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ABSTRACT
A second order finite-difference numerical method is used to solve the Navier–Stokes equations
of incompressible flow, in which the solid body with complex geometry is immersed into the fluid
domain with orthogonal Cartesian meshes. To account for influences of the solid body, interactive
forces are applied as boundary conditions at Cartesian grid nodes located in the exterior but in the
immediate vicinity of the solid body. Fluid flow velocities in these nodes are reconstructed to track
and control the deformation of the solid body, in which the local direction normal to the body sur-
face is employed using the level-set function. The capabilities of this method are demonstrated by
the application to fish swimming, and the computed behaviors of swimming fish agree well with
experimental ones. The results elucidate that the ability of swimming fish toproducemore thrust and
high efficiency is closely related to the Reynolds number. The single reverse Kármán street tends to
appear when both the Strouhal number and tail-beating frequency are small, otherwise the double-
row reverse Kármán street appears. The algorithm can capture the geometry of a deformable solid
body accurately, and performs well in simulating interactions between fluid flow and the deforming
and moving body.
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1. Introduction

In many scientific research and engineering applica-
tions, problems of fluid–structure interaction (FSI) are
inevitably encountered, such as the aeroelastic response
of airplane wings (Gao, Zhang, & Tang, 2016), vibra-
tions of wind turbine blades (Löhner et al., 2015; Mou,
He, Zhao, & Chau, 2017), blood flow through heart
valves (Zakaria et al., 2017) and flow past swimming
fish or flying insects (Shrivastava, Malushte, Agrawal,
& Sharma, 2017). Most of these take place in the fluid
domain with complex immersed boundaries (IBs), and
these FSI problems present significant challenges to
numerical simulations (Akbarian et al., 2018; Ghalan-
dari, Koohshahi, Mohamadian, Shamshirband, & Chau,
2019; Ramezanizadeh, Nazari, Ahmadi, & Chau, 2019)
owing to their nonlinear and strongly coupled character-
istics (Mhamed & David, 2013; Mosavi, Shamshirband,
Salwana, Chau, & Tah, 2019).

In recent years, several numerical algorithms have
been developed to solve FSI problems. Based on the treat-
ment of IBs, they can be categorized into conforming
meshmethods andnon-conformingmeshmethods (Mit-
tal & Iaccarino, 2005). In conforming mesh methods,
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the physical boundary is regarded as the interface, and
meshes are required to conform the interface. However,
it is always time-consuming for remeshing or overlap-
ping interpolation when the interface moves or deforms
(Hou, Wang, & Layton, 2012). In contrast, the non-
conforming mesh methods have advantages in dealing
with a deforming or moving solid body. Among them,
the IB method is an excellent approach, which was first
proposed by Peskin (1972). In IB methods, the body
forces are distributed over the nearby flow field of the
solid boundary, and are smeared on the interface but
not aligned with the mesh. IB methods can be further
divided into two different types: (1) diffused interface IB
methods, where the body forces are distributed to sur-
rounding grid nodes by discrete delta functions or mask
functions (Liu & Vasilyev, 2007); and (2) sharp inter-
face IB methods, where the body forces can be directly
applied on the grid points around the boundary (Fadlun,
Verzicco, Orlandi, & Mohd-Yusof, 2000). In the present
study, the sharp interface IB methods are adopted; these
include but are not limited to the Cartesian-IB method
(Gilmanov & Sotiropoulos, 2005; Yang & Balaras, 2006),
the curvilinear-IBmethod (Ge&Sotiropoulos, 2007) and
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the cut-cell method (Abgrall, Beaugendre, &Dobrzynski,
2014; Meyer, Devesa, Hickel, Hu, & Adams, 2010).

In the Cartesian-IB method, IB points are specified
as Cartesian grid points located in the fluid but in the
immediate vicinity of the solid body. In comparison,
curvilinear grids are used in the curvilinear-IB method.
The cut-cell methods use the interface of the solid body
to divide the grid cells into two subcells, i.e. the solid
phase and fluid phase. Combined with the Cartesian-
IB method, Gilmanov and Sotiropoulos (2005) used the
ray-tracing algorithm to identify the fluid, solid and IB
points. Yang and Balaras (2006) applied a field-extension
procedure to extrapolate the velocity and pressure fields
of pseudo-fluid points after each deformation. Maitri,
Das, Kuipers, Padding, and Peters (2018) used the sharp
interface IB method to simulate the particle-laden flows,
in which the ghost-cell approach was used to calculate
the direct force. Zhu, Seo, and Mittal (2019) proposed
a graph-partitioning framework for a sharp interface IB
method, and it was suitable to simulate internal flows on
large-scale parallel computers. In the study byWang, Du,
and Sun (2019), adaptive mesh refinement (AMR) was
applied alongwith the sharp interface IBmethod, and the
results showed that the AMR approach can increase the
computational efficiency.

For FSI problems, the flow fields are strongly influ-
enced by the presence of structures with moving bound-
aries, which poses a great challenge to the numerical
method and computational cost. In this paper, we com-
bine the level-set function with a Cartesian-IB method
(Cui, Yang, Jiang, Huang, & Shen, 2018) to simulate the
swimming fish. In our method, the level-set function is
employed to identify the interface of the solid body. The
velocity reconstruction relies on the normal direction of
the solid boundary, which is computed from the level-set
function and reinitialization process. This algorithm can
deal easily with an arbitrarily solid body with a complex
smooth surface, and there is no need to regenerate the
mesh when the solid body moves or deforms. The capa-
bilities of the method are demonstrated by simulating a
swimming fish, in which fish swims in-line by undulat-
ing its body. In the present study, two-dimensional (2D)
simulations are used to investigate the swimming perfor-
mance of self-propelled fish. Owing to the computational
cost, three-dimensional (3D) simulations of a tethered
fish model are used to demonstrate the different patterns
of vortex street, because 3D simulations of self-propelled
fish would be computationally too expensive to perform
several cases in a timely manner (it would take months
on parallel computers).

The rest of the paper is organized as follows. The
numerical methods, including the fluid solver, the level-
set function and the IB method, are introduced in

Section 2. A fish model with complex geometry and
unique motions is presented in Section 3. Subsequently,
several cases of swimming fish are simulated with differ-
ent fluid viscosity and swimming gaits, and the vortex
patterns are analyzed in Section 4. Finally, the conclu-
sions are summarized in Section 5.

2. Computational methodology

2.1. The flow solver

In Cartesian coordinates, the incompressible Navier–
Stokes equations of Newtonian fluid are presented as:

∂ui
∂t

+ ∂
(
uiuj

)
∂xj

= − 1
ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
+ fbi (1)

∂ui
∂xi

= 0, (i = 1, 2, 3) (2)

where xi are the Cartesian coordinates, x, y and z; ui are
the velocity components, u, v and w; p is the pressure,
ρ is the density, ν is the kinematic viscosity, and fbi are
the components of body force fb in different directions,
which result from the interactions between the solid body
and the fluid flow.

In our in-house developed code, the finite difference
method is used for spatial discretization, and the second
order Runge–Kutta (RK2) method is used for time inte-
gration. The pressure Poisson equation is solved by the
Krylov-based multigrid solver from the PETSc library.
The Navier–Stokes equations are solved by large eddy
simulation (LES) methods, and the dynamic Smagorin-
sky model (Germano, Piomelli, Moin, & Cabot, 1991;
Lilly, 1992) is adopted to calculate the turbulent flow. A
detailed description can be seen in our previous work
(Cui et al., 2018).

2.2. Treatments of the immersed solid boundary

In our code, the treatments of the immersed solid bound-
ary consist of two key procedures: (1) tracking the IB by
the level-set function; and (2) reconstructing the local
velocity of the points near the IB. The detailed algorithm
employed herein has already been presented in our previ-
ous work (Cui et al., 2018). For the sake of completeness,
the boundary treatments are briefly introduced in this
section.

2.2.1. Level-set function
In conventional IB methods, the normal direction of the
solid body surface is calculated by generating a mesh on
the body surface (Balaras, 2004; Choi, Oberoi, Edwards,
& Rosati, 2007; Gilmanov & Sotiropoulos, 2005; Kim,
Kim, & Choi, 2001). Differently from that, the level-set
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Figure 1. Schematic illustrating the level-set function of a sphere
with radius of 1.

function is used to describe the boundary of the solid
body, and is expressed as:

φ(�x, t) =
⎧⎨
⎩

−�(�x, t) in solid
0 interface
�(�x, t) in fluid

(3)

where � is the distance from any point to the boundaries
of the solid body. Taking a sphere as an example, when the
radius is 1, the level-set function φ is

√
x2 + y2 + z2 − 1.

As shown in Figure 1, the distance of the points on
the boundary is 0, i.e. φ(�x, t) = 0 . φ(�x, t) is negative in
the solid domain and positive in the fluid domain. The
grid–interface relationship is then established by a given
level-set function of the interface.

The level-set function of the IB is a signed distance
function. Therefore, the unit normal vector �n can be
calculated by:

�n = ∇φ

|∇φ| (4)

Besides, for the complex geometry of the solid body,
the reinitialization process may be needed to correct the
level-set function (see the work of Cui et al., 2018).

2.2.2. Interpolationmethod
In the present IB method, the boundary of the solid body
is treated as a sharp interface, and a force

−→
fb is intro-

duced into the Navier–Stokes equation to account for
the influences of the solid body. First, the forcing points
(denoted as IB points or IB nodes) should be found in the
fluid domain immediately adjacent to the solid bound-
ary. Then, the force

−→
fb is calculated by the velocity at

the forcing point, which is reconstructed via the bilinear
interpolation scheme. The scheme of velocity reconstruc-
tion involves the velocities of the solid body and fluid
flow, and determines the accuracy and adaptability of
flow computations with complex boundaries.

Since the motions of the fish body are prescribed in
thiswork, the location for each solid node is readily deter-
mined by the level-set function at every time step. The
next step is to reconstruct the velocity vector of the IB
points. As shown in Figure 2, point 1 is a solid point,
and its variables are prescribed from the solid bound-
ary conditions. The variables of points 2 and 3 in the
fluid domain are computed from the previous iteration.
Point 0 is the IB point or forcing point, and the boundary
conditions are constructed by interpolating the variables
along points 1, 2 and 3, where the dashed line �n is nor-
mal to the interface passing through point 1. The normal
direction is calculated by the gradient operators of the
level-set function (Equation 4). After the boundary con-
ditions interpolation of all IB points, the solution in all
fluid points can be advanced to the next iteration.

In our developed code, the fluid and solid solvers need
to be coupled to solve the FSI problems. The fluid solver
calculates the force exerted on the solid body, and then
transfers to the solid solver. Based on the forces, the solid
solver updates the position of the solid body, and the fluid
solver updates the flow field accordingly. As shown in
Figure 3, at the beginning of step n+ 1, the position and
velocity status of the solid body are given by an initial
guess Sn = S∗, and the fluid and solid information, i.e.
Fn and Sn, are advanced one step to yield F∗∗ and S∗∗,
respectively. After one inner iteration step, if the differ-
ence between S∗ and S∗∗ is sufficiently small (10−3 in
the present study), the inner iteration converges in the
dashed frame, and Fn + 1 and Sn + 1 are given as F∗∗ and
S∗∗, respectively. Otherwise, the new guess of S∗ is set as
S∗∗ and a new inner iteration step starts.

Figure 2. Schematic illustrating the level-set-based Cartesian-
immersed boundary (IB) method.
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Figure 3. Flowchart of the algorithm of the level-set-based
Cartesian-immersed boundary method.

The accuracy of the numerical method has been
tested in the context of several benchmark cases, such as
the flow past a fixed/oscillating cylinder, vortex-induced
vibration of a cylinder, and a 2D self-propelled anguilli-
form fish. The results agree with previous experimental
and numerical results. All these results can be found in
our previous work (Cui et al., 2018).

3. Computational fluid dynamics fish model

3.1. Undulatorymotions

Based on biological observations (Videler, 1993), the
undulations of a fish body can be described by wave-like
motions, and they are expressed as:

y(x, t) = A(x)sin(2π ft + kx) (5)

where f is the beating frequency of the fish tail, k is the
wave number, andA(x) is the amplitude function.A(x) is

Figure 5. Shape of the fish body with elliptical cross-section.

varied along the fish’s body, and described by a quadratic
function:

A(x) = a1 + a2x + a3x2 (6)

where a1, a2 and a3 are the amplitude coefficients, which
have been summarized by Alvarado (2007). For example,
a set of parameters to describe thesemotions can be listed
as: k = 5.7/L, a1 = 0.02L, a2 = −0.12 and a3 = 0.2/L,
where L is the full length of the fish body.When f = 2Hz,
themidlinemotions of the swimming fish in one tail-beat
period are shown in Figure 4.

As shown in Figure 5, the shape of the fish body is
described by the elliptical cross-section, which includes
the caudal fin (excluding all other fins). The profiles of
the cross-section are defined by R(x) and r(x), and they
are expressed as (Alvarado, 2007):

R(x) = 0.14L sin
(
2πx
1.6L

)
+ 0.0008L(e2πx/1.1L − 1)

(7)

r(x) = 0.045L sin
(

2πx
1.25L

)
+ 0.06L sin

(
2πx
3.14L

)
(8)

3.2. Self-propelled fishmodel

A self-propelled fish undulates its body with prescribed
motions, and accelerates from a stationary state. At first,
the thrust is generated by the interactions with fluid flow,

Figure 4. Midline motions in one tail-beat period.
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and produces a forward movement. Then, a drag force
is produced owing to the viscosity of fluid flow, which is
smaller than the thrust at the beginning. Therefore, the
forward speed increases, as well as the drag force, until
the thrust and drag forces are balanced. At that time, the
fish will swim with a constant average velocity, reaching
a quasi-steady state. During this process, the governing
equation is expressed as:

mf
∂2xc
∂t2

= Ff (9)

where mf is the mass of the fish body; xc is the gravity
center position of the fish body in the x direction; and Ff
is the net force.

In this paper, mf can be calculated by ρf Vf , ρf is the
density of the fish body, equal to that of fluid flow ρ;
and Vf is the volume of the fish body. The net force
Ff = (Fx, Fy, Fz) is calculated by summing the forces of
all the IB points (m = 1, 2, . . . ,M), and the formulae are
shown as (Lai & Peskin, 2000; Le, Khoo, & Peraire, 2006):

Fx = −
M∑

m=1
fix, Fy = −

M∑
m=1

fiy, Fz = −
M∑

m=1
fiz (10)

where fix, fiy and fiz are the force of the ith IB point in the
x, y and z directions, respectively.

The consumed power Pc is calculated as:

Pc =
M∑

m=1
(fxiui + fyivi + fziwi) (11)

where ui, vi and wi are the velocity of ith IB point in the
x, y and z directions, respectively.

Additional parameters used to describe the self-
propelled fish model are listed as follows:

(1) Reynolds number (Re): this is defined by the fish
length and the reference velocity (fish length times
tail-beat frequency, body length/s), and expressed as:

Ref = L2

(Tν)
(12)

where T is the tail-beat period. For example, when
ν = 6.25e − 4 (N · · · )/m2, T = 0.4 s, L = 1m, the
calculated Ref is 4000.

(2) Strouhal number (St): in swimming fish, this is
defined as:

St = f Amax

U
(13)

whereAmax is the maximum amplitude, andU is the
forward speed.

(3) Slip ratio β : this is defined as (Borazjani &
Sotiropoulos, 2010; Eloy, 2012; Piñeirua, Godoy-
Diana, & Thiria, 2015):

β = U
V

(14)

where V is the phase velocity of the undulatory
motion.

(4) Elongated body theory (EBT) efficiency: this is
introduced to quantify swimming efficiency, and
expressed as (Cheng & Blickhan, 1994):

ηEBT = 1
2
(1 + β) − 1

2

(
λ

2π
h′(L)
h(L)

)2
β2

1 + β
(15)

where λ is the wavelength of the fish’s undulatory
motions, and h(L) and h′(L) are the amplitude and
its derivative, respectively, at the fish tail.

4. Results and discussion

In this section, the numerical method is applied to sim-
ulate a self-propelled swimming fish. As shown in Figure
6, the fish is placed at 48.5L from the inlet plane in the
x direction, and centered in the y and z directions. A
refined uniform mesh with a smaller grid size is used
around the fish. The uniformmesh is used in the x direc-
tion, while the non-uniform mesh is adopted in the y
and z directions, in which a hyperbolic tangent function
is used. In the present study, the effects of grid resolu-
tion and time step dt have been tested, and the results
indicate that a resolution of the grid near the fish body
�x×�y×�z = 0.02L× 0.005L× 0.005L achieves res-
olution independency, and dt = 0.005 is used to warrant
numerical iterations. The set-up parameters are shown in
Table 1.

For the boundary conditions, the periodic boundary
condition is used in the x direction and the no-slip con-
dition is applied in the other boundaries. The bound-
ary conditions are shown in Table 2. It is notable that
a 0.5L sponge layer is adopted at the end of the outlet

Figure 6. Computational domain of a self-propelled swimming
fish.
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Table 1. Set-up parameters of the self-propelled fish model.

Case
Computational

domain Grid mesh CPU number
Mesh size round

fish body

2D 50L× 4.8L 2048× 256 128 0.02L× 0.002L
3D 50L× 5L× 5L 2048× 160× 160 512 0.02L× 0.005L× 0.005L

Note: 2D = two-dimensional; 3D = three-dimensional; CPU = central processing unit.

Table 2. List of boundary conditions in the cases of swimming
fish.

Boundaries Formulae

Inlet ∂p/∂y = 0, u = ub , v = vb
Outlet ∂u/∂t + Uconv(∂u/∂x) = 0, Uconv is the convection outlet

velocity
Periodic uin = uout, pin = pout

uin is the inlet velocity, uout is the outlet velocity; pin is the
inlet pressure, pout is the outlet pressure

No-slip μ(∂u/∂y + ∂v/∂x) = 0,μ(∂w/∂y + ∂v/∂z) = 0
Solid wall u = v = w = 0

boundary, which is used to eliminate the effect of the
periodic boundary on the fish’s swimming performance.
To reduce the computational time, our code is paral-
lelized using the message passing interface (MPI) based
on domain decomposition. For 2D cases of swimming
fish, it would take almost one week on parallel computers
using 128 central processing units (CPUs). For 3D cases,
the grid number is around 52.43 million, and it would
take weeks on parallel computers using 512 CPUs.

4.1. Forward speed

For the 2D self-propelled fish, it swims forward in
a straight line with undulatory motions, which are
described as in Section 3.1. The fish starts at rest and
accelerates to achieve a larger forward speed. When
the Reynolds number is varied from 600 to 1500, the
changing patterns of forward speed are shown in Figure
7. The unit BL/s means the body length per second,
which is used to describe the forward speed. As a whole,
when the fish swims in a steady state, the mean for-
ward speed increases with Reynolds number and the
instantaneous speed fluctuates periodically, matching the
tail-beat period.

Other parameters used to evaluate swimming perfor-
mance are also listed in Table 3. In general, the kine-
matic viscosity of fluid flow decreases with Reynolds
number. For a self-propelled fish, when it swims in a
steady state with constant forward speed, the drag force
will also decrease with Reynolds number. Therefore, a
smaller thrust force is required to overcome this drag
force, and the net thrust force will be increased. As a
result, the forward speed of the swimming fish would
be increased to reach the force balance, and more con-
sumed power is needed owing to the larger speed and

Figure 7. Forward speed of a self-propelled fish varies with
Reynolds number (Re).

thrust force. Therefore, the Strouhal number and the slip
ratio increase with the Reynolds number (or the for-
ward speed). The consumed power increases with the
Reynolds number, while the EBT swimming efficiency
gradually increases. These results elucidate that the abil-
ity of a swimming fish to produce more thrust and high
efficiency is closely related to the Reynolds number.

When the Reynolds number is large enough, the fluid
flow becomes inviscid. The fish body undulates and
pushes the surrounding water backwards, and pairs of
counter-directional rolling vortices are released, produc-
ing a jet flow or thrust force along the swimming direc-
tion. On both sides of this jet, vortices start to stretch ver-
tically and break intoweaker vortices as they are advected
axially and vertically (see Section 4.2).

4.2. Vortex analysis

To demonstrate the capabilities of the numerical method,
the flowpast a 3D tethered fish body is simulatedwith dif-
ferent body motions. Experiments involving flapping flat
plates, as well as swimming fish, have shown the impor-
tant effects of Strouhal number on the vortex structure of
the wake flow (Eloy, 2012). More importantly, the studies
of Borazjani and Sotiropoulos (2008, 2009, 2010) showed
that the single-row and double-row wake structures of
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Table 3. Swimming performance of the self-propelled fish model.

Case no. Re Speed (BL/s) Thrust (N) Slip ratio EBT efficiency (%) St Consumed power (NâĹŹ m/s)

1 600 0.350 2.432e−3 0.3175 65.9 1.143 1.057e−2
2 750 0.432 3.603e−3 0.3919 69.6 1.157 2.058e−2
3 900 0.492 4.780e−3 0.4246 71.2 1.282 3.358e−2
4 1050 0.605 5.391e−3 0.5189 75.9 1.224 4.880e−2
5 1200 0.675 6.328e−3 0.5851 79.3 1.240 7.334e−2
6 1350 0.715 7.936e−3 0.6305 81.5 1.295 1.023e−1
7 1500 0.740 9.199e−3 0.6623 83.1 1.370 1.373e−1

Note: Re = Reynolds number; EBT = elongated body theory; St = Strouhal number.

Figure 8. Three-dimensional wake structures of a swimming fish variedwith tail-beat frequency: isosurface of vorticity magnitude visu-
alized using the λ2 criterion. (a) f = 0.5 Hz (St = 0.1); (b) f = 1.0 Hz (St = 0.2); (c) f = 2.0 Hz (St = 0.4); (d) f = 3.0 Hz (St = 0.6); (e)
f = 4.0 Hz (St = 0.8); (f ) f = 5.0 Hz (St = 1.0).

swimming fish depend on the Strouhal number. In con-
trast, we focus on the study of the influences of kinematic
parameters (i.e. amplitude, tail-beat frequency and wave
number) on the pattern of the wave structure. The results
are shown in Figures 8–10, respectively.

All of the cases in Figure 8 have the same maximum
amplitude (0.2) and the same wave number (5.7). When
the tail-beat frequency is varied from 0.5 to 5Hz, two
types of vortex street structures appear behind the fish
tail. When the tail-beat frequency is 0.5Hz (St = 0.1)
and 1.0Hz (St = 0.2), a single-row vortex street structure
with staggered braided hairpin vortices is observed. But
if the tail-beat frequency increases, the structure of the
single-row vortex street turns into a double-row structure
and the vorticity also increases. In Figure 8, the struc-
tures of the vortex ring are clearly visualized using the λ2

criterion, and the jet-like flow induced by vortex rings is

directed away, producing thrust force that helps the fish
to swim forward.

In the present study, it was found that the single-
row and double-row vortex structures of the wake
flow are dependent on tail-beat frequency or Strouhal
number. Dong, Mittal, and Najjar (2006) also reported
that single-row and double-row vortex structures can
appear in flow past a flapping ellipsoidal foil. Simi-
larly, Buchholz and Smits (2005) observed a single row
of vortices when the Strouhal number is 0.2–0.25, and
a double vortex row with two separate trains when
the Strouhal number is large. In Figure 8, it is clear
that the vortex rings are linked with each other. This
is consistent with experimental results using live fish,
which revealed that these staggered vortices can further
improve the abilities of thrust production or swimming
maneuvers.
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Figure 9. Three-dimensional wake structures of a swimming fish varied with beating amplitude: isosurface of vorticity magnitude visu-
alized using the λ2 criterion. (a) Ac = 0.25, St = 0.11; (b) Ac = 0.5, St = 0.22; (c) Ac = 0.75, St = 0.33; (d) Ac = 1.5, St = 0.66; (e)
Ac = 2.0, St = 0.88; (f ) Ac = 2.5, St = 1.1.

Figure 10. Three-dimensionalwake structures of a swimmingfish variedwithwavenumber: isosurface of vorticitymagnitude visualized
using theλ2 criterion. (a) k = 1.5, St = 0.44; (b) k = 3.0, St = 0.44; (c) k = 4.5, St = 0.44; (d) k = 6.0, St = 0.44; (e) k = 7.5, St = 0.44;
(f ) k = 10.5, St = 0.44.
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For the cases in Figure 9, the amplitude is changed
by multiplying by a constant Ac, i.e. AcA(x), and Ac is
changed from 0.25 to 2.5. Meanwhile, the tail-beat fre-
quency is the same (2.2Hz) and the wave number is
also the same (k = 5.7). With different amplitude, the
Strouhal number varies from 0.11 to 1.1, and the 3Dwake
structures visualized by the instantaneous isosurfaces of
the λ2 criterion are shown in Figure 9. In Figure 9(a), the
Strouhal number is 0.11, but the wake pattern is featured
as a double-row wake. At the beginning, the vortex is
attached to the fish surface, and then the vortices are shed
from the tail in a wedge-like arrangement. Owing to the
undulation of the fish body, more than one bump regions
exists on the fish surface, which results in the vortices
detaching in a staggered way.

For the cases in Figure 10, the amplitude and tail-beat
frequency are the same (A = 0.2, f = 2.2), and the wave
number is varied from 1.5 to 10.5. The structures of the
vortex street are double-row, and there are no obvious
changes in Figure 10. This result is consistent with the
conclusion in our previous study (Cui, Gu, Li, & Jiang,
2017), in which we found that the wave number of body
motions has little effect on swimming performance.

In Figures 8–10, the vortex structures of the wake
shed from the fish tail for all cases are fairly similar at
high Strouhal numbers, but the main difference is seen
at low Strouhal numbers. At high Strouhal numbers,
the wake behind the fish tail grows vertically as well as
axially owing to high vertical or lateral velocity, and a
double-row structure can be observed. It should be noted
that the single-row vortical structure is observed at low
Strouhal number (St = 0.1, f = 0.5Hz) in Figure 8(a),
but a double-row vortical structure is also observed at low
Strouhal number (St = 0.11, A = 0.25) in Figure 9(a).
For these two cases, the vortices are not strong enough to
create a strong vortex wake similar to the other cases. In
Figure 8(a), the formed vortex rings are partially linked
to the immediately released one, but become separated
completely before detaching from the tail and shedding
into the wake. This merging of the single-row vortex
street occurs because of the relatively slow vertical veloc-
ity. For this case in Figure 9(a), a double row consisting of
two reverse Kármán vortex streets has formed, and these
vortices propagate along the axial and lateral directions
to form two rows of vortices due to the high tail-beat
frequency (compared with the case in Figure 8a).

Borazjani and Sotiropoulos (2008, 2009) found that
the vortex structure of the fish wake was related to the
Strouhal number. When the Strouhal number is small,
the vortex street structure of the fish wake is a single-row
vortex street structure, whereas when the Strouhal num-
ber is large, it corresponds to a double-row vortical struc-
ture. The premise of this conclusion is to assume that

the tail-beat amplitude remains unchanged, while the fre-
quency is changed to obtain different Strouhal numbers.
In contrast, the Strouhal number in the present study is
changed by either amplitude or tail-beat frequency. Our
results show that: (1) the single-row vortex street struc-
ture will appear only when both Strouhal number and
tail-beat frequency are small; (2) the vortex street struc-
ture of the fish body wake is mainly determined by the
tail-beat frequency and Strouhal number; and (3) it is
independent of the tail-beat amplitude and wave num-
ber. These results further revise the findings in previous
research on the wake vortex street structure (Borazjani &
Sotiropoulos, 2008, 2009, 2010).

The vertical or lateral distances of the adjacent vor-
tices are also varied in Figures 8–10. In Figure 8, when
f = 0.5Hz, the vertical length of the single-row wake
structure is about one length of the fish body, and the
lateral length is about 0.3L. As the tail-beat frequency
increases, the vertical length reduces, but the lateral
length increases. When f = 4.0Hz or 5.0Hz, the verti-
cal length becomes very small and the lateral length is
about 1.0L. In contrast, when the amplitude increases, the
lateral distances of the vortex streets expand gradually,
from 0.2L (Figure 9a) to 1.2L (Figure 9f), but the verti-
cal distances show no obvious changes. In Figure 10, the
changes in wave number have very a small influence on
the vertical and lateral distances.

5. Conclusions

In this paper, a sharp interface Cartesian-IB method has
been presented to simulate the interactions between fluid
flow and a solid body with complex deformed bound-
aries. In this method, the interface of the solid body is
treated as a level-set function, and its normal direction
is used to reconstruct the velocity of forcing points. Fur-
ther, the numerical method is applied to simulate fish
swimming, and the 2D simulations of a self-propelled fish
show that the computed behaviors are in good agreement
with experimental studies on live fish. The computational
results of swimming fish indicate that the level-set func-
tion is suitable to describe the complex geometry of the
fish body, and the level-set-based IB method captures
the interactions between a deformable body and the sur-
rounding fluid flow accurately. The vortex street behind
the fish tail is also analyzed when the motions of the
fish body are varied with the amplitude, frequency and
wave number. The numerical results of the 3D fishmodel
show that the single reverse Kármán street is prone to
appear when both the St number and tail-beat frequency
are small; otherwise, the double-row reverse Kármán
street appears. Therefore, we predict that the double-row
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reverse Kármán street appears for most swimming fish,
to optimize their integrative swimming performance.

It should be noted that we assumed that the weight
of self-propelled fish is balanced with the buoyancy, and
neglected rotations (yaw, pitch and roll) in the dynam-
ics of motion. In addition, we did not investigate the
performances under different swimming patterns, such
as fast starts, C-turning and maneuvering. In our sim-
ulations, the motions of the fish body are prescribed,
which occasionally happen in the real world. Therefore,
many more numerical cases of swimming fish with opti-
mized kinematic parameters should be investigated in the
future.
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