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ABSTRACT
Bénard-Marangoni convection can be used to self-organize hexagonal convective cells, but defects easily emerge in the hexagonal pattern,
which hinders its application in industry. The dynamics of front propagation and defect generation are studied in this paper. We focus
especially on the onset process of a local disturbance of a hexagonal pattern, named the “nucleus.” The front propagation of the nucleus
has been researched through numerical simulations of a model equation and experiments. In the numerical simulations, a single nucleus
can evolve into a perfect hexagon pattern under critical or subcritical conditions, and a random disturbance can generate multiple nuclei
which evolve into grain boundaries. In addition, under supercritical conditions, defects also emerge as a single nucleus grows. The instability
of front propagation is considered to be the mechanism for the generation of irregular patterns. The curvature effect makes the protrusion
of the front have a larger velocity in supercriticality, which results in a wavy front, and defects are generated in the concave portion of the
front. Also, because of the curvature effect, the front of an irregular pattern has a larger velocity than that of the regular pattern since the
protrusion of the front in the irregular pattern increases the average velocity. Experiments have also been carried out by using an infrared
camera to analyze front propagation. The results are qualitatively in agreement with the results of numerical simulations. Through the study
of defect generation in front propagation, we put forward a method for generating a hexagon pattern which greatly reduces the number of
defects.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5126355., s

I. INTRODUCTION

Bénard convection in a thin liquid layer, caused by thermo-
capillary effect (Marangoni effect), forms cellular convection. As
early as 1900, Bénard1 observed hexagonal cells when heating a
shallow liquid layer. Lord Rayleigh2 gave the critical Ra number
through linear stability analysis and attributed this phenomenon
to buoyant instability. However, Pearson3 revealed the truth that
thermocapillary instability is the mechanism of Bénard convection
in a thin layer. The self-organization of hexagonal Bénard cells
attracted extensive attention in pattern formation. Cloot and Lebon4

explained the mechanism of hexagonal pattern formation through
weakly nonlinear analysis. Hexagonal cells are generated by the res-
onant interaction of triads of waves oriented at 120○.5 Theoreti-
cal studies, including linear stability analysis and weakly nonlinear
analysis, are based on the Navier-Stokes equation and need to
carry out complex calculations and derivations. Therefore, Swift and
Hohenberg6 proposed a simplified model equation to describe the

Bénard pattern. This simplified equation qualitatively explains the
self-organization of both the hexagon pattern and stripe pattern.
Bestehorn7 proposed a more accurate model equation by consider-
ing the nonlinear interaction between the critical wave (kc) and the
harmonic (2kc).

In recent years, some new applications of Bénard convection
have been explored. By utilizing the self-organization of Bénard cells,
functional materials with regular patterns, such as the hexagonal
porous film, gold nanocrystal, and array of lenses, have been pro-
duced.8–10 However, defects in self-organization are uncontrollable,
which is a challenge for the industrial application of Bénard cells.
Koschmieder and Switzer11 conducted a large number of experi-
ments to study critical convection. Defects in different structures,
such as heptagon, pentagon, quadrilateral, triangular, and even star-
like structures, were found in their experiments. They conjectured
that the “star” defect was generated by the inhomogeneity of the
experimental apparatus. However, Kvarving et al.12 thought that
the “star” defect could also appear even if the uniformity of the
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boundary is perfect because they observed the pattern in numerical
simulations. Cerisier et al.13,14 researched the defects of Bénard cells
through methods of statistics and topology. They described typical
defect as a pentagon-heptagon pair and a “flower” pattern. It was
found that the hexagonal or cylindrical vessel minimized the dis-
order. Schatz and Neitzel15 concluded the order-disorder transition
as a secondary instability of Pr ∼ 1000 when they reviewed Cerisier
et al.’s work.13,14

The formation of disorder is caused, in a large extent, by the
boundary effect and initialization. In the Rayleigh-Bénard convec-
tion, the boundaries tend to orient convective rolls perpendicular
to them. This phenomenon can be found in the experiment con-
ducted by Morris et al.16 They used a circular boundary which
resulted in many defects, i.e., dislocation, disclination, focus singu-
larity, and dislocation. Recently, Tripathi and Kumar17 studied the
effect of initial condition and boundary on defect evolution by sim-
ulating the Swift-Hohenberg equation. In Marangoni-Bénard con-
vection, the boundaries prefer cells with edges perpendicular to it.
Therefore, it is easier to form regular hexagonal cells in a hexago-
nal or equilateral triangular vessel than in a rectangular vessel. Most
experiments (Bénard,1 Koschmieder,11 and Schatz18) were carried
out in a triangular or circular vessel with good uniformity. How-
ever, they did not control the initial condition. Cerisier et al.13,14

used a thermal marking technique to impose regular arrays of tri-
angles, squares, and hexagons. This studied the disordered forma-
tion by extrinsic effect after the initialization of regular patterns.
For the purpose of studying the extrinsic effect, they chose a
hexagon vessel to reduce the boundary effect. They found that the
hexagon pattern in the hexagonal vessel is stable if the wavelength
is equal to the natural one, and otherwise, the pattern evolves to
defects.

There is a special case of destabilization: hexagon cells first
emerge in the local region and then spread to the whole region.
The theoretical study of front propagation was conducted by analyz-
ing the amplitude equation. Pulled fronts under supercritical con-
ditions and pushed fronts under subcritical conditions were dis-
cussed.19–21 Tzella and Vanneste22 simulated the chemical front
in a cellular flow. Tripathi and Kumar17 studied the 1D front
propagation of periodic and chaotic patterns using the Swift-
Hohenberg equation and Ginzberg-Landau equation, respectively.
Fineberg24 conducted an experiment to study the front propagation
of Rayleigh-Bénard convection. To the best of our knowledge,
no research has been carried out on the effect of front prop-
agation on pattern formation in Bénard-Marangoni convection.
Can defects emerge on the fronts of regular hexagonal patterns?
How do the fronts induce the generation of defects? How can
we restrain disorder patterns? All these questions require further
research.

Combining numerical simulations of the model equation and
experiments on Bénard-Marangoni convection, this paper aims to
explore the dynamics of front propagation and its effect on pattern
formation. Section II introduces the model equation, numerical sim-
ulation method, and experimental method. Section III presents the
numerical results of front propagation and defect generation and
makes qualitative comparisons between the simulation and exper-
iment. We give an explanation for the defects generated in front
propagation and put forward a method for generating the regular
pattern. A conclusion is given in Sec. IV.

II. NUMERICAL AND EXPERIMENTAL METHODS
A. Model equation and numerical method

Bénard convection is described accurately by the Navier-Stokes
equation with the Marangoni boundary condition. However, the
complexity of the Navier-Stokes equation brings great difficulty to
research the dynamics of 2-dimensional patterns. Therefore, many
simplified equations have been proposed to describe pattern forma-
tion. The most famous one is the Swift-Hohenberg equation, which
is normalized as

∂ϕ
∂t
= εϕ − (Δ + 1)2ϕ + δϕ2 − ϕ3, (1)

where ε is the supercritical number. If the supercritical number ε ≥ 0,
the solution ϕ = 0 is unstable, resulting in pattern formation. δ ≠ 0
is set to simulate Marangoni-Bénard convection in which hexago-
nal patterns are obtained. δ = 0 is set to simulate Rayleigh-Bénard
convection in which striped patterns are obtained.

Bestehorn7 had put forward a modified equation with a higher-
order approximation to the Navier-Stokes equation,

ψ̇ = [γ1ε − γ2(k2
c + Δ2)2]ψ(x, t) − a1[∇2ψ(x, t)]2

− a2ψ(x, t)Δ2ψ(x, t) − b1ψ(x, t)[Δ2ψ(x, t)]2

− b2ψ(x, t)Δ2
2ψ

2(x, t). (2)

Similar to the Swift-Hohenberg equation, the linear terms in Eq. (2)
describe an exponential growth of the disturbance wave. The critical
wave number is kc. However, the nonlinear terms in Eq. (2) give a
more precise description of the nonlinear interaction between waves.
The parameters a1, a2, b1, and b2 are determined by nonlinear anal-
yses of the critical wave (kc) and the harmonic (2kc). The parameters
for a pure Rayleigh-Bénard flow and pure Marangoni-Bénard flow
are given in Table I.

In order to simulate the physical boundary, we adopt the
following solid-wall boundary conditions:

∂nψ(x, t) = ψ(x, t) = 0. (3)

When carrying out numerical simulation, the coefficients on
the right of Eq. (2) are summarized into a linear operator L and a
nonlinear operator N,

∂ψ
∂t
= L(ψ) + N(ψ). (4)

Therefore, Eq. (2) can be divided into homogeneous equations
and a nonhomogeneous equation,

Nonhomogeneous equation:
∂ψin

∂t
= L(ψin) + N(ψin), (5)

TABLE I. The parameters for Rayleigh-Bénard flow and Marangoni-Bénard flow.7

kc γ1 γ2 a1 a2 b1 b2

RB flow 2.17 7.5 0.085 2.2 1.1 −0.01 0.19
MB flow 2.03 6.2 0.073 4.6 0.2 −0.29 0.31

Phys. Fluids 32, 024107 (2020); doi: 10.1063/1.5126355 32, 024107-2

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

Homogeneous equations:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L(ψha) = 0,
ψha = −ψin,

∂nψha = −∂nψin.

(6)

The nonhomogeneous equation is solved by the Fourier spec-
tral method. It provides the boundary condition for the homoge-
neous equations in each time step. The homogeneous equations are
solved by the Gauss-Seidel iteration. The size of the calculation is
240 × 240, and the discrete grid is 240 × 240. The time derivative
uses a second-order frog leap implicit format. The solution of Eq. (2)
is given by ψ = ψin + ψha.

To study the initial condition effect on pattern formation, two
different initial conditions are taken into account:

(1) Global random disturbance [Fig. 1(a)], where the initial dis-
turbances are set random values distributed in the range of
[0, 0.01] to the nodes.

(2) Local hexagonal disturbance [Fig. 1(b)], where it is assumed
that there is a local hexagonal pattern in the center, which
evolves to a global pattern as the fronts of disturbance propa-
gate.

When the physical system is linearly unstable, any kind of small
disturbance will grow exponentially and eventually create various
patterns. The natural disturbance is uncertain and stochastic, so the
global random disturbance is more similar to the naturally formed
Bénard cells. However, the local hexagonal disturbance appears in
some special cases, which are rarely studied. We focus on the second
case and aim to study the dynamic process of front propagation and
the formation of disorder patterns during the process. The hexago-
nal pattern is obtained by superimposing triads of waves oriented at
120○,

ψ = A(r⃗)[cos(k1 r⃗) + cos(k2 r⃗) + cos(k3 r⃗)]/3, (7)

where wave vectors k1, k2, and k3 are oriented at 120○. The amplitude
of waves A(r⃗) is assumed as a Gaussian function,

A(r⃗) = A0 exp( −r⃗2/σ2), (8)

where A0 is the maximum amplitude and σ is set to be π/kc, which
is a half of the cell size.

FIG. 1. Initial conditions at t = 0: (a) global random disturbance and (b) local
hexagonal disturbance. Local hexagons can be found at the center of Fig. 1(b).

B. Experimental method
We carried out experiments in an open rectangular cavity with

a size of 160 mm × 160 mm. KF96-50 cSt silicone oil made by
Shin-Etsu is selected as the fluid medium. A thin layer with depth
d < 3 mm is studied to diminish the buoyant effect. The layer
is heated from the bottom of the cavity by an embedded heating
film. The bottom plate is a sandwich structure of copper, silica gel,
and aluminum to guarantee high thermal uniformity. Since Bénard-
Marangoni convection is caused by the surface temperature gradi-
ent, the surface temperature captured by an infrared camera can well
reflect the flow pattern. To visualize convective patterns, an infrared
camera is adopted to capture the distribution of surface temperature.
More details of the experimental setup can be found in Ref. 25. When
the temperature difference reaches the critical value, the stationary
fluid starts to form a convective pattern. We use the supercritical
number ε to describe the state of convection. As the temperature dif-
ference is not directly measured, we define the supercritical number
ε as

ε = Tb − Tbc

Tbc − Te
,

in which Tb is the bottom temperature, Te is the environmental tem-
perature, and Tbc is the bottom temperature when cells begin to
appear.

Critical convection usually forms the global pattern, and the
local pattern and front propagation are only observed in a few cases.
To generate the local pattern, we placed four cover plates at 30 mm
above the bottom, and the gaps of the plates form a window, as
shown in Fig. 2. The main purpose for using cover plates is to
restrain air convection and reduce heat dissipation to the interface,
which directly reduces the temperature difference of the liquid layer.
Therefore, the open area under the window and the area covered
by the plates are distinct in temperature difference under a thermal
equilibrium state. In the open area, the heat transfer of the liquid
surface is induced mainly by natural convection with a high heat
dissipation rate, so the surface temperature is lower, and the tem-
perature difference is larger. However, in the area under the cover
plates, natural convection is restrained with poor heat transfer, so
the surface temperature is high and the temperature difference is
small. Therefore, local hexagon cells form near the window, where

FIG. 2. The schematic of the new method for the generation of hexagonal Bénard
cells. There are four cover plates, but only two cover plates are showed here
because this figure is a two-dimensional side-view sketch.
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the temperature difference is higher than the critical value. We ini-
tialized the local pattern first by using the cover plates and then by
removing them to study front propagation, as shown in Sec. III B.
We also slowly withdraw the cover plates to make a regular hexagon
pattern, as shown in Sec. III D.

The accuracy of the experiment is affected by the temperature
accuracy, the flatness and the levelness of the bottom surface. The
temperature is controlled with a small fluctuation of±0.01 ○C and an
accuracy of ±0.2 ○C. The thermal uniformity of the copper bottom
plate is 0.02 ○C, and the flatness is 0.01 mm. We carefully adjusted
the levelness to less than 0.005○, which causes a thickness difference
of 0.014 mm. Our experiment requires good homogeneity of the
physical system in the horizontal directions. Here, we estimate the
influence of bottom fluctuation or the inclination to the uniformity
of the supercritical number. According to the critical temperature,
which is 4 ○C for a 2 mm layer with 50 cSt silicone,25 the uniformity
of the supercritical number is 2% in the horizontal directions.

III. RESULTS AND DISCUSSION
A. Instability near the onset

In a liquid layer with a vertical temperature gradient, Bénard
convection starts when the temperature gradient is beyond a cer-
tain threshold. The corresponding threshold in the model equation
is ε = 0, which means that the pattern occurs when ε > 0. The
critical pattern near the onset was expected to form a perfect reg-
ular pattern, but in fact the regularity of the pattern, to a large
extent, depends on the initial condition. Therefore, we want to find
a proper initialization pattern which can automatically develop a
regular pattern. We are interested in the pattern generated by the
expansion of local disturbance. If the local disturbance is the nucleus
of a regular hexagon, the final pattern is supposed to be a regular
hexagon.

Figure 3 shows the front propagation process after the initial-
ization of local hexagonal disturbance [Fig. 1(b)] with ε = 0.001. The
local hexagon is considered as a single nucleus, and it develops into a
hexagon cell with a circular front when t = 200. In mathematics, the
front is a special solution which is the transition from one solution
to another solution in space. Here, the hexagonal pattern is a stable
solution and the uniform state is an unstable solution near the crit-
ical. The front solution means that one side is a hexagonal pattern
and the other side is a uniform state. The front is the region between
the two red dashes, as shown in Fig. 3(a). On the front, the ampli-
tude of the hexagonal pattern gradually decreases to 0, so there is a
blurred or weak hexagon near the edges. As shown in Figs. 3(a)–3(d),
the front propagates steadily and the newly generated cells are very
regular and without disorder. Although the rectangular vessel may
easily cause defect due to the boundary effect, this simulation shows
that the hexagon cells keep the regular arrangement even when
they occupy the whole region. This means that the intrinsic prop-
erty of the hexagon pattern dominates the boundary effect. Dur-
ing front propagation, new generations of the pattern maintain
the original pattern’s orientation. This gives us an inspiration to
develop a method to reduce defects by exerting a single nucleus of
hexagon.

The instability of random initialization is studied for compar-
ison. Figures 4(a)–4(d) show the pattern evolution from random

FIG. 3. The evolution of local hexagonal disturbance: (a) pattern at t = 200,
(b) pattern at t = 400, (c) pattern at t = 600, and (d) pattern at t = 800. The front is
marked by red dashed lines in Fig. 3(a).

FIG. 4. The evolution of global random disturbance: (a) pattern at t = 200,
(b) pattern at t = 400, (c) pattern at t = 600, and (d) pattern at t = 800.
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initialization [shown in Fig. 1(a)]. It is found that the final pattern
contains many defects, and the defects cluster to form grain bound-
aries. As shown in Fig. 4(c), grain boundaries divide the hexagonal
patterns into many domains. Each domain consists of a regular
pattern whose orientation is different from those of the adjacent
domains. Grain boundary formation can be explained by the growth
of multiple nuclei. As shown in Fig. 4, the amplitude of random dis-
turbance grows uniformly at the beginning [Fig. 4(a) t = 200], and
then the amplitude accumulates in some scattered locations and the
strong multiple nuclei of the hexagonal pattern [Fig. 4(b) t = 400].
The accumulation of amplitude is conjectured as the nonlinear
action of the weak pattern. These scattered nuclei with different ori-
ented hexagons grow and form grain boundaries. The grain bound-
aries are a very stable structure, and no obvious change is found
between Figs. 4(c) and 4(d).

Although the front propagation of a single nucleus can form a
regular pattern, this is hardly found in naturally formed patterns in
experiments. Figures 5(a)–5(d) show a local hexagonal pattern that
automatically formed in a 50 cSt silicone layer of 2.30 mm depth. The
characteristic time for thermal diffusion is defined as d2/κ, which is
49.4 s. So the nondimensional time T̃ is defined as t/(d2/κ). Cells
form in the central region and then the front propagates outward
until the cells occupy the whole region. This experiment demon-
strates that a propagating front can naturally occur near the onset.
The final pattern contains defects because the initial pattern is irreg-
ular. However, the newly generated pattern has fewer defects than
the initial pattern, which means that it is possible to obtain a regular
pattern by front propagation.

Front propagation is circular in the simulation while it is
not circular in the experiment. This is because the simulation is
an idealized model. In the numerical simulation, we simplify the

FIG. 5. The onset of Marangoni-Bénard convection (50 cSt, d = 2.30 mm): (a)
pattern at t = 0 s (T̃ = 0), (b) pattern at t = 300 s (T̃ = 6.07), (c) pattern at t = 600
(T̃ = 12.15), and (d) pattern at t = 900 (T̃ = 18.22). T̃ is the nondimensional time,
defined as t/(d2/κ).

initial disturbance into two representative cases: local hexagonal dis-
turbance and global random disturbance. The real situation is a
very complex case, which is the combination of these two situa-
tions or the emergence of multiple nuclei. Comparing Figs. 3 and 5,
a circular pattern was initialized in the simulation but the initial pat-
tern in the experiment is not circular. Moreover, to observe a circular
front in experiments, good homogeneity is required. However, the
homogeneity of our open cavity is hardly ensured because the air
convection above the interface may disturb the front propagation.
It also requires high uniformity of temperature distribution, a good
flatness, and a small inclination on the bottom plate, as well as uni-
form interface heat dissipation. These limitations make it difficult to
observe circular front propagation in experiments.

B. The velocity of front propagation
To study front velocity, it is necessary to give a criterion

which determines the position of the front. As the pattern inten-
sity decreases continuously to zeros on the front, we define the front
as the point where the amplitude is equal to 20% of that of the
regular pattern. First, we need to calculate pattern amplitude dis-
tribution, by taking the weighted RMS of the disturbance in the
adjacent area. Then, we calculate the area of the pattern region
where the amplitude is larger than 20% of the regular pattern’s
amplitude. Finally, the average radius of the front is calculated from
the area of the pattern region. In numerical simulation, when the
front of the cellular region propagates outward, it is circular. So, the
radius is calculated by

√
S/2π, where S is the area of the cellular

region.
Figure 6(a) shows the time evolution of the front radius at a

different supercritical number ε. The slope of the curve represents
the velocity of the front. Interestingly, the velocity of the front is not
a constant value and it is classified into 3 stages: (1) curvature flow,
(2) regular pattern, and (3) defect pattern.

(1) Curvature flow. As the name suggests, the velocity of the
front is related to the front curvature. The curvature effect
is prominent in the early stage because the front of a small
circle has a large curvature. Taking a cross section of the
nucleus, we can see that the left front and the right front are
very close to each other, so the interaction between the fronts
is prominent. In the supercritical case, the “force” between
the fronts is repulsive, so the velocity is greater at the begin-
ning. In the subcritical case, the force between the fronts is
attractive, so the velocity is smaller at the beginning. As the
curvature effect shrinks the hexagonal region under the sub-
critical condition, a positive velocity for ε = −0.005, as shown
in Fig. 6(a), is obtained by initializing a large region. We sim-
ulate the front propagation under ε = 0.005 and wait until
the diameter is equal to about 18 and then simulate the front
propagation under ε = −0.005. To distinguish the different
initializations, we define t = 100 s in Fig. 6(a) as the initial time
for ε = −0.005.

(2) Regular pattern. As the radius increases, the effect of the
curvature can be neglected. Due to the marginal or subcrit-
ical instability, the newly generated cells maintain a regular
hexagon pattern during the whole process. A straight line is
found, as shown in Fig. 6(a), when ε = 0.01, which is close to
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FIG. 6. The front propagation depend-
ing on the supercritical number ε: (a) the
time evolution of the front radius and (b)
front velocities of the regular and irreg-
ular pattern. The points that transform a
regular pattern to an irregular pattern are
marked by arrows in Fig. 6(a).

the critical condition with the velocity of front propagation
being constant. In the supercritical case, the regular hexagon
pattern transits to defects as the front propagates.

(3) Defect pattern. The velocity of front propagation drastically
increases when the pattern becomes irregular. For instance,
the curve shown in Fig. 6(a) with ε = 0.02 has two slopes, and
they represent the change of front velocities. The transition
point of velocity of front propagation just corresponds to the
pattern transformation from a regular pattern to an irregular
pattern.

Figure 6(b) gives the velocities of the regular pattern and defect
pattern under a different supercritical number. By selecting a differ-
ent linear segment, as shown in Fig. 6(a), the velocities of the regular
pattern and defect pattern are obtained from linear fitting. The cur-
vature effect is excluded. According to the theory of front propaga-
tion, the velocity of front propagation depends on the supercritical
number ε. When the supercritical number ε≫ 0, the front is a pulled
front, whose velocity is determined by the front profile. The velocity
of the pulled front is proportionate to

√
ε. However, the front of the

defect pattern propagates 1.5–2 times faster than that of the regular
pattern. This phenomenon has not been predicted or explained by
the present theory.

It is found that the velocity of front propagation does not
decrease to zero even under the subcritical condition, ε = −0.005,
which means the pattern expands when the temperature difference
is lower than the critical value. In this case, the front is known as
a pushed front because both the uniform state and hexagon state
are stable and the velocity of front propagation is determined by
the potential difference between the two states. The velocity of front
propagation is obviously affected by the curvature effect, which
makes the pattern region shrink. As a result, the front velocity
presents a negative value when the diameter of the pattern region
is small; if the local disturbance radius is large enough to exclude the
curvature effect, the velocity of front propagation will be a positive
value. This also explains well the hysteresis phenomenon: the pat-
tern region with a large diameter will not disappear under a slight
subcritical condition.

In this experiment, we studied the front propagation in one
dimension for simplicity. One-dimensional front propagation is
accomplished by installing two cover plates above the liquid layer,
which suppress the pattern beneath the plate due to poor heat
transfer. The gap between the two cover plates is about 70 mm,
which allows the front of the pattern to propagate through the gap.
The thickness of the layer is 2.00 mm, and hexagonal cells are ini-
tialized on one side of the gap. Figure 7 presents the experimental

FIG. 7. The front propagation of Bénard cells in one
dimension.
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results of Bénard cells under different supercritical numbers when
t = 66 s. To take into account the effect of cellular orientation to the
front velocities, we studied hexagons in two orientations, with the
cell array parallel or vertical to the front. At the same propagating
time, the area of the cellular region gets larger as the supercritical
number increases. This implies that the velocity of front propaga-
tion increases with the increase in the supercritical number. Also,
the experiments indicate that the velocity of front propagation with
the parallel cells is larger than that of the vertical cells.

The direct relation between front acceleration and the defect
pattern is found. The objective of Fig. 8 is to show the relation
between the irregular patterns the acceleration of front propagation.
The left picture of Fig. 8 shows the average position of the front
vs time. The average position of the front is calculated through the
pattern area according to the front criterion. The right picture in
Fig. 8 is the final pattern. The Y axes of both pictures are consis-
tent. As the front propagates from the top to the bottom, we find
that the regular hexagonal pattern develops into a defect pattern
which consists of quadrilateral, pentagonal, hexagonal, and heptago-
nal cells. The red line is the dividing line between the regular pattern
and the irregular pattern in the right figure. Interestingly, the red
line corresponds to the transition point of velocity in the left figure.
By analyzing the two figures combined, we can clearly observe that
the defects appear when the front is accelerating. This phenomenon
is found in most experiments, which validates the prediction of
simulation.

Figure 9 gives the front velocities of the vertical cellular array
and parallel cellular array under different supercritical numbers.
The velocity is nondimensionalized by the characteristic length d
and the characteristic time d2/κ. The nondimensional velocity is
Ṽ = (κ/d)v = 19.81v for a 50 cSt silicone layer of 2.00 mm depth.
The experimental result of velocity is 5 times higher than that from
the model equation when ε ≈ 0. It is impractical to obtain a precise
agreement between the weakly nonlinear model and the experiment,
but some qualitative agreements can be found. The velocity of front
propagation increases with the increase in the supercritical num-
ber, and the pulled front is proportional to

√
ε. Under the subcrit-

ical condition, the experiments show subcritical bifurcation when
−17% < ε < 0%, and the velocity of the pushed front is larger than 0.
These results are qualitatively consistent with the model equation.

FIG. 8. The evolution of the front position and the final pattern.

FIG. 9. The nondimensional velocity of the front.

C. The mechanism of defect pattern
When a front is propagating, whether the newly generated pat-

tern is regular or irregular is related to the velocity of front propa-
gation. The formation of an irregular pattern in a propagating front
is caused by the instability of front propagation, which forms a wavy
front. The instability of a front is determined by the curvature effect
of velocity of front propagation. The curvature effect, observed at the
early stage when the size of the pattern region is small, is crucial for
the mechanism of a wavy front. Our explanation of how curvature
effect results in a wavy front is shown in Fig. 10(b). When the super-
critical number ε > 0, the velocity of front propagation increases with
the increase in curvature. Assuming that the initial front is a straight
line with a protrusion as the disturbance, the protrusion with a cur-
vature K > 0 has a larger velocity due to the curvature effect, and
the two concavities with K < 0 beside the protrusion have smaller
velocities. Therefore, in the following time sequences, the protru-
sion propagates forward and the curvature increases. This increases
the protrusion velocity further and results in a wavy front.

The wavy front is found in the numerical simulation of the
model equation. When ε = 0.02, the front configuration is circular
at the beginning, and then it transforms to a wavy front, as shown in
Fig. 10(a). The pattern shows a flower-like shape of the wavy front;
meanwhile, the disorder pattern is generated on the wavy front. This
gives an explanation of the increase of the velocity of front propaga-
tion after the regular pattern transits to an irregular pattern. This is
because the flower petal of the wave front has a large curvature which
increases the velocity. This theory can also explain why the critical
or subcritical front usually forms a regular pattern. Because the sub-
critical front has a reverse effect on the velocity of front propagation,
the protrusion, as shown in Fig. 10(b), has a smaller velocity, which
increases the stability of the wave front.

On the one hand, the instability of front propagation makes a
wavy front and increases the velocity of front propagation. On the
other hand, it induces defect patterns. Figure 11 shows the dynamics
of defect generation caused by front instability. Figure 11(a) shows
that the initial pattern is arrays of hexagonal cells. We mark the cells
at the front by a red line. As the front is propagating, a protrusion
is found, which is marked by the red curve shown in Fig. 11(b). Due
to the curvature effect, the protrusion propagates faster, while two

Phys. Fluids 32, 024107 (2020); doi: 10.1063/1.5126355 32, 024107-7

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 10. The instability of the front: (a) wave front (ε = 0.02,
t = 110) and (b) mechanism of instability. In Fig. 10(a), the
circular front changes to a flow-shaped front and the defect
is generated on the front. Figure 10(b) shows that the front
instability is caused by the curvature effect.

concavities beside the protrusion propagate slower. In consequence,
pattern formation at the concavities is delayed, which breaks the for-
mation order of the pattern. Defects appear at these two concavities,
as shown in Fig. 11(c). In Fig. 11(d), we find that the defects con-
sist of two sets of dislocations in different orientations. After the
emergence of the disorder, the vertical arrays of cells, as shown in
Fig. 11(d), are bent and kept parallel to the front.

Once defects are formed, the newly generated pattern always
is in disorder. Figure 12(a) shows the pattern at t = 160 when
many defects can be found after the destabilization of the curve.
Figure 12(b) shows the distribution of disturbance amplitude by
weighted RMS. It demonstrates that the front is not a smooth curve
but with many protrusions. The protrusion has a larger velocity
than the concavities around. As the velocity of front propagation
is proportional to the front curvature, the maximum velocities are
expected to appear at V1 and V3, as shown in Fig. 12(b). As a result,
the newly generated cells surround the concavities, labeled c1 and
c2, and form new defects [Fig. 12(c)]. Therefore, we can understand
more clearly that the wavy front with nonuniform velocities caused
by the curvature effect results in a disorder pattern. In other words,
to reduce the disorder, one should reduce the front instability.

D. Regular pattern generated by a slowly
propagating front

In industrial applications, people may intend to make a
regular hexagonal pattern with minimum defects. However, the

self-organization of hexagon cells may be accompanied with many
defects. The generation of disorder patterns can be induced by the
intrinsic effect or extrinsic effect. Therefore, to prepare a regular
hexagonal pattern, on the one hand, it is necessary to reduce the
intrinsic effect by controlling the temperature difference so that it
is close to the critical threshold; on the other hand, it is necessary to
restrain the extrinsic effect through some methods, such as using a
hexagon vessel or improving the flatness and thermal uniformity of
the bottom. Moreover, the temperature difference should be main-
tained for several hours as the relaxation time. However, disorder
cells cannot be avoided because the initial disturbance is not under
control during self-organization. The disorder pattern is very stable
after its formation.

Through numerical simulation of the model equation, we learn
that a single “nucleus” can easily grow into the regular pattern. This
process is very similar to the growth of a single crystal, where a sin-
gle crystal seed is grown into a large single crystal. Similarly, we can
generate a regular pattern through the front propagation of regular
local initialization. Also, velocity of front propagation should be con-
trolled because we should avoid front instability which may induce
disorders. The preparation of the initial local pattern and the control
of the velocity of front propagation are accomplished by the cover
plates, as shown in Fig. 2.

We propose a new method for generating regular hexagonal
Bénard cells. It is implemented through the following steps. First,
we raise the temperature difference so that it is close to the critical
value until the convective pattern is formed spontaneously. Second,

FIG. 11. The dynamics of front instability and defect gen-
eration (ε = 0.015): (a) pattern at t = 110, (b) pattern at
t = 120, (c) pattern at t = 130, and (d) pattern at t = 140.
The protrusion of the front is marked in Fig. 11(b), and the
defect is marked in Fig. 11(d).
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FIG. 12. The dynamics of front instability and defect generation (ε = 0.015):
(a) and (b) are the pattern and the amplitude of the pattern at t = 160, respec-
tively. (c) and (d) are the pattern and the amplitude of the pattern at t = 190,
respectively.

we choose the most regular small region as a nucleus and cover
the other region by plates, as shown in Fig. 13(a). Therefore, the
pattern in the other region vanishes, and only the regular hexagon
nucleus survives. Third, we slowly enlarge the convective region
by withdrawing the cover plates in the horizontal direction, which
makes the front propagate accordingly. Figure 13(b) shows the final
pattern in our rectangular vessel. We can see that the amount of
defects is greatly reduced.

For a 2 mm layer of 50 cSt silicone oil, when the temperature
difference exceeds the critical value of 4 ○C,25 the flow will lose sta-
bility and naturally form hexagonal cells, with many defects in the
naturally formed cells. So we need to choose a regular region as a
seed of the hexagon cell. By applying cover plates, the cellular con-
vection under the plates will be effectively suppressed, and only the

FIG. 13. Generation of the hexagonal pattern: (a) the seed pattern that is man-
ually initialized by setting the window and (b) the final pattern that is generated
by withdrawing the cover plates slowly. The infrared camera is fixed on a tilt to
observe the region beneath the cover plate, where the cells are vanished, as seen
in Fig. 13(a).

convection near the window is preserved as a seed. This is because
the cover plates suppress the convective heat dissipation, which leads
to the rise in the interface temperature and the decrease in temper-
ature difference, which is lower than the critical value. When the
cover plate is withdrawn slowly, the convective region expands to
the whole field. The velocity of front propagation of the hexagon
pattern should be controlled very small, which the front instability
and the emergence of other disturbance nuclei are restrained, so the
newly formed cells are very hexagon patterns.

When withdrawing the cover plate, the smaller the speed is, the
more favorable it is to form regular hexagonal cells. The front veloc-
ity of hexagonal cells is controlled to a small value by the velocity of
the cover plates. On the one hand, it can suppress the instability of
front propagation. On the other hand, it can suppress the formation
of multiple nuclei in other regions. Theoretically, we need to control
the speed of the cover plate so that it is less than the natural speed of
the regular pattern’s fronts. The nondimensional velocity of natural
front propagation is 6.0 near critical, as shown in Fig. 9. The plate
velocity is 0.075 mm/s, as shown in Fig. 13, which demonstrates that
the defects will be greatly reduced. This plate velocity corresponds to
a front nondimensional velocity of 0.74, which is 12% of the natural
speed. Therefore, we recommend that the speed should be controlled
at 12% of the natural velocity of front propagation.

IV. CONCLUSIONS
This paper presents simulations of the evolution of local hexag-

onal cells to the whole region in Bénard-Marangoni convection
using the simplified model equation. We focus on the mechanism
of defect generation in order to find a possible method to reduce
defects. For comparison, both global random disturbances and the
local hexagonal disturbance are simulated. For global random dis-
turbances, the disturbances spontaneously accumulate in scattered
multiple nuclei and develop into grain boundaries. For the local
hexagonal disturbance, the disturbance is considered as a single
nucleus whose front propagates outward until the regular hexagons
occupy the whole region. Therefore, a single nucleus can make a
regular hexagonal pattern, and multiple nuclei evolve into grain
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boundaries. This proves that the initialization of a single nucleus is
helpful in reducing the disorder pattern.

Front propagation and defect formation are also studied by
simulations. Defects are generated during the growth of the hexagon
region. The propagation of the front is divided into three stages: cur-
vature flow, regular pattern, and irregular pattern. We have found
that the curvature of the front accelerates the propagation under the
supercritical condition and vice versa under the subcritical condi-
tion. Therefore, due to the effect of curvature flow, the protrusion
propagates faster than concavities, which forms a wavy front. The
wavy front disrupts the order of hexagon formation and causes the
irregular pattern at the concavities. It is found that the front of an
irregular pattern propagates faster than that of a regular pattern.

Experiments demonstrate that there exist the local hexago-
nal pattern and the front propagation in self-organized Bénard-
Marangoni convection. We have researched propagation velocity in
different pattern orientations and under different supercritical num-
bers. The results show that the velocity increases with the increase in
the supercritical number and the parallel pattern propagates faster
than the vertical pattern. The velocity of the front is accelerated
after the emergence of the disorder pattern, which is qualitatively
consistent with the simulation. Inspired by the simulation, we have
developed a method for generating a regular hexagon pattern. It is
achieved by exerting local hexagonal initialization and controlling
the velocity of front propagation to suppress front instability. Exper-
imental results show that this method greatly reduces the amount of
defects. It may be also useful for creating a regular pattern in other
nonequilibrium systems.
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