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Abstract
We propose a numerical method for analyzing fault slip tendency under fluid injection using the extended finite element

method (XFEM) both for fluid flow and poroelasticity. The fault is modeled as a zero-thickness interface, and we use a

reduced model for the fluid flow in the fault to account for its hydraulic behavior. We use the rate- and state-dependent

friction model as the fault friction model, and Biot’s theory of poroelasticity to study the coupling between fluid flow and

mechanical deformation in the surrounding porous media. Since a fully coupled method between fluid flow and

poromechanics is computationally expensive, we have investigated the use of the so-called fixed-stress split in this context.

In such a scheme, the fluid flow problem is solved firstly by freezing the total means stress field, and then the results are

used to solve the mechanical problem. The fixed-stress split is unconditionally stable, consistent and more accurate for a

given number of iterations compared with other type of splitting strategies. In order to verify our method, some test cases

are presented. For the coupling between fluid flow and poromechanics, we consider the Terzaghi Problem and the Mandel

Problem, comparing our results with those of previously published works. While, for the mechanic problem, we compare

the results with those obtained using the software Pylith.

Keywords Coupling � Fault slip tendency � Fluid injection � Fluid flow � Fixed-stress split � Geomechanics �
XFEM

1 Introduction

In several applications related, for instance, to the

exploitation of oil and geothermal reservoirs and CO2

sequestration activities, the injection or extraction of fluids

can alter the stress field in the reservoir, which could

induce preexisting faults to reactivate (Fig. 1). Nowadays

as a promising technology to reduce anthropogenic CO2

emissions into the atmosphere (e.g., [38, 42, 47, 50,

51, 64]), geologic storage of carbon dioxide CO2 draws

more and more attention from researchers all around the

world. In our research, we will focus on the reactivation of

preexisting fault under fluid injection, because the reacti-

vation of fault could produce a path for CO2 to leak, which

plays a critical role to determine the success of geologic

storage of carbon dioxide.

Fault reactivation induced by fluid injection is a com-

plex problem including several parts such as the crustal

deformation, fluid flow, coupling between fluid flow and

mechanics, fault reactivation, and so on.

For the crustal deformation, boundary integral methods

which have been used in dynamic simulations with com-

plex geometry (e.g., [16, 39, 41, 65]) cannot simulate

nonlinear bulk rheologies, and finite differences which

have been used to simulate long, repeated rupture problems

(e.g., [61–63]) lack the ability to deal with complex fault

system geometry. While for the Finite Element Methods

(FEM), although it could incorporate bulk rheology and

nonplanar fault geometry (e.g., [1, 31]), it is very difficult

to generate a mesh aligned with a nonplanar fault which is

much more realistic in nature, especially when the fault

geometry is uncertain such as in the fault reactivation and
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the mesh needs to change with the fault geometry is

changed to study different possible scenario. So the

eXtended Finite Element Method (XFEM) which was

originally developed by Belytschko and colleagues (e.g.,

[11, 30, 48]) and modified by Fries [32], as a mesh-inde-

pendent finite element method for embedded interfaces

looks as a promising technique also for this clan of prob-

lems. XFEM extends the finite function space to include

discontinuous functions across the fault, and it could deal

with those discontinuities without remeshing (e.g.,

[22, 30, 43, 44, 53]).

For the interface conditions between the rock matrix and

the fault, Lagrange multiplier methods and penalty meth-

ods are the most common methods. Set Lagrange multiplier

methods is extremely mesh dependent and is not obviously

extensible to three dimensions, and standard penalty

methods typically result in ill-conditioned systems of

equations [22]. So we have resorted to Nitsche’s method,

see Hansbo [36], which could be regarded as a hybrid of

penalty methods and Lagrange multiplier methods, as our

choice, because it provides a stabilized linear equations and

is better conditioned than standard penalty methods.

Moreover, we avoid saddlepoint problem complications

inherent to Lagrange multiplier methods (e.g.,

[6, 7, 10, 22, 35]).

For the fluid flow, in D’Angelo et al. [25] the authors

proposed an unfitted, mixed finite element method which

views the fluid pressure and the fluid velocity as two

variables of the system of equations for the Darcy’s flows

in fractured porous media. In their work, fractures were

regarded as interfaces by using suitable reduced models

(e.g., [3, 46]). A study of the well-posedness of XFEM

method for flow in fractured porous media is found in Del

Pra et al. [27].

For the coupling between fluid flow and geomechanics,

various strategies have been investigated in the literature:

fully coupled, iteratively coupled, explicitly coupled, and

loosely coupled. In a fully coupled strategy, the governing

equations are solved simultaneously at each time step, and

a converged solution is obtained through iteration.

Although the fully coupled strategy is unconditionally

stable, it is computationally expensive [40]. In iteratively

coupled scheme, one of the fluid flow problem and the

mechanical problem will be solved firstly, and then the

solution will be used to solve the other problem, the

sequential procedure is iterated at each time step until the

solution converges. By this scheme, the solution is the

same as that obtained by the fully coupled method.

Besides, this scheme could use different domains for the

flow problem and the mechanical problem, which is useful

because usually the domain of the mechanical problem is

larger than that of reservoir simulation in order to deal with

the reservoir boundary conditions (e.g., [60, 66]). The

explicitly coupled scheme is a special case of iteratively

coupled scheme in which only one iteration is taken (e.g.,

[8, 9, 52, 69]). In loosely coupled scheme, the coupling is

resolved only after a certain number of flow time steps

(e.g., [13, 26, 57]). Although this scheme can save com-

putational cost, it is less accurate and requires reliable

estimates of when to update the mechanical response [40].

Compared with the four strategies, the iteratively coupled

scheme is a better choice for us.

For the iteratively coupled methods, there are four

operator-split strategies: drained split, undrained split,

fixed-strain split, and fixed-stress split. The drained split

method solves the mechanical problem with frozen pres-

sure field firstly, and then solves the fluid flow problem

with frozen displacement field. Compared with the drained

split method, the undrained split method allows pressure to

change but keeps the fluid mass in each grid block

remaining constant during the mechanical step. Fixed-

strain split scheme solves the flow problem with frozen

strain field, and then uses the solution to solve the

mechanical problem. While, the fixed-stress split

scheme solves the flow problem with frozen total means

stress field firstly. From practical point of view, the

framework for reservoir simulation could benefit from

solving fluid flow problem firstly [40]. Besides, by ana-

lyzing these four operator-split strategies, Kim [40] found

that the drained and the fixed-strain splits are only condi-

tionally stable and are inconsistent if performed with a

fixed number of iterations. While the undrained and the

fixed-stress splits are unconditionally stable regardless of

the coupling strength and are consistent even in the case of

a single iteration per time step. For the undrained and the

fixed-stress splits, the fixed-stress split is more accurate

than the undrained split under the condition of a given

number of iterations. Under his recommendation, we prefer

to use the fixed-stress split as our scheme.

Fig. 1 Stress field affected by fluid injection
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For the fault reactivation, in the latest research [19],

there are two methods used to represent the fault: one is

employing solid elements in the fault aperture, and another

one is using zero-thickness elements which act as an

interface in the media. The previous one enables to

describe accurately the hydraulic behavior of the fluid flow

in the fault, but when we mainly study the slipping

behavior of the fault in the process of reactivation, the

latter one is much more effective. Fault reactivation may

change the hydraulic aperture and the permeability of the

fault, which will affect the hydraulic behavior of the fluid

flow in the fault and in the surrounding media. In order to

account for the hydraulic behavior in the fault and its effect

on the surrounding media, in (e.g., [27, 46]), a reduced

model of the fluid flow in the fault has been deduced,

which we employ in our research. For the fault friction

model, there are three types: static friction model, slip-

weakening model, and the rate- and state-dependent fric-

tion model, compared with these three models, the rate-

and state-dependent friction model is much more realistic,

so we will use it as our fault friction model.

Compared with the previous research [19, 38, 56] of the

fault reactivation induced by fluid injection, we have

chosen XFEM to deal with the discontinuities of the crustal

deformation and the fluid flow across the fault. We regard

the fault as a zero-thickness interface and use a reduced

model to account for the hydraulic behavior in the fault.

We use the Biot’s theory of poroelasticity to study the

coupling between fluid flow and mechanical deformation in

porous media, and fixed-stress splitting scheme to deal with

the coupling. We prefer to use the rate- and state-dependent

friction model as our fault friction model. We start con-

sidering the two-dimensional map-view case, but in order

to consider the dip of the fault, we will regard the system as

a two-and-one-half-dimensional system based on Ander-

son’s fault theory which assumes the vertical direction as

principal stress component. Finally, we will do some test

cases to verify our method.

2 Governing equations

In this work, we focus on the map-view two-dimensional

case which means that we consider a two-dimensional

domain that represents a top view of the three-dimensional

domain.Firstly, we present the governing equations: the

mechanic problem is governed by the equations for the

balance of linear momentum, the fluid flow problem is

governed by the equations for the balance of fluid mass and

Darcy’s law, and the coupling between mechanic problem

and fluid flow problem is governed by the equations for the

Biot’s equations of poroelasticity.

2.1 Balance of linear momentum

The previous research has proved that the linear, constant

coefficient elasticity is enough to describe many of the

features of crustal deformation [22]. The momentum bal-

ance equation for the fully three-dimensional system gov-

erning displacement under isotropic linear elasticity is

r � r uð Þ ¼ q
o2u

ot2
ð1Þ

where r is the total (Cauchy) stress tensor and u is the

displacement.

In our research, we research on the fault reactivation

under fluid injection, which process could be divided into

two parts: the phenomena that occur before the fault

reactivation, and the fault slipping behavior after the fault

slips.

Firstly, we focus on the phenomena that occur before the

fault slips to analyze the fault slip tendency under fluid

injection. This process could be described using a qua-

sistatic assumption which neglects the acceleration term in

the momentum balance equation, because the time scale of

this process is of the order of years.

In order to research on the map-view two-dimensional

case, we simplify the equation to the so-called Mode III

(anti-plane) deformation and Mode I/II (within-plane)

deformation for a two-dimensional slice X of the three-

dimensional system [22], see Fig. 2.

For the map-view two-dimensional case, we use the

Mode I/II (Mixed Mode) case in which deformation is only

allowed to occur within the plane X. Let us introduce the

effective stress tensor r0 defined by

r0 ¼ rþ bpI ð2Þ

where r is the total stress tensor, b is the Biot coefficient,

and p is the fluid pressure.

Then the problem reads:

r � r uð Þ ¼ 0 ð3Þ

r0 uð Þ ¼ ktr � uð Þð ÞIþ 2l� uð Þ; ð4Þ

� uð Þ ¼ 1

2
ruþ ruð ÞT

� �
: ð5Þ

Fig. 2 Map-view case
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where u is the displacement, � is the strain tensor, I is the

identity tensor, k and l are Lamé’s parameters.

The governing equation for linear momentum balance of

the porous medium becomes

r � r0 � brp ¼ 0 in X ð6Þ

Boundary conditions will be detailed later on.

While for the slipping behavior after the fault slips, this

process is a dynamic problem, and the momentum balance

equation in the Mixed Mode case is:

r � r uð Þ ¼ q
o2u

ot2
ð7Þ

and the governing equation for linear momentum balance

of porous medium becomes:

r � r0 � brp ¼ q
o2u

ot2
in X ð8Þ

2.2 Balance of fluid mass

For the isothermal single-phase fluid flow which is the

focus of our research, the fluid mass conservation equation

is

o qfl/ð Þ
ot

þr � qflvð Þ ¼ qflfq; ð9Þ

where qfl is the fluid density, / is the porosity, v is the

Darcy velocity, and fq is a volumetric source term.

We assume that fluid flow can be modeled by Darcy’s

law. Then, the relationship between the Darcy velocity v

and the fluid pressure p in the two-dimensional map-view

case is

v ¼ � k

l
rp ð10Þ

where k is the absolute permeability tensor, and l is the

fluid viscosity.

Here, we do not consider the variation of the fluid vis-

cosity and define K ¼ k=l. Then, the above equation

becomes

v ¼ �Krp ð11Þ

2.3 Biot’s equations of poroelasticity

According to Biot’s theory of Poroelasticity [14, 24], we

can express the fluid content variation in the porous med-

ium as a function of pressure and volumetric strain as

follows:

f ¼ b�v þM�1dp; ð12Þ

where f:¼dm=qfl;0 ¼ d/ ¼ o/=ot is the fluid content

variation, �v ¼ tr �ð Þ is the volumetric strain, M is the Biot

modulus, and dp denotes the pressure variation.

For the two-dimensional map-view case, the (rank-2)

strain tensor could be expressed as:

� ¼ 1

2
�vIþ e ð13Þ

where I is the rank-2 identity tensor, and e is the deviatoric

part of the strain tensor [24, 68].

3 Boundary conditions

In order to analyze the slipping behavior of the fault after

the fault slips, we regard the fault as a zero-thickness

interface. We assume that the domain X is a convex

polygon. On the boundary, we will consider Dirichlet

boundary conditions CD where displacement is imposed,

Neumann boundary conditions CN where traction is

imposed, and ‘‘Mixed’’ boundary conditions where dis-

placement is only allowed to be imposed on the direction

parallel to the boundaries. For the fluid flow problem, since

we are considering the mixed formulation of the problem,

normal velocity is imposed on the Dirichlet boundary RD,

while the boundary conditions on pressure are Neumann

boundary conditions RN .

For the boundary conditions of the mechanic problem,

we use a far-field loading rate

u tð Þ ¼ g tð Þ onCD ð14Þ

to set Dirichlet boundary conditions on CD, where g is a

given function of time. For a constant velocity, assuming

zero displacement at time 0, we have g tð Þ ¼ vpt in which

vp is the velocity on the boundaries. While for the Neu-

mann boundaries, we set

r0 � n ¼ F on CN : ð15Þ

where n is the unit vector normal to the boundary, and F is

a given traction.

For the fluid flow problem, we impose

v � n ¼ v0 on RD;

p ¼ p0 on RN ;

(
ð16Þ

with RD [ RN ¼ oX, RD \ RN ¼ ;.
To satisfy the Dirichlet boundary conditions in the

standard FEM, the solution u could be decomposed as

u ¼ u0 þ ug, where u0jCD ¼ 0 and ugjCD ¼ vpt. In order to

eliminate the need for a particular solution ug, we prefer

Nitsche’s Method which enables essential boundary con-

ditions to be implemented within the weak formulation by
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adding a consistent penalization term [17, 49]. Especially

when we consider the fault, for the interface condition, the

space is a function of time, by using Nitsche approach to

impose interface condition on the fault, we do not need to

discretize the space every time.

4 Mathematical model of the fault

In this work, we use a reduced model where the fault is

represented by a line c.

4.1 Mechanic problem on the fault

The fault c can be subdivided into two parts: the slipping

region, that we denote as cN , where the two sides are

allowed to have different displacements and we apply a

friction force, and the stuck region (cD) where a Dirichlet-

type boundary condition is used to impose continuity of

displacements. Note that the two regions cover the whole c
and may change in time due to modified mechanical

conditions.

In the two-dimensional map-view case (Mixed Mode),

the tangential component of slip is constrained by friction

and failure, while normal component is set by a no-inter-

penetration constraint:

t̂ � r0 uð Þf g � n̂ ¼ f on cN ; ð17Þ

sut � n̂ ¼ 0 on c; ð18Þ

For the quasistatic problem:

sut � t̂ ¼ g on cD; ð19Þ

While for the dynamic problem:

s
ou

ot
t � t̂ ¼ 0 on cD; ð20Þ

where f is the friction traction detailed in the next section, g

is a given displacement jump on the tangential direction

across the fault, n̂ is the unit vector normal to the fault, t̂ is

the unit vector tangential to the fault, �f g and s � t indicate
the average and the jump of a quantity which may be

discontinuous across the fault correspondingly, and

sut ¼ uþ � u�, fug ¼ 1
2
uþ þ u�ð Þ, the two sides of the

fault being identified by þ and - accordingly to Fig. 3.

4.1.1 Friction model

Friction is taken equal to f ¼ lfr
0
n f̂ , where lf is the fric-

tion coefficient, r0n ¼ n̂ � r0 � n̂, and f̂ is the friction

direction, which opposes the applied internal forces when

the fault is stuck, while it opposes slip rate when the fault is

slipping.

For the friction coefficient lf , we choose the rate- and

state-dependent friction model (Fig. 4) (e.g.,

[28, 29, 38, 45, 55, 58]):

lf ¼ l0 þ Aln
V

V0

� �
þ Bln

V0h
dc

� �
; ð21Þ

dh
dt

¼ 1� hV
dc

; ð22Þ

where V ¼ j d
dt
dj is the slip rate magnitude, d ¼ sut � t̂ is

the accumulated tangential slip, l0 is the steady-state

friction coefficient at the reference slip rate V0, A and B are

empirical dimensionless constants, and h is the macro-

scopic variable characterizing state of the surface.

In this work, we use the Dieterich–Ruina rate and state

friction model (a variational form of the rate- and state-

dependent friction model that prevent the risk of V going to

0) [2] which is much more realistic as our fault friction

model:

When V �Vlinear;

lf ¼ l0 þ Aln
V

V0

� �
þ Bln

V0h
dc

� �
ð23Þ

and when V\Vlinear;

lf ¼ l0 þ Aln
Vlinear

V0

� �
þ Bln

V0h
dc

� �
� A 1� V

Vlinear

� �
:

ð24Þ

When
V tð ÞDt
dc

\av;

h t þ Dtð Þ ¼ h tð Þexp �V tð ÞDt
dc

� �
þ Dt � 1

2

V tð ÞDt2
dc

ð25Þ

while when V tð ÞDt=dc � av;

Fig. 3 The domain and the boundaries
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h t þ Dtð Þ ¼ h tð Þexp �V tð ÞDt
dc

� �

þ dc

V tð Þ 1� exp �V tð ÞDt
dc

� �� �
ð26Þ

where Vlinear is a cutoff for a linear slip rate dependence

here taken equal to 10�12, and used to prevent failure due

to null slip velocity V ¼ 0, and av is a small parameter here

taken equal to 10�5.

4.1.2 Dipping fault

In order to consider dipping faults (Fig. 5), we regard the

system as a two-and-one-half-dimensional system based on

Anderson’s fault theory [4, 5] which assumes the vertical

direction as principal stress component. We view the ver-

tical stress as a constant, lithostatic value and assume that

the vertical gradients can be neglected, and there is no

variation in the fault along the dip [22].

The displacement u is a vector in the two-dimensional

map-view layer, while the stress is a three-dimensional

tensor in the two-and-one-half-dimensional system. By

comparing the three-dimensional tractions on the fault

plane to the fault strength, it could be determined whether

the fault slips or not. If slip occurs, the three-dimensional

traction is specified by friction, then the equivalent two-

dimensional stresses in the two-dimensional plane of the

layer are determined [22].

Under the assumptions of this theory, the three-dimen-

sional effective stress tensor on the fault is:

r03 ¼
r0 ~x~x þ pls r0 ~x~y 0

r0 ~x~y r0 ~y~y þ pls 0

0 0 pls

2
64

3
75 ð27Þ

where pls ¼ qgdX is the lithostatic pressure on the layer. In

this three-dimensional frame of reference, the effective

normal stress r03n ¼ n̂3 � r03 � n̂3, where the three-dimen-

sional normal vector n̂3 is given by n̂3 ¼ ðsinðhÞ � n̂2½0�;
sinðhÞ � n̂2½1�; cosðhÞÞT for a fault with dip angle h. Besides,

the effective shear stress has two components: t̂? ¼
ð�cosðhÞ � n̂2½0�;�cosðhÞ � n̂2½1�; sinðhÞÞT and t̂k ¼ ð�n̂2

½1�; n̂2½0�; 0ÞT .
In the fault plane, the three-dimensional effective trac-

tion is the vector s0 � ðs0?; s0kÞ, where s0? ¼ t̂? � r03 � n̂3

and s0k ¼ t̂k � r03 � n̂3.

4.1.3 Failure criteria

We use a history-dependent criterion to check whether the

fault will slip. A stuck point x 2 cD begins to fail when the

effective shear stress exceeds a critical friction value:

8x 2 cD satisfies
js0 u xð Þð Þj
jr0n u xð Þð Þj � lf xð Þ ) x 2 cN :

ð28Þ

where lf is given by the friction model, and cN is the

portion of the fault where the failure criteria are met and

the fault can slip. Here we define js0 u xð Þð Þj=jr0n u xð Þð Þj as
the slip tendency of the fault.

Fig. 5 Dip fault

Fig. 4 Rate- and state-dependent friction model. The friction

coefficient lf on the fault evolves with the slip rate or velocity V

and the state variable h. With the slip velocity increasing from V1 to

V2 suddenly, the friction coefficient increases sharply due to a sudden

increase in resistance from contact asperities firstly, and then declines

slowly due to slip-weakening. The final steady-state value of the

friction coefficient can be lower than the initial steady-state value if

A� B\0, as shown in figure [38]
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4.2 Reduced models for the fluid flow
in the fault

As shown in Fig. 6, the fault actually is a fault zone, in

order to illustrate the model for fluid flow in the fault, we

divide the whole domain into three parts: Xi, i = 1, 2, f. X1

and X2 are the two parts of the original domain divided by

the fault, while Xf is the fault area. In our research, we

consider the fault as a zero-thickness interface. So we need

to introduce the reduced models of the fluid flow in the

fault c (e.g., [34, 46]):

1. Reduced conservation equation for the tangential

component of the Darcy velocity in the fault becomes

od̂

ot
þrs � v̂ ¼ f̂ q þ sv � nt on c; ð29Þ

where d̂ is the thickness of the fault, f̂ q is the total

source in a section of the fault, v̂ is the Darcy velocity

in the fault and rs� is the tangential divergence in the

fault.

2. Reduced Darcy equation in the fault:

ĝv̂þrsp̂ ¼ 0 on c; ð30Þ

where ĝ denotes the inverse of the equivalent perme-

ability in the tangential direction to the fault c, rs is

the tangential gradient, and p̂ is the fluid pressure in the

fault.

3. Reduced coupling conditions

gc v � nf g ¼ spt on c; ð31Þ

where gc denotes the inverse of the equivalent per-

meability in the normal direction to the fault c, and spt

denotes the jump of the fluid pressure in the porous

medium across the fault.

4. Variation of pressure and velocity across the fault:

n0gcsv � nt ¼ pf g � p̂ on c; ð32Þ

with n0 is a closure parameter here taken equal to 1/8.

5. Interface conditions of the fault:

p̂ ¼ �̂p on oNc;

v̂ � n ¼ �̂v � n on oDc:

(
ð33Þ

5 Coupled modeling of fluid flow
and poromechanics

We here recall the system of equations introduced in the

previous parts in view of their coupling.

The domain X is split into two parts X1 and X2, sepa-

rated by a fault described by the line c ¼ int �X1

T �X2

� �
.

We have adopted a quasistatic assumption for the rock

mechanics. So, by setting Xc ¼ X1

S
X2, we have that at

any given time t[ 0,

r � r u; pð Þ ¼ rr0 uð Þ � brp ¼ qf;

o qf/ð Þ
ot

þrqfv ¼ qf fq in Xc;

K�1vþrp ¼ qfg;

r0 uð Þ ¼ ktr � uð Þð ÞIþ 2l� uð Þ:

8>>>>><
>>>>>:

ð34Þ

Porosity and permeability depend on the stress state. We

assume that porosity variation is governed by

o/
ot

¼ b� _uð Þ þ 1

M

op

ot
¼ br � _uþ 1

M

op

ot
_u ¼ ou

ot
;

where M is the Biot modulus.

We choose to ignore the effects of water compressibil-

ity, so the second equation in Eq. (34) may be rewritten as

1

M

op

ot
þr vþ b _uð Þ ¼ fq in Xc;

while for the permeability in the bulk, we use the model

developed by Chin et al. [21]: K ¼ K0 /=/0ð Þa where a� 1

is a power-law exponent experimentally determined, and it

depends on the type of rock considered, while K0 is the

permeability at a reference porosity /0. This model is

justified by some experimental observations and allows us

to describe the fact that a reduction of porosity induces a

reduction of rock permeability. The system is supple-

mented by boundary conditions on oXc, which correspond

on fixing either the normal stress or the displacement on

different portions of the boundary.

In the fault, the evolution of the tangential velocity flux

v̂ obeys the model described in the previous parts, since we

assume that variations of porosity in the fault for the

Fig. 6 The domain division [34]

Acta Geotechnica (2020) 15:325–345 331

123



phenomena under study are negligible. We recall it for

completeness,

rs � v̂ ¼ f̂ q þ sv � nt on c;

ĝv̂þrsp̂ ¼ f̂v ¼ qg � t̂ on c;

(

with the boundary conditions on oc:

p̂ ¼ p̂N on oNc;

v̂ � n ¼ v̂D on oDc;

�

where v̂D and p̂N are given data.

The effective permeability of the fault in the reduced

model is given by ĝ ¼ Kf ;sa
� ��1

. However the material

permeability Kf ;s in the fault may vary with the state. In

particular, even if we are assuming a compressive state and

we do not have variation in the fault aperture due to normal

displacements, we may have an effect related to shear

dilation Ucar et al. [67]. To account for this effect we

define an effective aperture aeff ¼ aþ bhs where bhs is the

aperture increase due to shear displacement, and it based

determined according to Cappa et al. [20]. Then, we set

Kf ;s ¼ Kf0 aeff=a0ð Þ2, where Kf0 is a reference value at zero

shear displacement.

5.1 Coupling conditions

We are left with the coupling conditions, which we write as

follows

n0gcsv � ntc ¼ fpg � p̂;

gcfv � ngc ¼ sptc þ affv � ng;
t̂ � fr0 uð Þg � n̂ ¼ f on cNðtÞ;

s
ou

ot
t � t̂ ¼ 0 on cDðtÞ;

su � n̂t ¼ 0 on c;

sr � n̂t � n̂ ¼ 0 on c:

8>>>>>>>>>><
>>>>>>>>>>:

ð35Þ

where fv is a generic forcing term, for instance due to

gravity.

cNðtÞ is defined as the partition of c where the ratio of

tangential and normal stress exceeds a given value, more

precisely, at any time t[ 0,

cNðtÞ ¼ fx 2 c :
js0ðxÞj
jr0nðxÞj

[ lf or
		s ou

ot
t � t

		ðxÞ\�f g;

ð36Þ

where s0 ¼ fr � ng � t and r0n ¼ fr � ng � n are the tangen-

tial and normal component of the average effective Cauchy

stress on c, respectively. We then set cDðtÞ ¼ cncNðtÞ. The
first condition in Eq. (36) is the classic failure condition,

the second condition allows a point in the slipping region

cN to remain in that region until its tangential velocity goes

below a threshold value �f . Here, lf is the friction coeffi-

cient, as described in previous parts.

6 Time discretization

Let us consider the time interval (0, T) and define a par-

tition 0 ¼ t0 � t1 � � � � tN ¼ T , with N 2 N. The time step

Dtk ¼ tkþ1 � tk is assumed to be constant and will be

denoted simply as Dt. We introduce the semi-discretization

in time of problem (Eq. (34) with the Implicit Euler

method, reading

r � r0ðunþ1Þ � brpnþ1 ¼ 0 in Xc

1

M

pnþ1 � pn

Dt
þ b

r � unþ1 �r � un
Dt

þr � vnþ1¼ fq in Xc

rs � ^vnþ1 ¼ f̂ q þ svnþ1 � nt on c

8>>><
>>>:

with the constitutive equations

r0ðunþ1Þ ¼ ktr�ðunþ1ÞIþ 2l�ðunþ1Þ
Kðunþ1; pnþ1Þvnþ1 þrpnþ1 ¼ fv

Ksðunþ1Þv̂nþ1 þrsp̂
nþ1 ¼ f̂v

8><
>:

and the coupling conditions [Eq. (35)] evaluated at time

tnþ1. Note that the fluid and mechanics problems are cou-

pled by some linear and nonlinear terms: the pressure

gradient in the equilibrium equation, the divergence of the

displacement in the mass conservation equation are linear

coupling terms, while the dependence of permeability on

porosity and effective aperture introduces nonlinearities in

the system. Moreover, the interface conditions associated

with the frictional contact are strongly nonlinear.

6.1 Solution strategies for the coupled problem

For the coupling between fluid flow and geomechanics, we

prefer fixed-stress split which is unconditionally stable as

our strategy. In fixed-stress split scheme, the fluid flow

problem is solved firstly by freezing the total means stress

field _r
nþ1

2
v ¼ _rnv

� �
. Then the original operator A could be

decomposed as follows:

un

pn


 �
�!
Ap

ss unþ
1
2

pnþ1


 �
�!
Au

ss unþ1

pnþ1


 �
; where

Ap
ss : _mþ Divv ¼ 0; d _rv ¼ 0;

Au
ss : Divr ¼ 0; dp ¼ 0:

� ð37Þ

The _ðÞ denotes time derivative.

For the 2-dimensional map-view case, rv ¼ 1
2
trr is the

volumetric part of the total stress tensor r:

r ¼ rvIþ s; ð38Þ
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where s is the deviatoric total stress tensor.

As already mentioned, in this scheme the flow problem

is solved first assuming a constant (‘‘frozen’’) mean stress

field, and thus, a constant total volumetric stress. This

allows, as we will show, to derive an expression for r �
unþ1 in the mass conservation equation.

Let the index i denote the ith iteration of the fixed-stress

scheme. At time step nþ 1 we impose, for each iteration,

that the total volumetric stress at iterations i and i� 1 are

the same. Since rv ¼ Kdrr � u� bp, where Kdr is the

drained bulk modulus, equal to kþ l in the two-dimen-

sional case, we obtain

Kdrr � unþ1;i � bpnþ1;i ¼ Kdrr � unþ1;i�1 � bpnþ1;i�1:

ð39Þ

Substituting Eq. (39) in the mass balance equation, we

obtain

1

Dt
1

M
þ b2

Kdr

� �
pnþ1;i þr � vnþ1;i

¼ fq þ
1

DtM
pn þ b

Dt
r � ðun �r � unþ1;i�1Þ

þ b2

Kdr

pnþ1;i�1

ð40Þ

This modified fluid problem does not depend on unþ1;i

and can be solved with the displacement fields at the pre-

vious time and at the previous iterations. The fixed-stress

splitting algorithm can be summarized as follows:

Initialization At each time step nþ 1 set unþ1;0 ¼ un

and pnþ1;0 ¼ pn.

Fluid Subproblem Solve Eq. (40) coupled with the flow

problem along the fault to obtain pnþ1;i:

1

Dt
1

M
þ b2

Kdr

� �
pnþ1;i þr � vnþ1;i ¼ fq þ

1

DtM
pn

þ b

Dt
r � ðun �r � unþ1;i�1Þ þ b2

Kdr

pnþ1;i�1 in Xc

vnþ1;i þKrpnþ1;i ¼ fv

rs � v̂nþ1;i ¼ f̂ q þ
1

Dt
svnþ1;i�1 � nt in c

v̂nþ1;i þ Ksrsp̂
nþ1;i ¼ f̂ v

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð41Þ

with coupling conditions on c

n0gcsv
nþ1;i � nt ¼ fpnþ1;ig � p̂nþ1;i;

gcfvnþ1;i � ng ¼ spnþ1;itþ affv � ng;

(

as well as the given boundary conditions for the fluid

problem.

Identification of cN and cD With the computed value of

fluid pressure, we compute an intermediate total stress

r ¼ 2l�ðun;iÞ þ kr � un;i � brpnþ1;i in order to esti-

mate, with the help of (36), the extension of cD and cN

at the current iteration, as well as the values of the

friction coefficient.

Mechanic Subproblem Solve the equilibrium equation

on Xc,

2l�ðunþ1;iÞ þ kr � unþ1;i ¼ brpnþ1;i; ð42Þ

together with the coupling interface conditions given by

the last four equations in (35) and the given boundary

conditions for the mechanical problem, to obtain unþ1;i.

Convergence Test Test for convergence, then repeat

steps 2 and 3 or proceed to the next time step. For the

convergence we monitor kpnþ1;iþ1 � pnþ1;ikL2ðXÞ and

kunþ1;iþ1 � unþ1;ikH1ðXcÞ.

Remark 1 We point out that, as suggested in Both et al.

[15], the coefficient b ¼ b2=Kdr multiplying pressure in the

fluid subproblem can be regarded as a stabilization

parameter, thus, b could take different values with an

impact on the number of iterations needed to achieve

convergence. In this work, we have adopted the classical,

physically based value.

7 Space discretization

We can now introduce the space discretization strategy for

the two problems: the fluid flow and the mechanics. In this

work, we employ a finite element discretization, in par-

ticular, to achieve high flexibility in the presence of com-

plex geometries, we resort to XFEM to represent interfaces

across mesh elements.

7.1 The grids

In this work, we use the same mesh for the fluid flow

problem and the geomechanical problem. This choice has

the advantage of avoiding interpolation of material prop-

erties and variables, such as for instance the fluid pressure,

between different grids. However, this is only possible

because we are considering relatively simple synthetic

cases: in real life applications the geomechanical model is

usually larger than the fluid reservoir of interest and dif-

ferent grids are often used.

Both at the geomechanical and the reservoir scale the

construction of a computational grid can be a challenging task

in realistic configurations: indeed, grids should account for

• heterogeneous layers

• multiple and intersecting fractures and faults.
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Moreover, the fault surface is usually nonplanar and has a

roughness that should be accounted for to compute reliable

predictions of the slip tendency. In this work, we choose to

employ nonconforming grids, i.e., we build the ’’bulk’’

mesh of the porous medium irrespective of the fault

geometry and position. Thus, the domain X and the fault c
are meshed independently.

We discretize the domain X into an approximation Xh

which is a convex polygon and consider a family of tri-

angulations T h. Let h be the maximal diameter of the

elements of T h. The approximation Xh is such that if h

goes to 0, Xh ! X. In our examples, X is itself a polygon,

so Xh ¼ X. Analogously we define for c its piecewise

linear approximation ch (details will be given later on) and

consider a family of triangulations Lĥ (Fig. 7).

Remark 2 The mesh sizes h and ĥ can be chosen inde-

pendently. However it has been observed, Frih et al. [33],

that oscillations can arise in the fault if ĥ\\h. For this

reason, we will use independent grid for the bulk and the

fault, but with comparable mesh sizes.

Since T h is not conformal with the fault ch, for the tri-

angles K 2 T h cut by the fault c, we define Ki ¼ K \ Xi,

where Xi, i ¼ 1; 2, are the two parts of the original domain

divided by the fault c, and use Gh ¼ fK 2 T h : c \ K 6¼ ;g
to denote the collection of the elements cut by the fault.

In the following we will assume, following D’Angelo

et al. [25], that:

1. the triangulation is shape-regular, i.e., cqK � hK �CqK
where hK is the diameter of element K, qK is the

diameter of the largest circle contained in K and

c, C are positive constants;

2. if K 2 Gh, then c intersects the boundary oK twice

exactly, and for each edge of K, it intersects at most

one time;

3. ch is ’’a good approximation’’ of c, i.e., if cK ¼ c \ K

and cK;h ¼ ch \ K then cK ¼ fðt; sÞ : 0\s\jcK;hj; t ¼
dðsÞg while cK;h ¼ fðt; sÞ : 0\s\jcK;hj; t ¼ 0g, where
dðsÞ is the distance between the fault c and the

approximation ch.

The use of level sets to represent the fault

The geometry of the fault c is assumed to be given as a

parametrized curve as c : x ¼ gðsÞ with s1 � s� s2. Let us

define the signed distance of a point x from c as follows:

wðxÞ ¼ min
x�2c

jx� x�jsignðx� x�Þ � n

where n is the normal to the surface. Then c can be iden-

tified as the zero-level of w. We then replace w with its

finite element approximation (with linear finite elements)

wh and obtain ch as its piecewise linear zero-level set as

shown in Fig. 8.

Thus, the difference between c and ch depends on the

size of the bulk triangulation T h. This guarantees that if c
has bounded curvature Assumption A-3 is always satisfied

for a sufficiently refined grid.

The definition of the interface by means of a level set

function is motivated by the capabilities of the finite ele-

ment library Getfem??, used as the basis of our imple-

mentation, which provides the tool to define quadrature

formulas on subdomains defined by the positive, negative

or zero values of level sets.

7.2 Space discretization with the XFEM

As we mentioned in the previous sections the geometrical

complexity of realistic cases motivates our choice of using

nonmatching grids, i.e., to allow the fault to cut the ele-

ments of the bulk mesh. However, the material properties

can change abruptly across the fault surface, and the

solutions (pressure, fluid velocity and even displacement)

can be discontinuous. For this reason, we employ the

eXtended Finite Element Method (XFEM) to account for

the discontinuities across the fault by means of suit-

able enrichments of some standard finite element spaces

(Fig. 9) [11, 30, 48].

The XFEM is currently one of the most popular methods

to discretize mechanical problems in linear elastic material

in the presence of fractures, for industrial and geophysical

applications. They have been applied to the problem of

fault equilibrium and failure by E. Coon in Coon et al. [23]

and Coon et al. [22]. In these works, however, the effect of

fluid pressure and flow along and across the fault are not

taken into account. The use of XFEM for the approxima-

tion of flow in porous media with fractures and faults is

Fig. 7 dðsÞ is the distance between the curve fault c and the

approximation ch in the convex
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more recent but quite established, see for instance [25, 59]

and Berrone et al. [12], where a single-phase Darcy flow is

solved in undeformable fixed domains. In this work, we

will discretize both the mechanical and fluid subproblems

by means of the XFEM using the same nonmatching grid

for the two problems to obtain a natural coupling and avoid

interpolations.

7.2.1 Flow problem

For the numerical approximation of the flow problem in the

bulk and along the fault we proceed as proposed in

D’Angelo et al. [25] and Fumagalli [34]: starting from a

stable mixed finite element pair for fluid velocity and

pressure we enrich the finite element spaces to represent

possible discontinuities across the fault. In particular, we

start from the lowest order Raviart Thomas finite elements

(RT0) for the Darcy velocity and piecewise constant (P0)

finite elements for pressure in the two-dimensional domain

Xh; analogously on the fault ch we approximate the flux

with P1 finite elements and the pressure with P0 elements.

The choice of mixed finite elements is motivated by their

property of local mass conservation and the robustness in

the presence of permeability contrasts.

For each element K 2 T h we define the restriction of the

standard RT0 and P0 functions to the cut elements as

follows:

RT0ðKiÞ ¼ fwhjKi
: wh 2 RT0ðKÞg

P0ðKiÞ ¼ fqhjKi
: q 2 P0ðKÞg:

Note that if K 62 Gh then Ki either coincides with K or it

is empty. On each side of the fault, i.e., for i ¼ 1; 2 we

define the discrete spaces Wi;h, Qi;h as

Wi;h ¼ fwh 2 HdivðXiÞ : whjKi
2 RT0ðKiÞ 8K 2 T hg;

Qi;h ¼ fqh 2 L2ðXiÞ : qhjKi
2 P0ðKiÞ 8K 2 T hg:

We will consider discrete velocities vh and pressures qh
in the discrete spaces Wh ¼ W1;h 	W2;h and Qh ¼ Q1;h 	
Q2;h so that the variables are made by two independent

components associated with the subdomains Xi.

Remark 3 This formulation of the extended finite element

spaces, where the test functions are restricted to the

subelements and associated with different degrees of

freedom on the two subdomains, is based on the approach

proposed by Hansbo and Hansbo [36]. Equivalently, the

standard finite element spaces can be enriched with the

addition of discontinuous functions, see Belytschko et al.

[11].

As concerns the discrete flux ŵh and fluid pressure q̂h in

the fault we define the following spaces:

Ŵ i;h ¼ fŵh 2 L2ðchÞ : ŵhjli 2 P1ðliÞ 8l 2 Lhg;
Q̂i;h ¼ fq̂h 2 L2ðchÞ : q̂hjli 2 P0ðliÞ 8l 2 Lhg:

The discrete weak formulation of the fluid problem

(Eq. (41)) reads: given unh, u
nþ1;i�1
h , pnh, given the boundary

data, find ðvnþ1;i
h ; vnþ1;i

h ; pnþ1;i
h ; pnþ1;i

h Þ 2 Wh 	 Ŵh 	 Qh	
Q̂h satisfying, for all ðwh; ŵh; qh; q̂hÞ 2 Wh 	 Ŵh 	 Qh	
Q̂h:

A vh; v̂h; ph; p̂hð Þ; wh; ŵh; qh; q̂hð Þð Þ ¼ F wh; qhð Þ
8 wh; qhð Þ 2 D;

where

Fig. 8 The fault as the zero of a level set function equal to the signed distance from the interface (left) and a zoom of a detail (right). c is

represented by the white line, and its approximation ch by the red line
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A vh; v̂h; ph; p̂hð Þ; wh; ŵh; qh; q̂hð Þð Þ

¼ m p
nþ1;i
h ; qh

� �
þ c vnþ1;i

h ;wh

� �

þ o p
nþ1;i
h ;wh

� �
� o qh; v

nþ1;i
h

� �

þ ĉ v̂nþ1;i
h ; ŵh

� �
þ ô p̂

nþ1;i
h ; ŵh

� �
þ

� ô q̂h; v̂
nþ1;i
h

� �
þ e p̂

nþ1;i
h ;wh

� �
� e q̂h; v

nþ1;i
h

� �

and

F ¼ Rw þ Rq þ R̂w þ R̂q:

with

m ph; qhð Þ ¼ 1

Dt

Z

Xh

1

M
þ b2

Kdr

� �
phqh

c vh;whð Þ ¼
Z

Xh

K�1vh � wh þ
Z

RD

c0h
�1 vh � nð Þ wh � nð Þ

þ
Z
ch

gcfvh � ngcfwh � ngc þ n0

Z
ch

gcsvh � ntcswh � ntc;

o ph;whð Þ ¼ �
Z
Xh

ph r � whð Þ þ
Z
RD

ph wh � nð Þ;

ĉ v̂h; ŵhð Þ ¼
Z

ch

ĝv̂h � ŵh þ
Z

oDc
c0h

�1 v̂h � nð Þ ŵh � nð Þ;

ô p̂h; ŵhð Þ ¼ �
Z

ch

p̂h rs � ŵhð Þ þ
Z

oDc
p̂h ŵh � nð Þ;

e p̂h;whð Þ ¼
Z

ch

p̂hswh � ntc

and

Rw ¼
Z

Xh

fv � wh �
Z

RN

�p wh � nð Þ þ
Z

RD

c0h
�1�v wh � nð Þ

þ
Z

ch

affv � ngcfwh � ngc �
Z

ch

a

4
sfv � ntcswh � ntc;

Rq ¼
1

Dt

Z

Xh

1

M
pnh þ

b2

Kdr

p
nþ1;i�1
h

� �
qh þ

Z

Xh

br

� ðunh � unþ1;i�1
h Þqh þ

Z

Xh

fqiqh �
Z

RD

�uqh;

R̂w ¼
Z
ch

f̂v � ŵh �
Z
oNc

�̂p ŵh � nð Þ þ
Z
oDc

c0h
�1 �̂u ŵh � nð Þ;

R̂q ¼
Z
ch

f̂ qq̂h �
Z
oDc

�̂uq̂h;

The problem can be written in matrix form as:

C O 0 E

�O 0 0 0

0 0 Ĉ Ô

�E 0 � Ô 0

2
6664

3
7775

V

P

V̂

P̂

2
6664

3
7775 ¼

Rw

Rq

R̂w

R̂q

2
6664

3
7775

where E and �E are the matrices corresponds to the cou-

pling between the fluid flow problem and the geomechan-

ics, C, O and �O are the matrices corresponds to the bulk,

and Ĉ, Ô and �Ô are the matrices corresponds to the fault.

7.2.2 Mechanical problem

The finite element space for the mechanical problem in the

context of poroelasticity cannot be chosen independently

from the flow problem for stability reasons. For the three-

field formulation, i.e., flux, pressure and displacement, a

common choice is to couple RT0 � P0 with linear finite

element for displacement (P1). This choice of spaces can

successfully applied when the permeability tensor is uni-

formly positive definite; some issues have been observed

on the case of vanishing permeability Rodrigo et al. [54]:

volumetric locking may arise if the permeability is small

with respect to the mesh size. Possible, more expensive

alternatives are the quadratic finite elements or stabilized

P1.

Analogously to what was done for the flow problem we

define, for each element K 2 T h the restriction of the

standard P1 as follows:

P1ðKiÞ ¼ f/hjKi
: /h 2 P1ðKÞg:

Then, bearing in mind that in our case the displacement uh
is a vector with two components, on each side of the fault

we define the discrete spaces Zi;h as

Zi;h ¼ f/h 2 H1ðXiÞ : /hjKi
2 ½P1ðKi�2Þ 8K 2 T hg:

Fig. 9 Sketch of the mesh cut by the fault c; the enriched elements are

highlighted. The basis functions P1ðKiÞ are represented
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We will consider discrete displacements /h in the dis-

crete space Zh ¼ Z1;h 	 Z2;h so that the variables are made

by two independent components associated with the sub-

domains Xi.

The discrete weak formulation of Eq. (42) reads: reads:

given pnþ1;i (computed in the fist ’’half’’ step of the fixed-

stress method), given the boundary data, find unþ1;i
h ;2 Zh

satisfying, for all /h 2 Zh:

B uh;/hð Þ ¼ ‘p /hð Þ;

where

B unþ1;i
h ;/h

� �
¼

Z

Xh

� /hð Þ : r0 unþ1;i
h

� �

�
Z
ch

s/htch
� n̂

� �
r0n unþ1;i

h

� �
þr0n /hð Þ sunþ1;i

h tch
� n̂

� �� �

þ bI
h

Z

ch

s/htch
� n̂

� �
sunþ1;i

h tch
� n̂

� �

þ bD
h

Z

cD
s/htcD � t̂

� �
sunþ1;i

h tcD � t̂
� �

�
Z

CD

/h � r0 unþ1;i
h

� �
� n̂þ r0 /hð Þ � n̂ � unþ1;i

h

� �

þ
boXh

h

Z

CD

/h � unþ1;i
h þ /h � n̂ð Þ unþ1;i

h � n̂
� �� �

;

‘p /hð Þ ¼
Z

cN
s/htcN � t̂

� �
f þ bD

h

Z

cD
s/htcD � t̂

� �
gnþ1;i

þ
Z

CN

/h � F�
Z

CD

r0 /ð Þ � n̂ � gðtnþ1Þ

þ
boXh

h

Z

CD

/h � gðtnþ1Þ þ /h � n̂ð Þ gðtnþ1Þ � n̂ð Þð Þ

þ b

Z

oXh

~p/h � n� b

Z

Xh

pnþ1;ir � /h:

Note that the pressure term on the right-hand side has been

integrated by parts and here ~p denotes a suitable extension

to the boundary of the known pressure field pnþ1;i.

The imposed tangential displacement jump on the stuck

portion of the fault is denoted as gnþ1;i�1 and is taken from

the previous iteration of the fixed-stress method, i.e., we set

gnþ1;i ¼ sunþ1;it � t̂.

Remark 4 The coupling conditions on the Dirichlet por-

tion of the interface cD, i.e., the essential condition on the

displacement jump across the fault is imposed with a

consistent Nitsche penalization. As already mentioned in

Chapter 3 this strategy has the advantage of enforcing the

interface conditions on both cN and cD in the weak for-

mulation and not in the discrete functional spaces. Since

the partition of c into the Neumann (slipping) part and the

Dirichlet (stuck) part can change in time the use of Nitsche

penalization avoids changing the discrete spaces at each

time step.

Remark 5 The choice of c=ha with a ¼ 1 as Nitsche

penalization parameter leads to optimal error estimates in

the case of our interest, Burman et al. [17, 18]. Other values

of a can be chosen in the case of solutions with higher

regularity and quadratic Lagrangian finite elements.

8 Verification and validation

In order to verify our proposed method, we did some test

cases.

8.1 Test 1: the Terzaghi problem

We consider the Terzaghi’s uniaxial compaction problem.

Parameters are set as in Jha et al. [38]: size of the domain is

1m	 50m, the bottom boundary is fixed and impermeable,

on the left and the right boundaries, the displacement is

only allowed in the y-direction without fluid flow, while the

top boundary is a Neumann boundary with a compression

of 2.125 MPa and the pressure is set to 0. The Young’s

modulus E is 120 MPa, and the drained Poisson ratio is 0.3,

Biot coefficient is 1.0, porosity is 0.2, and hydraulic dif-

fusivity is 1:9	 10�6 m2=s. Results are shown in Fig. 10.

8.2 Test 2: the Mandel problem

We consider the Mandel’s problem. Parameters are set as

in Jha et al. [38]: size of the domain is 50m	 10m which

is different from that in Jha et al. [38], because we consider

the two-dimensional map-view case, so we do not consider

Fig. 10 Terzaghi Problem: pressure against distance at four different

times
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the thickness, on the right and the bottom boundaries dis-

placement is only allowed on the direction parallel to the

boundaries and the boundaries are impermeable, while the

top boundary is a Neumann boundary with no stress and

pressure equals to 0, the left boundary is a Neumann

boundary with a compression 1 MPa with no fluid flow.

The Young modulus E is 18 GPa, drained Poisson ratio is

0.25, undrained Poisson ratio is 0.49, reference porosity is

0.05, and hydraulic diffusivity is 2:2	 10�7m2=s. Results

are shown in Fig. 11.

8.3 Test 3: geomechanical problem with a fault

In this section we compare our results with the results

provided by Pylith [37] on a purely geomechanical prob-

lem without the fluid. We consider a two-dimensional map-

view domain. In this case, each time step is 2.0 years and

the total time is 300 years. The relevant parameters are in

Table 1. The domain is shown in Fig. 12, the size is

6000m	 6000m. The fault is represented by a straight

line from point (3000,0) to point (3000,6000). On the right

boundary, there is an initial displacement of 2 m normal to

the boundary. The left and right boundaries are all Dirichlet

boundaries with a constant velocity 0.01 m/yr parallel to

the boundaries. The other boundaries are all Neumann

boundaries with null traction. As shown in Fig. 13, our

results are in good agreement with those by Pylith: in

particular, we have reported the slip magnitude and the

shear traction at the center of the fault. In Fig. 14, the

displacement on the y-direction after 145th step

(290 years) done by Pylith and our code are shown,

respectively, the results match very well. The difference of

the slip magnitude and the shear traction after fault slips in

the figure is because after we got the displacement result in

the bulk mesh without the fault, in the postprocessing we

got a new displacement result in a new mesh which

includes the fault, then we got the slip magnitude based on

the difference of the new displacement result on two new

degree of freedom on the two sides of the fault, even if the

two new degree of freedom are very close, there is still a

Fig. 11 Pressure evolution of the Mandel Problem

Table 1 Relevant parameters of mechanic problem

Variable Value Description

q 2500 kg/m3 Density

k 25 GPa Lamé’s parameter

l 22.5 GPa Shear modulus

l0 0.4 Reference friction coefficient

V0 1.0e-11 m/s Reference slip rate

dc 0.05 m Characteristic slip distance

A 0.002 Empirical dimensionless constants

B 0.08 Empirical dimensionless constants

Vlinear 1.0e-9 A cutoff for a linear slip rate dependence

Fig. 12 Domain and boundary conditions for test case of geome-

chanical problem with a fault
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distance between them which will affect the result of slip

magnitude and then affect the result of shear traction.

The fault begins to slip after the 74th step (148th year).

The friction coefficient lf and the slip tendency

js0 u xð Þð Þj=jr0n u xð Þð Þj on the fault after the 73rd step (146th

year) and the 74th step (148th year) are shown in Fig. 15

correspondingly.

9 Applications: slip tendency of the fault
under fluid injection

In this example, we analyze the slip tendency of the fault

under fluid injection. As shown in Fig. 16, the size of the

domain is 4000	 3000m, on the behind boundary and the

right-hand side boundary, we only allow the displacement

to occur in the direction parallel to the boundaries, while on

Fig. 13 Slip magnitude and shear traction in time in the middle of the fault

Fig. 14 Displacement on the y-direction after the 145th step (290 years) done by Pylith and our code

Fig. 15 Friction coefficient and slip tendency on the fault after the 146th year (73th step) and the 148th year (74th step)
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the left boundary we apply the traction. The relevant

parameters are in Table 2. For the fluid flow problem, the

initial pressure in the porous medium is 107 Pa, and the

four boundaries are all Neumann boundaries with imposed

pressure 107 Pa. The permeability tensor of the domain is

K ¼ 10�11 0

0 10�11


 �
m2=ðPa sÞ:

The thickness of the fault is 0.2 m, and the permeability in

the tangential direction and the normal direction is

10�13 m2=ðPa sÞ. At the two fault tips, we impose pressure

p ¼ 107 Pa. We inject fluid on the node (1720,1480) with a

volume source term 0:00035m3=s. Each time step is

1 year. We consider two cases:

In these two cases, the stress on the left boundary and

the front boundary all equal to F1 ¼ F2 ¼ 55MPa. In the

first case, the dip of the fault is 80
, while in the second

case, the dip of the fault is 81
. The corresponding friction

coefficient lf and slip tendency js0 u xð Þð Þj=jr0n u xð Þð Þj on
the fault are shown in figures. In the first case, the results

are shown in Fig. 17, the fault begins to slip after the 6th

step. While in the second case, the results are shown in

Fig. 18, the fault begins to slip after the 17th step. This

difference is due to the different dip angles: vertical faults

are less likely to slip with respect to inclined ones for the

same imposed compressive stress. Besides, after the fault

slips, in the slipping period, we set each time step last

0.02 s, then in the first case, the fault totally slips 21 steps

which last 0.42 s, while in the second case, the fault totally

slips 19 steps which lasts 0.38 s. Here we could get the

fault slipping distance, after we research on the numerical

method in the three-dimensional case, we could get the

fault slipping area, then we could calculate the magnitude

of the earthquake induced by the fault reactivation, which

will be a very interesting thing.

In order to analyze the effect of the permeability of the

fault, we consider two more cases, setting the fault per-

meability to 10�14 m2=ðPa sÞ. Other parameters are all the

Fig. 16 Domain and boundary conditions for test case of the slip

tendency of the fault under fluid injection

Table 2 Relevant parameters of case under fluid injection

Variable Value Description

dX 1000 m Depth

q 2670 kg/m3 Density

k, l 32.04 GPa Lamé’s parameters

l0 0.6 Reference friction coefficient

V0 1.0e-6 m/s Reference slip rate

dc 0.008 m Characteristic slip distance

A 0.015 Empirical dimensionless constants

B 0.019 Empirical dimensionless constants

Vlinear 1.0e-12 A cutoff for a linear slip rate dependence

/ 0.1 Porosity of the domain

b 1.0 Biot coefficient

M 1.0e8 Biot modulus

Fig. 17 Friction coefficient and slip tendency on the fault after 5 years and 6 years
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same as before. For a dip of the fault of 80
, the results are
shown in Fig. 19, the fault begins to slip after the 4th step.

While in the other case, when the dip of the fault is 81
, the
results are shown in Fig. 21, the fault begins to slip after

the 12th step, the fluid pressure and the fluid pressure in the

fault after 11th step are shown in Fig. 20. In both cases, the

fault fails earlier with respect to the previous case. A lower

permeability of the fault leads to high pressures close to the

injection point faster than a more permeable interface;

pressure reduces the effective normal stress causing failure.

In order to analyze the effect of the position of the fluid

injection, we repeat the previous cases keeping the same

Fig. 18 Friction coefficient and slip tendency on the fault after 16 years and 17 years

Fig. 19 Friction coefficient and slip tendency on the fault after 3 years and 4 years

Fig. 20 The fluid pressure and the fluid pressure in the fault after 11 years
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physical parameters and changing only the injection point,

which is now the point of coordinates (1760,1450). The

results for 80o dip are shown in Fig. 22, the fault begins to

slip after the 9th step, while in the other case (dip of 81
),
the results are shown in Fig. 23, the fault begins to slip

after the 28th step. In this case, the distance of the injection

point from the fault is larger, so the onset of slip is delayed.

10 Conclusions

In this work, we proposed a numerical method used to

analyze the slip tendency of the fault under fluid injection

based on the eXtended Finite Element Method used both

for fluid and poroelasticity. We have imposed the dynamic

coupling condition for the structural problem via a Nitsche

Fig. 22 Friction coefficient and slip tendency on the fault after 8 years and 9 years

Fig. 23 Friction coefficient and slip tendency on the fault after 27 years and 28 years

Fig. 21 Friction coefficient and slip tendency on the fault after 11 years and 12 years

342 Acta Geotechnica (2020) 15:325–345

123



penalization. Thanks to the eXtended Finite Element

Method, we can accurately represent discontinuities in

stress, displacements, fluid pressure and fluid velocity

across straight and curved faults.

In order to study the slipping behavior of the fault in the

process of reactivation, our research viewed the fault as a

zero-thickness interface. Besides, we included a reduced

model of the fluid flow in the fault which allows us to

account for the hydraulic behavior in the fault and its effect

on the surrounding medium.

We particularly focused on the map-view two-dimen-

sional case, while when considering the depth and the dip

of the fault, we regarded the system as a two-and-one-half-

dimensional system based on Anderson’s fault theory

which assumes the vertical direction as principal stress

component. We used the rate- and state-dependent friction

model as the fault friction model, and Biot’s theory of

poroelasticity to study the coupling between fluid flow and

mechanical deformation in porous media. Since the Fully

Coupled Method between fluid flow and poromechanics is

computationally expensive, we had investigated an Itera-

tively Coupled Method. In particular, we applied the so-

called fixed-stress split. In such a scheme, the fluid flow

problem was solved firstly by freezing the total means

stress field, and then the results were used to solve the

mechanical problem. In order to verify our method, some

test cases were presented. For the coupling between fluid

flow and geomechanics, we considered the Terzaghi

Problem and the Mandel Problem, comparing our results

with that of previously published works. While, for the

mechanic problem, we compared the results with those

obtained by using the software Pylith. From these test

cases, we could know our method works well. Then we

used our method to analyze one case about the slip ten-

dency of the fault under fluid injection. From the results,

we could know that the permeability of the fault could

affect the slip tendency of the fault, the fault slips earlier in

the case of smaller fault permeability than that in the case

of larger fault permeability, besides, with the point injected

fluid closer to the fault, the fault slips earlier. In the future,

we will research on the method to simulate the earthquake

and predict the corresponding earthquake magnitude after

the fault slips. And then we will research on the perme-

ability variation in the fault and the surrounding medium in

the process of fault reactivation. Finally, we will focus on

the three-dimensional case and study the corresponding

numerical methods.
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