2x

)
 with 0 ≤ x ≤ � , wherein �1 , �2 and �3 are undetermined parameters and 

�1 and �2 ( 0 ≤ 𝛼2 < 1 ) are known parameters. �1 , �2 and �3 need to be expressed as func-
tions of �1 and �2 for approximation. Within the range of 0 ≤ x ≤ 𝜋 ⇒ 0 ≤ 𝛼2x < 𝜋 , the 
curve of fo(x) = �1 sin

(
�2x

)
 resembles a downward parabola, which can be expressed by 

ft(x) = �1
(
x − �2

)(
x − �2

)
 . At least three equations (three pairs of coordinates) are needed 

to determine �1 , �2 and �3 . For fo(x) = �1 sin
(
�2x

)
 , three equations are already fixed when 

x = 0, �2x = �∕2 and �2x = � , and they are given by:

These three equations are used to determine the unknown parameters:

(18)vSC =
|||||
(1 − sin �)2(2 + sin �)

cos3 �

|||||
�R

3

3

(19)lim
x→�∕2

(1 − sin �)2(2 + sin �)

cos3 �
=

⎧
⎪⎪⎨⎪⎪⎩

lim
x→�∕2+

(1 − sin �)1∕2(2 + sin �)

(1 + sin �)3∕2
= 0

lim
x→�∕2−

−
(1 − sin �)1∕2(2 + sin �)

(1 + sin �)3∕2
= 0

(20)v(�, �) =

[
(1 − sin �)2(2 + sin �)

cos3 �
−

(1 − sin �)2(2 + sin �)

cos3 �

]
�R

3

3

(21)

⎧⎪⎪⎨⎪⎪⎩

fo(0) = 0

fo

�
�

2�2

�
= �1

fo

�
�

�2

�
= 0

Fig. 11   Cross section of a 
circular tube, an interface and the 
contact angle �
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Solving the above equations, we will have:

Thus, to approximate the derivative of dimensionless mobilization pressure P̃m , substi-
tuting the above results in the derivative, we obtain:

Rearranging Eq. (24), we will obtain the form of Eq. (15).
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