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ABSTRACT
The Taiji programme is a Chinese space-based laser interferometer gravitationalwave detectionmis-
sion and the differential wavefront sensing (DWS) technique is introduced to reduce the effect of the
laser pointing noise. As the distance between two adjacent satellites is about 3 × 106 km, the wave-
front of the receiving beam is a flat top beam. In this paper, we construct an analytical model of the
DWS signal under the circumstances of Gaussian beam-flat top beam interference and study the lin-
earity performance. The position offset of the beams is found to greatly affect the linearity range. A
numerical method is used to simulate the linearity range of the DWS signal under various operating
conditions. The linearity range decrease with the increase of the offset angle of the Gaussian beam
and the offset length of the flat top beam. The offset range of the beams based on the requirement
of the Taiji is given at last.

ARTICLE HISTORY
Received 10 June 2019
Accepted 14 February 2020

KEYWORDS
Gravitational wave; laser
interferometer; differential
wavefront sensing; flat top
beam

1. Introduction

In 2016, the American ground-based laser interferom-
eter gravitational wave observatory (LIGO) announced
the first direct detection of gravitational waves. The excit-
ing news promoted China to propose its space-based
gravitational wave detection programme, the Taiji pro-
gramme, for reaching a wider range of gravitational radi-
ation sources [1–4]. Compared with the ground-based
programmes, the Taiji programme has to construct the
inter-satellite laser link constellation with the help of a
laser acquisition system. The system uses star trackers
and CCD detectors to suppress the laser pointing error
from 100µrad to 1µrad [5–8]. However, the satellite jit-
ter caused by the solar wind, solar radiation, cosmic rays
and other space environment hinders the acquirement of
the scientific data. The drag free system suppresses such
noise extensively, but the residual jitter is still coupled to
the propagating laser and dominates the ranging noise. In
order to reduce the detection error caused by the point-
ing jitter while taking into account redundancy, the Taiji
programme plans to adopt the precision pointing sys-
tem to achieve the pointing stability of 1 nrad/

√
Hz in

the frequency band within 1mHz − 1Hz. The precision
pointing system is based on the Differential Wavefront
Sensing (DWS) technique [9].

CONTACT Ziren Luo luoziren@imech.ac.cn National Microgravity Laboratory (NML), Institute of Mechanics, Chinese Academy of Sciences, Beijing
100190, China

The core concept of the DWS technique is to obtain
the included angle of two beams by reading the phase dif-
ference between different quadrants of a quadrant pho-
todetector (QPD) [10–12]. With the advantages of high
sensitivity and low noise, the DWS technique is now
widely used for precision anglemeasurement whilemany
theoretical explorations and experimental studies on this
technique have been done. In 2010, Hechenblaikner [13]
constructed an analytical model of the DWS for Gaus-
sian beam-Gaussian beam interference. In 2012, Sheard
[14] gave an approximate phase-angle conversion for-
mula of plane beam-Gaussian beam interference for the
GRACE Follow-on programme. In 2014, Yuhui Dong
[15] conducted principle demonstration experiment of
precision angle measurement system with two Gaussian
beams and verified the feasibility of the DWS technique.
In 2016, Huizong Duan [16] improved the analytical
model ofHechenblaikner by involving beam clipping and
beam walking into the model. In addition, he also built
a numerical model under an ideal condition and got
the conclusion that the larger the beam clipping is, the
smaller the non-linearity is.

Most of the studies of the DWS technique concentrate
on the interference between Gaussian beams for simplifi-
cation. However, the preliminary design of the distance
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between the two adjacent Taiji satellites is 3 × 106 km.
After spreading such a long distance, the wavefront of
the propagating light at the receiving aperture will have
the properties of a flat top beam. Therefore, the study
of the DWS technique under the condition of flat top
beam-Gaussian beam interference is essential for the Taiji
programme. However, the DWS between a Gaussian and
a flat top beam is not as well studiedwith only a few inves-
tigations done within the LISA community. Ideally, the
Gaussian beam perpendicularly enters the QPD centre
for obtaining high interference efficiency in all the four
quadrants. It can be fulfilled by correcting the position
of the laser spot on the QPD surface with the help of a
ground-based assembly rectify system. However, in prac-
tice, the assembly errors will make the beam offset from
the centre. On the other hand, the flat top beam may
deviate from the QPD centre because of satellites jitter.
A dedicated imaging system is used to suppress the off-
set, but the residual offset still exists. The position offset
of the beams greatly affects the linearity range of theDWS
technique. Therefore, the permissible offset range is also
significant to the design of the Taiji programme.

This paper is structured as follows: Based on the physi-
calmodel of thewavefront distribution [17,18], an analyt-
ical model of the DWS signal under the condition of flat
top beam-Gaussian beam interference is presented. The
analytical expression is different from the result derived
from two Gaussian beams [13,16] and is used to qualita-
tively analyse the influence of beam offset to the linearly
performance. Then, a numerical method is involved for
quantitative analysis the effect of beam offset under four
basic practical situations. Based on the numerical results
we present the offset range of the beams which can fulfil
the requirement of the Taiji programme.

2. Analytical expression of the DWS signal

In order to obtain the analytical expression of the DWS
signal, we need to establish the physical model of the
wavefront of the Gaussian beam and the flat top beam.
In the coordinate system where the laser emission point
is the origin and the propagation direction is the z-axis,
the complex amplitude of the local Gaussian beam can be
expressed as,

AGaussian =
√

2P
π · ω2

g (z)
· e

− x2+y2

ω2g (z) · e−ik x2+y2
2R(z) −iη(z)−ikz

(1)
where, P is the laser power, z is the propagation distance
of the beam, η is the Gouy phase, ωg(z) and R(z) repre-
sent the spot radius and the curvature radius, respectively.

The receiving beam from the remote satellite can be
seen as a flat top beam at the receiving aperture. After

being clipped by the telescope, the complex amplitude of
the beam is given by,

Aflat - top =
{
E0 × e−ikz for ∀x, y fullfils x2 + y2 ≤ ω2

0 elses
(2)

where, E0 stands for the beam amplitude andω is the spot
radius on the QPD.

We suppose that the Gaussian beam perpendicularly
enters the QPD centre and the flat top beam only has
an offset in the yaw direction with the offset length of
x0, the offset angle of ϕ (it is also the included angle of
the two beams). Because of the symmetric distribution
of the wavefront in the top and bottom quadrants, the
offset of the beam will only influence the DWS signal
of left and right quadrants. For simplifying the calcula-
tion, it is assumed that the flat top beam is clipped by
a square aperture. Compared with a circular aperture in
the actual situation, we only ignore few additional inte-
gral areas in the edge, where the interference intensity is
relativelyweaker. The following analysis results will prove
the validity of the assumption.

Figure 1(a) is the schematic diagram of the above
situation. The Gaussian beam and the flat top beam
propagate in the negative direction of z-axis and z′-axis,
respectively. The transformation formula between the
coordinate (x, y, z) and the coordinate (x′, y′, z′) can be
written as,⎛

⎝x′
y′
z′

⎞
⎠ =

⎛
⎝ cosϕ 0 sinϕ

0 1 0
− sinϕ 0 cosϕ

⎞
⎠

⎛
⎝x
y
z

⎞
⎠

+
⎛
⎝−x0 cosϕ

0
x0 sinϕ

⎞
⎠ (3)

Therefore, the complex amplitude of the flat top beam
can be expressed in the coordinate (x, y, z) as A′

flat - top.
Figure 1(b) shows the projection of the beams on the
QPD surface.

Let zg and zf represent the propagation distance of
the Gaussian beam and the flat top beam from the emis-
sion point to the detector respectively. Wemake ωf stand
for the half length of the flat top optical spot on the
detector (ωf is set equal to ωg for obtaining high inter-
ference contrast). Therefore, the complex amplitude of
the interference pattern on the left half of the QPD is
given by,

Fleft =
∫
Sleft

dS · AGaussianA′∗
flat - top

=
∫ ωf

−ωf

dy
∫ −h

x0−
ωf
cosϕ

dx · AGaussianA′∗
flat - top (4)
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Figure 1. Diagram of the coordinate system. (a) shows the position of the beams, in which (x, y, z) and (x′, y′, z′) are the coordinate of
the Gaussian beam and the flat top beam respectively. Where, h stands for the gap of the QPD, L represents the radius of the detector, x0
is the offset length of the flat top beam and ϕ is the offset angle. (b) presents the projection of the beams on the QPD surface.

where, Sleft stands for the integral area of the left quad-
rant. Then we introduce C1 and C2 as,

C1 = 1
ω2
g (zg)

+ ik
2R(zg) C2 = ik sinϕ (5)

After substituting equation (1) and (2), the complex
amplitude can be rewritten as,

Fleft =
P(y) · exp(C2

2

4C1
)

√
C1

×
{
erf

[√
C1

(
ωf

cosϕ
− x0 + C2

2C1

)]

−erf
[√

C1

(
h + C2

2C1

)]}
(6)

where,

P(y) =
∫ ωf

−ωf

√
2P

πω2
g (zg)

E0e−iη(z) · eik(zf −zg−x0 sinϕ) · e
−

[
1

ω2g (zg )
+ ik

2R(zg )

]
y2
dy
(7)

Similarly, the complex amplitude of the interference pat-
tern on the right half of the QPD is given by,

Fright =
P(y) · exp

(
C2

2

4C1

)
√
C1

×
{
erf

[√
C1

(
ωf

cosϕ
+ x0 − C2

2C1

)]

−erf
[√

C1

(
h − C2

2C1

)]}
(8)

Therefore, the analytical expression of the DWS signal is
written as,

DWS = arg

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

erf
[√

C1

(
ωf

cosϕ + x0 − C2
2C1

)]
−erf

[√
C1

(
h − C2

2C1

)]
erf

[√
C1

(
ωf

cosϕ − x0 + C2
2C1

)]
−erf

[√
C1

(
h + C2

2C1

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(9)

From equation (9), we know that the DWS signal is the
function of the included angle, the gap of the QPD, the
size of optical spots and the offset length of the flat top
beam. The analytical expression is quite different from
the result derived from two Gaussian beams [13]. The
results in [16] show that the radius of the QPD has a
strong influence on the DWS signal of two Gaussian
beams. However, the size of the flat top beam rather
than the QPD size has effect to the DWS signal with the
flat top beam and the Gaussian beam interference. Thus,
the derived result (9) is more effective for analysing the
performance of the DWS in the Taiji programme.

In the Taiji programme, the preliminary design of
the QPD and the spot size are ωf = 0.5mm, h = 25µm,
L = 1mm. These parameters will be used in the sub-
sequent parts of this paper. Calculated from equation
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Figure 2. The comparison of the analytical result and the linear fitting result. Red curve: the relationship between ϕ and the DWS signal
with x0 = 0µm. Blue curve: the linear fitting curve.

(9), the blue curve in Figure 2 presents the relationship
between ϕ and the DWS signal when we suppose x0 =
0µm. For studying the linearity performance of theDWS
signal, the linear fitting curve is also drawn in the same
figure. We can get the conclusion that the linearity of the
DWS signal deteriorates with the increase of the included
angle.

The non-linearity of the DWS signal will lead to angle
measurement error. Although the error will be grad-
ually eliminated by the control loop, it will still affect
the scientific data during the control process. As already
mentioned in the first chapter, the requirement of the
precision pointing system of the Taiji programme is to
achieve pointing accuracy of 1 nrad/

√
Hz within the

pointing deviation range of ±1µrad. With the sam-
pling frequency of 3.3Hz, the root mean square value of
the pointing error should be lower than approximately
3 nrad. When we consider a certain degree of redun-
dancy for the whole programme, the measurement error
caused by the DWS technique need to be lower than
1 nrad in the time domain. Based on the preliminary
design, the telescope aperture is approximately 30 cm
and the optical spot diameter on the QPD surface is
1mm, that is, the optical imaging system reduces the
optical spot size of the flat top beam by 300 times.
Therefore, the offset angle increases 300 times at the
same time. As a result, within the deviation angle range
of ±300µrad, only if the absolute measurement error
of the included angle (�ϕ) induced by the non-linear
part of the DWS technique is less than 300 nrad, can
the requirement of the Taiji programme be fulfilled.

That is,

|�ϕ(ϕ)| =
∣∣∣∣DWS(ϕ)

k
− ϕ

∣∣∣∣ ≤ 300 nrad

for∀ϕ ∈ [−300µrad, 300µrad] (10)

where, k is the slope of the linear fitting curve. Figure 3
shows the relationship between the absolute measure-
ment error of the included angle and the offset angle
with x0 = 0µm. As the curve is central symmetric about
the origin, the linearity range satisfying formula (9) can
be introduced as ±ϕl. It can be seen that ϕl is approx-
imately 400µrad. Thus, the linear range can fulfil the
requirement when both beams project onto the QPD
centre.

For studying the influence of the position offset to
the linearity of the DWS signal, we calculate the linear-
ity range ±ϕl as well as the fitting factor k with different
value of x0. The results are shown in Figure 4.

It can be concluded that increasing the offset length of
the flat top beam will reduce the linearity range as well
as the fitting factor. This is basically due to the fact that
the difference between the left and right half-domains
increases with the increase of the offset length. When the
offset length increases to 225µm, the linearity range will
be less than ±300µrad. The analytical model reveals the
essence of the DWS signal with Gaussian beam-flat top
interference and shows the influence of the beamposition
offset to the linearity range. However, the square clipped
assumption will bring calculation error when we confirm
the offset range of the beams in the practical situation of
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Figure 3. The relationship between�ϕ(ϕ) and ϕ with x0 = 0µm.

Figure 4. Red curve: the relationship between x0 and ϕl . Blue curve: the relationship between x0 and k.

the Taiji programme. On the other hand, we only obtain
the analytical result with the flat top beam offsetting in
only one direction. In other conditions, the analytical
expression can hardly be obtained because it is difficult
to decouple the two orthogonal directions. In the next
section, the numerical method will be used to overcome
these problems.

3. Linearity performance of the DWS technique
under practical situations

We have already deduced the analytical expression in the
last section. The conclusions are useful for qualitative
analysis. In this section, the numerical method is firstly
used to explore the linearity performance of the DWS

technique under four basic practical situations with a cir-
cular clipped flat top beam. Then, the offset range of the
beams is given through synthetically considering of all
the cases. Following is the cases: (1) The Gaussian beam
perpendicularly enters the centre of the detector while
the flat top beam only has an offset in the yaw direc-
tion. (2) The Gaussian beam perpendicularly enters the
centre of the detector while the flat top beam has an off-
set in both the yaw and the pitch direction. (3) Both the
Gaussian beam and the flat top beam have an offset in
the yaw direction. (4) The Gaussian beam has an offset in
the pitch direction while the flat top beam has an offset
in the yaw direction. More complex situations may also
exist but can be seen as the combination of the above four
cases.
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Figure 5. Blue curve: the relationship between ϕ and the DWS signal with circular clipped flat top beam. Red curve: the relationship
between ϕ and the DWS signal with square clipped flat top beam.

Figure 6. The relationship between ϕl and x0 in case 1.

3.1. Case 1: the Gaussian beamperpendicularly
enters the QPD centre while the flat top beamonly
has an offset in the yaw direction

If the assembly errors of the QPD and the laser are small
enough, the offset of the Gaussian beam from the centre
of the detector can be ignored. Case 1 is similar with the
situation in the last chapter with the only difference that
the flat top beam is circular clipped here. It is still sup-
posed that the offset length is x0 and the offset angle is ϕ

in the yaw direction.
The red curve in Figure 5 is the result of the numer-

ical method with x0 = 0µm while the blue curve is the

analytical result with the same parameters. The linearity
performance and the slope of the two curves are similar.
Therefore, the square clipped approximation used in the
analytical expression calculation will not lead to a wrong
qualitative conclusion.

Based on the numerical method, Figure 6 shows the
relationship between the linearity range ±ϕl and the off-
set length x0 in this case. The conclusion obtained here is
same with the results given by the analytical model, that
is, ϕ decreases with the increase of x0. For satisfying the
linearity range of ±300µrad, the offset length should be
guaranteed within 240µm.
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Figure 7. Blue curve: the relationship between ϕl and y0 with x0 = 10µm,ϕy = 10µrad. Red curve: the relationship between ϕl and
ϕy with x0 = 10µm, y0 = 10µm.

3.2. Case 2: the Gaussian beamperpendicularly
enters the QPD centre while the flat top beamhas an
offset in both the pitch and the yaw direction

In this case, the flat top beam has two offset directions.
In the yaw direction, the offset length is x0 and the offset
angle is ϕx. And in the pitch direction, the offset length
is y0 and the offset angle is ϕy. Obviously, if we only
change the offset in the yaw direction, the same conclu-
sion with case 1 will be obtained. And if only the offset in
the pitch direction is changed, the DWS signal of left and
right quadrants will be unchanged. But the joint action of
both directionsmay generate a different result. Firstly, we
keep the value of x0 and ϕy unchanged and give y0 dif-
ferent values. Then, we just change the value of ϕy with
invariant x0 and y0. The results of the linearity range are
shown in Figure 7, respectively. As the linearity range
is no longer origin-symmetric, ϕl represents the smaller
boundary here.

We can draw the conclusion that increasing the offset
length or offset angle in the pitch direction will decrease
the linearity range of the left and right quadrants DWS
signal. This is due to the fact that when the centre of the
flat top optical spot is not on the y-axis, the wavefront
distribution of left and right quadrants is no longer the
same.

As required by the Taiji programme, the maximum
potential offset angle in the pitch direction is also
300µrad. Therefore, to explore the maximum allowable
offset length, we suppose ϕy = 300µrad and increase
x0 and y0 at the same time. We make �ϕx stands for
the measurement error of the induced angle in the yaw

direction. Figure 8 presents the relationship between ϕx
and�ϕx with x0 = 15µm, y0 = 15µm.Here, the upper
bound of the linearity range reaches 300µrad. Continue
increasing x0 and y0 will make the linearity range less
than the requirement. Therefore, the offset length of the
flat top beam in the pitch and the yaw direction should
not exceed 15µm.

3.3. Case 3: both the Gaussian beamand the flat top
beamhave an offset in the yaw direction

TheGaussian optical spotmay shift from the centre of the
QPD because of assembly errors. In this case, we assume
that the Gaussian beam as well as the flat top beam only
have an offset in the yaw direction. The offset length of
the Gaussian beam is x1, the offset angle of the Gaussian
beam is ϕ1. The offset length and the offset angle of the
flat top beam are x0 and ϕ0, respectively. The included
angle of the two beams is introduced by� = ϕ0 − ϕ1 and
the absolute measurement error of the included angle is
�� . As a result, the approximate symmetric centre of the
linearity range is � = 0 rather than ϕ0 = 0 in this case.
Therefore, it is more intuitive to draw conclusions from
the relationship between ϕ0 and �� .

Figure 9 shows the relationship curves with different
offset parameters. The blue curve in the picture shows
the relationshipwith all the offset parameters being small.
We make it as a reference. Compared with the blue
curve, the other curves only change the value of x0,ϕ1
and x1 respectively. The following conclusions can be
obtained:
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Figure 8. The relationship between ϕx and�ϕx . Where, x0 = 15µm, y0 = 15µm, ϕy = 300µrad.

Figure 9. The relationship between ϕ0 and �� with different parameters. Blue curve: x0 = 10µm, x1 = 10µm, ϕ1 = 10µrad.
Red curve: x0 = 300µm, x1 = 10µm, ϕ1 = 10µrad. Green curve: x0 = 10µm, x1 = 300µm, ϕ1 = 10µrad. Purple curve:
x0 = 10µm, x1 = 10µm, ϕ1 = 300µrad.

(1) Increasing the offset length of the flat top beam will
reduce the linearity range. This conclusion is same
with that in the last two cases.

(2) By comparing the purple curve with the blue curve,
we can find that with the increasing of the Gaus-
sian beam offset angle, the linearity range within
±300µrad decreases. This is mainly due to the
change of symmetric centre.

(3) Then from the red curve, we can draw the conclusion
that increasing the distance between the two optical
spots will not reduce the linearity range. Because the
intensity gradient of the Gaussian beam decreases

from the centre to the edge. However, to guaran-
tee maximum interference efficiency in all the four
quadrants, we still need to keep the distance between
the Gaussian optical spot and the QPD centre as
small as possible.

From the conclusions in case 2,we know that x0 should
not exceed 15µm. As mentioned above, the linearity
range reduces with the decrease of the distance between
the two optical spots. Therefore, we try to find the max-
imum allowable value of ϕ1 by taking x0 = x1 = 15µm.
Figure 10 shows the results withϕ1 = ±80µrad. It can be
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Figure 10. The relationship between ϕ0 and�� with x0 = x1 = 15µm. Blue curve: ϕ1 = 80µrad. Red curve: ϕ1 = −80µrad.

Figure 11. Blue curve: the relationship betweenϕl and x0 with y0 = 10µm, ϕy = 10µrad. Red curve: the relationship betweenϕl and
y0 with x0 = 10µm, ϕy = 10µrad. Green curve: the relationship between ϕl and ϕy with x0 = 10µm, y0 = 10µm.

concluded that the absolute value of the Gaussian beam
offset angle must be ensured to be smaller than 80µrad,
i.e. |ϕ1| < 80µrad.

3.4. Case 4: the Gaussian beamhas an offset in the
pitch directionwhile the flat top beamhas an offset
in the yaw direction

In this case, the Gaussian beam and the flat top beam
deviate in different directions.We suppose that the Gaus-
sian beam has an offset in the pitch direction and the flat
top beam deviates in the yaw direction. The offset length
of the flat top beam is x0 and the offset angle is ϕx, which

is also the interested included angle. The offset length
of the Gaussian beam is y0 and the offset angle of is ϕy.
Here,�ϕx also stands for the absolutemeasurement error
of the included angle. Similarly, the influence of x0, y0
and ϕy to the linearity range are separately presented in
Figure 11.

We can conclude that:

(1) The linearity range reduces with the increase of x0,
which is also same with that in the last cases.

(2) From the red curve and the green curve, we find that
increasing y0 and ϕy will both reduce the linearity
range. Because when the flat top beam has an offset
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Figure 12. The relationship between ϕx and�ϕx . Where, x0 = 15µm, y0 = 15µm, ϕy = 80µrad.

in the yaw direction, the difference of wavefront
distribution between the left and right quadrants
increases with the increase of the Gaussian beam
offset in the pitch direction.

By synthetically considering the offset limits from
other cases, we have known that the offset length of
the flat top beam should be smaller than 15µm while
the offset angle of the Gaussian beam should be smaller
than 80µrad. Therefore, we try to find the maximum
allowable value of y0 with x0 = 10µm,ϕy = 80µrad.
Figure 12 shows the numerical result with y0 = 65µm.
It can be seen that the linearity range just meets the
demand. As we have concluded that continuing to
increase the y0 will reduce the linearity range. Thus,
only if y0 < 65µm, can the requirement of the Taiji be
fulfilled.

If we synthetically consider all the four cases above,
the offset parameters have to fulfil the following require-
ments:

(1) The offset length of the Gaussian optical spot from
the QPD centre should not exceed 65µm while
the offset angle of the Gaussian beam should not
exceed 80µrad. These put forward requirement for
the ground assembly system.

(2) The offset length of the flat top beam should not
exceed 15µm. The precision of the imaging system
should guarantee the demand.

It is worth noting that practical situations may be the
combination of the four cases. A more complex situation
may put forward slightly higher requirements, but it will

not differ greatly from the results. Therefore, the require-
ments above put forward basic demand for the ground
assembly system and the imaging system design, which
is essential for the Taiji programme.

4. Conclusion

In this paper, we firstly review the development of the
DWS technique. As the DWS signal of the Taiji pro-
gramme is generated by a Gaussian beam and a flat top
beam, the linearity performance of such DWS signal is of
interest. Then the analytical model of the DWS signal is
constructed under a relatively ideal situation and used to
qualitatively analyse the linearity performance. For deter-
mining the offset range of the beams, a numericalmethod
is subsequently used to analyse four basic practical sit-
uations. From the simulations, we draw the conclusion
that the linearity range decreases with the increase of the
offset angle of Gaussian beam, the as well as the offset
length of the flat top beam. The position offset of the
Gaussian beam in the orthogonal direction of the flat top
beam offset will also decrease the linearity range. Based
on the requirement of the Taiji programme, the absolute
measurement error of the included angle induced by the
non-linear part of the DWS technique should be less than
300 nrad within the deviation angle range of ±300µrad.
Combining the requirement and the conclusions above,
we obtain the offset range of the two beams. That is, the
offset length of the Gaussian optical spot from the QPD
centre should not exceed 65µm, the offset angle of the
Gaussian beam should not exceed 80µrad and the off-
set length of the flat top beam should not exceed 15µm.
The method and the results will guide the design of the
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practical application of the DWS technique in the Taiji
programme.
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