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A B S T R A C T

A simple constitutive model is presented to represent the behavior of granular materials subjected to a large
stress range by introducing a revised normal compression line with a limit void ratio (eL) in the double loga-
rithmic scale and a state parameter (ξ) to quantify the state of granular materials. In the proposed model, a drop-
shaped yield surface is employed and a unified hardening parameter (H) that is a function of the state parameter
(ξ) is developed to govern the hardening process. The model is first established in the triaxial compression stress
state and then is extended to the general stress state through the transformed stress (TS) method. Adopting a
single set of material parameters, the proposed model is verified against the experimental results of various tests
on Cambria sand at different confining pressures (0.25–68.9 MPa), including the data of isotropic compression
test and drained/undrained triaxial compression/extension tests.

1. Introduction

Granular materials have been widely used in various aspects of
geotechnical engineering, such as dam and pavement. The mechanical
behaviors of the granular materials govern the engineering safety and
deformation, and thus received considerable attention from scientific
and engineering communities. Because most of the engineering pro-
blems are at low pressure level (see Table 1), the research on the me-
chanical properties of granular materials focuses on low pressures his-
torically [1–7]. However, with the development of society and
economy, a lot of practical geotechnical problems involve high or very
high stresses. For example, natural gas hydrate has become a potential
clean energy after oil and natural gas energy. Nevertheless, natural gas
hydrates generally accumulate in the depth range of 200–1100 m in the
terrestrial permafrost zone, or below 1200 m in the seawater zone and
in the depth range of 300 m in the seabed [8]. These may result in well
shafts experiencing high stress level of soil pressures. Additionally, soils
under the tips of piles supporting the high-rise buildings or subjected to
explosions may experience much higher stresses. Therefore, it is very
important to research and describe the behavior of soils subjected to
high stresses to assist in the solution to these geotechnical engineering
problems.

It is known that particle crushing is the unique microphenomenon
of granular materials, and can cause the special macroscopic mechan-
ical properties of granular materials different from that of clays,

especially at high stress. Many researchers have obtained some basic
laws of these macroscopic mechanical properties through laboratory
experiments. In the past sixty years, a number of one-dimensional
compression tests at high stresses has been conducted on various
granular materials. According to one-dimensional compression experi-
ments on sand and ground quartz up to 140 MPa, Roberts and de Souza
[10] observed that large deformation occur when vertical stress in-
creases beyond a “critical pressure”, which mainly caused by particle
breakage, and found that the initial void ratio is the chief factor to
control the “critical pressure”. Hendron [11] carried out confined
compression experiments on four different kinds of sands, and con-
cluded that the initial density is the most important variable at low
pressures, and its effect is reduced gradually with the vertical stress
increasing. The compression lines of sands with different initial den-
sities converge onto single loading paths of unique void ratios at high
pressures. Hagerty et al. [12] carried out one-dimensional compression
tests on Ottawa sand subjected up to 689 MPa, and found that the
compression process of sand includes three phases: particle arrange-
ment at low stresses, particle crushing and rearrangement under higher
stresses and fractured particles at very high stresses. Yamamuro et al.
[13] developed a one-dimensional testing apparatus with axial stresses
up to 850 MPa. Using this apparatus, they carried out a series of one-
dimensional compression tests of three sands with different mineral
hardness. They pointed out that the magnitude of stress at which these
compression curves join each other and the minimum void ratio at the
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maximum stress appear to be related to the mineral hardness. The softer
the mineral hardness, the lower the minimum void ratio at the max-
imum stress.

However, only a few studies examining behaviors of granular ma-
terials have been published at high confining pressures (above a con-
fining pressure of 10 MPa). Yamamuro and Lade [14] performed a
series of drained triaxial compression and extension tests on dense
Cambria sand at various confining pressures between 0.25 and 52 MPa.
They observed the overall stress-strain and volume change behavior,
and concluded the following mechanical properties for granular mate-
rials. (a) At low confining pressures, particle crushing is not significant
throughout the test. With increasing confining pressure, particle
crushing occurs, and the volumetric changes gradually from dilatancy
to contraction in drained triaxial compression and extension tests. (b)
At higher confining pressures, the lower void ratios are obtained in the
isotropic consolidation, which allows less volumetric contraction.
Therefore, the volumetric strain reaches the maximum value at a higher
confining pressures, and then decreases as the confining pressures
continue to increase. (c) The location of the critical state line (CSL) in
the e-logp space is affected by particle crushing. At low confining
pressure, the CSL obtained by compression test is located above that
obtained by extension test. At higher mean normal stresses, the CSL
obtained by extension test is located above that obtained by compres-
sion test. Furthermore, Lade and Yamamuro [15] performed undrained
triaxial compression and extension tests on dense Cambria sand be-
tween initial effective confining pressures of 6.4 MPa and 68.9 MPa.
These undrained tests suggest the following mechanical properties for

granular materials. (a) The maximum principal stress differences occur
at very low major principal strain values, and well inside the effective
stress failure envelope in the p-q space. This indicates that granular
materials do not behave in accordance with associated plastic flow rules
as the modified Cam-clay model. (b) The slopes of effective failure
envelopes in the p-q space are different under compression and exten-
sion conditions. The slope under compression condition is larger than
that under extension condition. (c) At high confining pressures, the
peak strength lines from drained and undrained compression and ex-
tension tests merges into one unique line, rather than the failure
strength lines (i.e. CSL).

Overall, the behaviors of granular materials are quite complex at the
high confining pressures. It is very challenging for researchers to de-
scribe these properties well by developing a simple constitutive model
with limited number of material parameters. Yu [16] introduced a state
parameter into the Cam-clay model and developed a unified model
called CASM. Daouadji et al. [17] proposed an elastoplastic constitutive
model for granular soils considering particle crushing. Based on the
concepts of critical state soil mechanics, Yao et al. [18] developed a
unified hardening model for clays and sands referred to as the CSUH
model. However, a common weakness of the models mentioned above
is that the pore volume will be negative at high stress, so they are in-
capable of describing the behaviors of granular materials at high
stresses. Pestana and Whittle [9] assumed a linear relation between the
logarithmic void ratio and the logarithmic mean stress and developed a
compression model. Wan and Guo [19] proposed a constitutive model
for granular soils by modifying the original Rowe’s equation (referred

Nomenclature

Dijkl
e elastic constitutive tensor

Dijkl
ep elastoplastic constitutive tensor

e0 initial void ratio
e void ratio
eη void ratio on the anisotropic compression line with its

stress ratio being η
ec0 void ratio on the critical state line at the mean effective

stress p = 0 kPa
E elastic modulus
G elastic shear modulus
H unified hardening parameter
K elastic bulk modulus
L Lame’s constant
m dilatancy parameter
M critical state stress ratio
Mf potential failure stress ratio
Mc characteristic state stress ratio
M ξ

c c characteristic state stress ratio according to ξc
N location of asymptotic line in the e-lnp plane
p mean effective stress
∼p transformed mean effective stress
px0 intersection of the current yield surface with the p-axis in

the initial condition
px intersection of the current yield surface with the p-axis
py intersection of the plastic potential surface with the p-axis
ps compressive hardening parameter according to Z

q deviator stress
q͠ transformed deviator stress
Z location of normal compression line for sands in the e-lnp

plane
λ slop of normal compression line in the ln(e-eL)-ln(p + ps)

plane, also is the slop of asymptotic line in the e-ln(p+ps)
plane

κ slop of the unloading line in the ln(e-eL)-ln(p + ps) plane
η stress ratio
∼η transformed stress ratio
ν Poisson’s ratio
χ critical state parameter
ξ state parameter describing the current density
ξc value of ξ at the characteristic state point ( =η M ξ

c c)
εv volumetric strain
εv

e elastic volumetric strain
εv

p plastic volumetric strain
εd

p plastic deviator strain
εij

e elastic strain
εij

p plastic strain
δij Kronecker’s delta
σij stress tensor
σ͠ij TS tensor
Λ plastic factor
∼Λ plastic factor in TS space
Δep vertical distance between normal compression line and

critical state line in the e-p or e-lnp plane at the mean stress
effective p

Table 1
Distribution of stress [9].

Very low Low Medium high High Very high Ultra-high

Stress range 0.1–10 kPa 10 kPa–1 MPa 1–10 MPa 10–100 MPa 100–1000 MPa 1000 MPa–
Geotechnical

conditions
Deep-sea surface
sediment

Common geotechnical
engineering

High rockfill
dam

Natural gas hydrate bearing
soil; deep mine shafts

Soils under the tips of driven pile,
Soils subjected to explosions
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to as a modified stress-dilatancy law). Li and Dafalias [20] presented a
rudimentary model treating the dilatancy as a state-dependent quantity.
Based on the concepts of critical state soil mechanics, Russell and
Khalili [21] provided a function to describe the uniquely shaped critical
state line across a wide range of stresses, and proposed a bounding
surface plasticity model for sands. Although these models avoid nega-
tive pore volume at high stress, it has not been verified that they can
reasonably describe the mechanic behaviors of granular materials at
high stress. Fig. 1 shows the maximum and minimum confining pres-
sures of tests used to verify the models in the literatures mentioned
above and the ratio of maximum confining pressure to minimum con-
fining pressure. Noting that the larger the ratio, the larger the range of
confining pressure. It can be seen that the maximum confining pressure
is 15 MPa and the maximum ratio is 156.

This paper focuses on the development of a simple and practical
constitutive model for granular materials which is valid in a broad
stress range. This paper is organized as follows. By introducing a limit
void ratio, a simple equation is proposed to define the NCL in the
double logarithmic coordinates. The state parameter considering the
effects of shear stress is employed to quantify the states of granular
materials and a unified hardening parameter is proposed to govern the
hardening process. The elastoplastic constitutive model for triaxial
compression stress states is proposed and then extended to be a three-
dimensional constitutive model through the transformed stress (TS)
method [22]. Finally, the model is validated by the results [13–15]
from (a) Isotropic compression test ( = −σ 0.25 80 MPa3 ) and one-di-
mensional compression tests ( = −σ 0.1 850 MPa3 ), (b) Drained triaxial
compression tests ( = −σ 2.1 52 MPa3 ), (c) Drained triaxial extension
tests ( = −σ 0.25 52 MPa3 ), (d) Undrained triaxial compression tests
( = −σ 6.4 68.9 MPa3 ), and (e) Undrained triaxial extension tests
( = −σ 12 52 MPa3 ).

2. Constitutive model for granular materials

2.1. Normal compression line

2.1.1. Behaviors of granular materials under compression condition
Several representative one-dimensional compression lines of Quiou

sand [12] with different initial void ratios are presented in Fig. 2. As
shown in Fig. 2, dots represent the test results and dashed lines re-
present the best fits of the results. It is observed that the shapes of all
compression lines are similar to each other and feature an S-shape in
general in the e-ln p space. The S-shape compression lines have been

interpreted by different physical mechanisms for the entire compression
process [23–26]. In general, the compression process of granular ma-
terial includes the following four stages.

In the first stage (i.e., low stress level), the stress is less than the
yield stress (namely the stress at the maximum curvature of com-
pression line in the e-ln p space), thus only limited particle crushing
occurs, caused by surface abrasion and attrition breaking. In the first
stage, the deformation is mainly attributed to rearrangement of
particle including sliding and rotation, and the compression line in
the e-lnp space is flat (see the segment between Point A and Point B
in Fig. 2).
In the second stage (i.e., medium stress level), the stress is larger
than the yield stress (Point B), and particle crushing starts to become
distinct. New crushed particles are generated and fill the voids, and
the deformation mechanism gradually changes from particle re-
arrangement to particle crushing. When the stress keep increasing,
particle crushing becomes the main deformation mechanism and silt
particles (fines) begin to appear. The slope of the compression line
gradually increases along with the increase of stress (see the seg-
ment between Point B and Point C in Fig. 2).
In the third stage (i.e., high stress level), the larger particles are
surrounded by many smaller particles and the well-graded dis-
tribution is formed. In this stage, particle crushing is no longer the
main deformation mechanism and the slope of the compression line
decreases along with the increase of the stress (see the segment
between Point C and Point D in Fig. 2).
As the stress remains increasing, the change in the volume gradually
decreases. According to the test results [13], the void ratio does not
necessarily decrease to 0 when the stress is less than 1000 MPa
(involving the corresponding geotechnical engineering conditions),
and will reach a minimum/limit (see Point D in Fig. 2). Surprisingly,
the minimum/limit void ratios are different for different granular
materials, and appear to be related to the value of mineral hardness
[13].

2.1.2. New normal compression line
The normal compression line (NCL) is the isotropic compression line

of normal compressed granular materials which is defined as the den-
sest state of granular materials without shear dilatancy. It is essential to
propose a reasonable equation for the NCL because it is usually used as
the reference to describe the stress-strain relations of granular materials
with different initial void ratios. In this paper, by introducing the above

Fig. 1. Data collected of from some literatures: (a) maximum and minimum confining pressures; (b) ratios of the maximum to the minimum confining pressures.

L. Liu, et al. Computers and Geotechnics 120 (2020) 103408

3



mentioned limit void ratio eL and a compressive hardening parameter ps
[18] into double logarithmic coordinates, the NCL can be expressed as
follows

⎜ ⎟− = − − ⎛
⎝

+
+

⎞
⎠

e e Z e λ
p p

p
ln( ) ln( ) ln

1L L
s

s (1)

where Z is the void ratio when =p 1 kPa on the NCL, λ is the slope of
the NCL in the space of −e eln( )L versus +p pln( )s When → ∞p ,

+p pln( )s is approximately equal to pln and λ is the slope of the
asymptotic line in the space of −e eln( )L versus pln , as shown in Fig. 3.
eL is the limit void ratio when the volume of the sample is no longer
changing (see Point D in Fig. 2). ps is the compressive hardening
parameter. If −N e( )L is the initial point at the asymptotic line with

=p 1 kPa (see Fig. 3), the compressive hardening parameter ps can be
derived as follows

⎜ ⎟= ⎛
⎝

−
−

⎞
⎠

−p N e
Z e

1s
L

L

λ
1

(2)

Similarly, the unloading line is expressed as follows

⎜ ⎟− = − − ⎛
⎝

+
+

⎞
⎠

e e e e κ
p p
p p

ln( ) ln( ) lnL 0 L
s

0 s (3)

where κ is the slope of the unloading line in the space of −e eln( )L

versus +p pln( )s , e0 and p0 are the initial void ratio and initial mean
stress, respectively. We can derive the increments of total and elastic
void ratios of normally compressed granular materials from Eqs. (1) and
(3), respectively.

= −
−

+
e λ

e e p
p p

d
( )dL

s (4)

= −
−

+
e κ

e e p
p p

d
( )de L

s (5)

The increment of total void ratio can also be rewritten as follows

= +e e ed d de p (6)

Thus, the increment of plastic void ratio can be derived from Eqs.
(4)–(6) as follows

= − − −
+

e λ κ e e
p

p p
d ( )( )

dp
L

s (7)

Eqs. (5) and (7) are the stress-strain relationship of normally com-
pressed granular materials under isotropic compression condition.

2.2. Yield surface

As suggested in the literature [27–29], a drop-shaped yield surface
can be a suitable choice for granular materials. Recently, a new and
simple drop-shaped yield surface was proposed [18,30] (see Fig. 4). It
can be written as follows

=
+

−
+ − =f

χ q
M p χq

p
p

(1 )
1 0x

2

2 2 2 (8)

where χ is the critical state parameter, and its value is non-negative but
less than 1; M is the critical state stress ratio; px is the intersection of the
yield surface with the p-axis. Eq. (7) can be rewritten as follows

+
= −

− −
p

p p
e

λ κ e e
d d

( )( )s

p

L (9)

Integrating Eq. (9) generates

Fig. 2. One-dimensional compression of Quiou sand: (a) void ratio-mean effective stress relations [12]; (b) crushing mechanism.

Fig. 3. NCL in ln (e − eL)-ln p plane and ln(e − eL)-ln (p + ps) space.
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∫ ∫+
= −

− −
p

p p
e

λ κ e e
d d

( )( )s

p

L (10)

If the sample is loaded from px0 to px, we can have

∫+
+

= −
− −

p p
p p

e
λ κ e e

ln d
( )( )

x

x

s

0 s

p

L (11)

Thus px can be inversely solved from Eq. (11) as follows

∫⎜ ⎟= + ⎛
⎝

−
− −

⎞
⎠

−p p p e
λ κ e e

p( ) exp d
( )( )x x0 s

p

L
s (12)

Substituting Eq. (12) into Eq. (8), the yield function of normally
compressed granular materials can written as follows

∫⎜ ⎟= ⎡
⎣
⎢

⎛
⎝

+
+

−
⎞
⎠

+ ⎤
⎦
⎥ − + −

−
−
−

=

f
χ q

M p χq
p p p p

λ κ
e

e e
ln 1

(1 )
ln( ) 1

( )
d

( )

0

x

2

2 2 2 s 0 s

p

L

(13)

Based on the UH model developed by Yao et al. [31], a hardening
parameter H is employed to replace the traditional hardening term
(i.e., ∫ −

−
e

e e
d

( )

p

L
in Eq. (13)) directly. Therefore, the yield function for

granular materials can be written as follows

⎜ ⎟= ⎡
⎣
⎢

⎛
⎝

+
+

−
⎞
⎠

+ ⎤
⎦
⎥ − + −

−
=f

χ q
M p χq

p p p p
λ κ

Hln 1
(1 )

ln( ) 1
( )

0x

2

2 2 2 s 0 s

(14)

where H is the unified hardening parameter, which will be discussed in
detail in the following section ‘Hardening parameter’.

2.3. Hardening parameter

The unified hardening parameter [31,32] has been developed to
describe the hardening/softening behavior with positive/negative di-
lation. The unified hardening parameter has been revised to consider
some complicated conditions like rate-dependency and temperature-
dependency [33,34]. In this paper, an updated unified hardening
parameter H is proposed as follows

∫=
−
−

−
−

H
M η
M η

e
e e

d
( )

f
4 4

c
4 4

p

L (15)

where Mf is the potential failure stress ratio, and can be expressed as

⎜ ⎟= ⎡

⎣
⎢

− ⎛
⎝

−
−

⎞
⎠

+ + ⎤

⎦
⎥

−

M M
M

ξ
λ κ

6 12(3 ) exp 1 1f 2

1

(16)

where Mc is the characteristic state stress ratio, and can be expressed

based on the literature of Li and Wang [35]

= −M M m ξexp( · )c (17)

where m is a dilatancy parameter. ξ is a state parameter related to
shearing process. Reference to the state parameter ( = −ψ e ec) pro-
posed by Been and Jefferies [36], ξ is expressed as follows

= −ξ e eη (18)

where eη is the void ratio on an anisotropic compression line (ACL) of
the normally compressed granular material at the current mean stress
(see Point B in Fig. 5). Therefore, eη can be determined by the yield
function of normally compressed granular materials (Eq. (13)). When
the normally compressed granular materials is loaded along a constant
p path from Point A to Point B, eη can be derived from Eq. (13).

= −
⎛

⎝

⎜
⎜

+

+

⎞

⎠

⎟
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+

+
−

− −

e e e
p p

p p
e( )η

M η
M χη

λ κ

A L
s

s

( )

L

2 2

2 2

(19)

where eA is the void ratio of Point A at the current stress. It can be
calculated by Eq. (1).
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⎝

+
+

⎞
⎠

+
−

e Z e
p p

p
e( )

1

λ

A L
s

s
L

(20)

By combining Eqs. (18), (19) and (20), we can derive the equation
of ξ as follows

⎜ ⎟= − ⎛
⎝

+
+

⎞
⎠

⎛

⎝

⎜
⎜

+

+
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−
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p p
e e( )

1

λ M η
M χη
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L
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s

s

( )

L

2 2

2 2

(21)

2.4. Plastic potential surface

The plastic potential function in the paper is assumed as follows

⎜ ⎟= + ⎛
⎝

+ ⎞
⎠

=g
p
p

q
M p

ln ln 1 0
y

2

c
2 2 (22)

where py is the intersection of the current plastic potential surface with
the p-axis.

Fig. 4. Yield surfaces with different critical parameters.

Fig. 5. NCL, ACL and CSL in e-ln p plane and state parameter ξ.
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2.5. Stress-strain relationship for triaxial compression states

2.5.1. Strain increment
The elastic strain increment can be written as follows

=

=

⎫
⎬
⎭

−

+

ε p

ε q

d d

d d

ν
E

ν
E

v
e 3(1 2 )

d
e 2(1 )

3 (23)

where ν is the Poisson’s ratio, εd v
e is the elastic volumetric strain in-

crement, εd d
e is the elastic deviatoric strain increment, pd is the mean

stress increment, qd is the deviatoric stress increment, and E is elastic
modulus and can be expressed as

= − +
−

+E ν e
e e κ

p p3(1 2 )(1 )
( )·

( )0

L
s (24)

The plastic strain increment is

=
∂
∂

ε
g
p

d Λv
p

(25)

where Λ is the plastic factor and can be expressed as

= −
−
−

+∂
∂

∂
∂

∂
∂

c e e
M η
M η

p q
Λ ( )

d d
p

f
p

f
q

g
p

L
c
4 4

f
4 4

(26)

where

= − +c λ κ e( ) (1 )p 0 (27)

2.5.2. Stress-strain relationship in p-q plane
The stress-strain relationship for triaxial compression states can be

written as follows

⎧
⎨⎩

⎫
⎬⎭

= ⎡
⎣⎢

⎤
⎦⎥

⎧
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K A KG A
KG A G A

ε
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d
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· 3 ·
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d
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1 2

3 4

v

d (28)

where εd v is the total volumetric strain increment, εd d is the total de-
viatoric strain increment, K is the elastic bulk modulus, and

= −K E ν(3(1 2 )). G is the elastic shear modulus, and
= +G E ν(2(1 )). A1, A2, A3 and A4 can be derived as follows
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where

= − − + + −
= − + +
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⎫

⎬
⎪
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B p M η M χη M η M χη p p
B Gc e e M η χ M η

B M χ M η χη

( )( )[ ( ) ]
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c
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2.6. Stress-strain relationship in general space

Based on the SMP failure criterion [37], the proposed model is then
extended from the triaxial compression to the three-dimensional by the
transformed stress (TS) method [22]. It is worth noting that the TS
method has been widely used by some researches [38,39] According to
the Hooke’s law, the stress increment tensor σd ij can be expressed as
follows

= = −σ ε ε εd D d D (d d )ij ijkl kl ijkl kl kl
e e e p

(31)

where εd kl
e is the elastic strain increment tensor, εd kl

p is the plastic strain
increment tensor, εd kl is the total strain increment tensor, and Dijkl

e is the

elastic constitutive tensor. Dijkl
e can be expressed as

= ⎛
⎝

− ⎞
⎠

+ +K G δ δ G δ δ δ δD 2
3

( )ijkl ij kl ik jl il jk
e

(32)

In the TS space, the yield function can be written as

⎜ ⎟= ⎡
⎣
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where

∫=
−

−

−
−

∼

∼
∼

∼

∼H
M η

M η

e
e e

d
( )

f
4 4

c
4 4

p

L (34)

where ∼Mf and ∼Mc can be calculated by Eqs. (16) and (17). The plastic
potential function is

⎜ ⎟= + ⎛
⎝

+ ⎞
⎠

=∼ ∼
∼g p

q
M p

ln ln 1 0
͠ 2

c
2 2 (35)

The plastic strain increment can be calculated by

=
∂
∂

∼∼ε
g
σ

d Λ
͠ij
ij

p

(36)

where ∼Λ is the plastic factor in the TS space, and can be obtained by
substituting Eqs. (33) and (36) into Eq. (31)
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Substituting Eqs. (37) and (36) into Eq. (31) gives
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Alternatively, the constitutive relation of the new model in the
general stress space can be rewritten as follows

=σ εd D dij ijkl kl
ep

(39)

where Dijkl
ep is the elasoplastic constitutive tensor. Therefore, we have
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where
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(42)

where Im(m = 1, 2, 3) is the stress invariant.
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2.7. Loading-unloading criterion

In the model, loading causes the elastoplastic deformations and the
stress-strain relationship can be expressed by Eq. (39). Unloading only
causes the pure elastic deformation and the stress-strain relationship
can be expressed by Eq. (31). Therefore, the loading-unloading criterion
can be summarised as follows

>

=

<

∂
∂

∂
∂

∂
∂

∼

∼

∼

D ε

D ε

D ε

d 0 loading

d 0 neutral

d 0 unloading

f
σ ijkl kl

f
σ ijkl kl

f
σ ijkl kl

e

e

e

ij

ij

ij (43)

3. Model parameters

All the parameters in the proposed model can be determined by
conventional triaxial experiments. Parameters λ, κ, N , M and ν are five
classical material parameters in the critical state soil mechanics, where
λ, κ and N can be determined by the isotropic loading and unloading
tests and M can be calculated from the friction angle at failure under
triaxial compression condition. Poisson ratio ν is usually assumed a
constant. In addition, eL can be estimated by isotropic compression test
or the critical state line at high stresses.

3.1. Parameter Z

In the proposed model, parameter Z defines the location of the NCL
and further determines the location of the critical state line (CSL). Thus
the parameter Z can be derived reversely based on the NCL and CSL.
When granular materials is loaded along a constant p path from Point A
to Point C, as shown in Fig. 5, the void ratio of the critical state (Point
C) can be solved from Eq. (19) by using the condition that =η M .

= −
⎛

⎝
⎜⎜
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− −

e e e
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1 s
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L
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Therefore, the vertical distance between Point A and Point C can be
calculated correspondingly

= − = −
⎡
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2
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(45)

From Eq. (45), =eΔ 0p can be obtained at =p 0 when >p 0s . In
other words, the CSL always coincides with the NCL at =p 0 regardless
the value of χ (see Fig. 6). Therefore, parameters Z can be derived from
Eq. (1)

⎜ ⎟= − ⎛
⎝ +

⎞
⎠

+Z e e
p

p
e( )

1

λ

c0 L
s

s
L

(46)

where ec0 is the void ratio at =p 0 on the CSL, as shown in Fig. 6.
Compared with 1 kPa, the value of ps of granular materials is very large,
which implies that

+
p

p1
s

s
in Eq. (46) is approximately equal to 1. Thus Z

can be set to be ec0.

3.2. Parameter χ

As shown in Fig. 7, parameter χ is employed to adjust the vertical
distance between the NCL and CSL in the proposed model. Parameter χ
can be derived reversely from Eq. (45) as follows

= −
− + −−

−( )
χ

p

p p p
 1

2

1 ( )e
e e

Δ
s s

p λ κ

A L

1

(47)

If eΔ p corresponding to a known stress p has been measured ac-
cording to test results, χ can be obtained by substituting the eΔ p and the
known stress p into Eq. (47). In practice, if there are more experimental
data about the critical states, χ can also be obtained by best fitting the
experimental data. For example, it can be seen from Fig. 7 that the
calculated CSL is consistent with the experimental observations when

=χ 0.7. Moreover, it can be seen from Fig. 7 that the vertical distance
between the NCL and CSL is very small at low stress level, and then, the
distance gradually increases with the stress increasing. When the stress
increases to very high, the distance starts to decrease with the stress
increasing.

3.3. Parameter m

Parameter m affects the evolution of the characteristic state stress
ratio Mc. Fig. 8 presents a schematic diagram of the undrained effective
stress path of dense sand and its projection in the e-p plane. As shown in
Fig. 8, M ξ

c c and a corresponding pξc can be measured from the effective
stress path. Combining with =p pξc and =η M ξ

c c, eη can be calculated

from Eq. (19), and then, ξc corresponding to M ξ
c c also can be solved from

Eq. (21). Substituting Mξ
cc and ξc into Eq. (17) gives

⎜ ⎟= − ⎛
⎝

⎞
⎠

m
ξ

M
M

1 ln
ξ

c

c c

(48)

4. Model validation

4.1. Determination of parameters

Cambria sand is adopted here as an example to analyze some be-
haviors of granular marterials. According to the test results (as shown in
Fig. 9) obtained by Lade and Yamamuro [15], all parameters in the
model can be determined and are listed in Table 2. It is worth noting
that the failure strength points or critical state points under triaxial
compression conditions and triaxial extension conditions are not on the
same curve in the e-log p space (see the Blue points in Fig. 9). It means
that the CSLs obtained from laboratory tests are not unique. However,
some literatures [40–42] have reported that because of the limitations
of the testing equipment, such as varied and mixed boundary condi-
tions, necking, the formation of shear band, the critical state is likely
not to be achieved in laboratory tests, especially under triaxial exten-
sion condition. To overcome these weaknesses, the discrete-element
method (DEM) is used to investigate the uniqueness of the critical state
[43–45], and it is concluded that a unique CSL in the e-logp space can

Fig. 6. NCL and CSL in the e-p plane (data from Yamamuro and Lade [14]).
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be obtained irrespective of both initial fabric and the loading stress
path. Therefore, the proposed model adopts a unique CSL, as seen the
Blue solid line in Fig. 9.

Fig. 10 presents the predicted isotropic compression lines of Cam-
bria sand with different initial void ratios. The slopes of all isotropic
compression lines are very small at low stress level and compression
lines gradually merge into each other as stress increases. When stress
increases to a high stress, the volume changes gradually decreases. The
volume change stops when stress increases to an ultra-high stress.

4.2. Model validation

The experimental results of granular marterials over a wide range
are relatively rare in the literature. Lade and Yamamuro [15] and Ya-
mamuro and Lade [14] performed 12 undrained triaxial tests on
Cambria sand at various confining pressures between 6.4 MPa and
68.9 MPa and 26 drained triaxial tests at various confining pressures
between 0.25 MPa and 52 MPa. All of the test data will be used to verify
the proposed constitutive model. The used parameters in the model are
listed in Table 2. Note that for Cambria sand, this set of model para-
meters is constant for any densitties and stresses.

4.2.1. Compression test
The predictions of the new model and test results of Cambria sand

under isotropic and one-dimensional compression conditions are dis-
played in Fig. 11. It can be seen that the predictions are consistent with

Fig. 7. Calibration of parameter χ (data from Yamamuro and Lade [14]).

Fig. 8. Undrained effective stress path of dense sand and projection in the e-p
plane.

Fig. 9. Determination of parameters from isotropic compression line and cri-
tical state lines (data from Yamamuro and Lade [14]).

Table 2
Parameters calibrated for Cambria sand.

Parameter M λ κ ν N χ m Z eL

Value 1.45 1.2 0.3 0.3 259,000 0.7 2.0 0.6 0.07

Fig. 10. Model simulations of isotropic compression of Cambria sand with
different initial void ratios.
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Fig. 11. Model predictions and test results: (a) isotropic compression (data
from Yamamuro and Lade [14]); (b) one-dimensional compression (data from
Yamamuro et al. [13]).

Fig. 12. Isotropic compression test results (data from Yamamuro and Lade
[14]) and initial void ratios under drained triaxial compression shearing.

Fig. 13. Drained triaxial compression test results (data from Yamamuro and
Lade [14]) and model predictions: (a)–(c) stress-strain relations and volumetric
strains.
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the test results.

4.2.2. Drained shear test
The drained shear tests contain the drained triaxial tests in both

compression and extension.

(1) Drained triaxial compression tests

The initial void ratios of Cambria sand at different confining pres-
sures can be determined according to the isotropic compression line, as
shown in Fig. 12. The solid line with hollow dots stands for the mea-
sured results of isotropic compression and the solid dots present the

Fig. 14. Isotropic compression test results (data from Yamamuro and Lade
[14]) and initial void ratios under drained triaxial extension shearing.

Fig. 15. Drained triaxial extension test results (data from Yamamuro and Lade [14]) and model predictions: (a)–(d) stress-strain relations and volumetric strains.

Fig. 16. Isotropic compression test results (data from Yamamuro and Lade
[14]) and initial void ratios under undrained triaxial compression shearing.
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states after isotropic compression at different confining pressures.
Fig. 13 shows the predicted and measured results of drained triaxial
compression at different confining pressures. The predictions agree
with the test results in general except there is some disparities for the

volumetric strain at =p 2.1 MPa0 . In addition, it is worth noting that
the shear strength gradually increases with increasing confining pres-
sure, but the volumetric strain gradually increases and then decreases,
and is the maximum at the confining pressure of 17.2 MPa, as shown in
Fig. 13(c). It can be attributed that the slope of the CSL starts to de-
crease [14]. From Fig. 13, it has been verified that the new model can
describe reasonably the above mentioned behaviors of granular mate-
rials.

(2) Drained triaxial extension tests

The states after isotropic compression but before shearing are shown
by solid dots in Fig. 14. Fig. 15 shows that the drained extension test
data of Cambria sand and the predictions at different confining pres-
sures. It can be seen that the predictions of the stress-strain relations are
consistent with the experimental observations in the whole testing
stress range. In addition, it can also be observed that the tendency of
voulmetric strain changing with the increasing of confining pressure is
the same as that of drained triaxial compression tests, and the voul-
metric strain is the maximum at the confining pressure of 35 MPa. The
predicted voulmetric strains have the same tendency as the measured
results, as shown in Fig. 15(c).

4.2.3. Undrained shear test
Undrained shear tests contain undrained triaxial tests in both

compression and extension.

(1) Undrained triaxial compression tests

The initial states of Cambria sand in undrained shearing processes
can be obtained from Fig. 16. The stress-strain relations, pore pressure
relations and effective stress paths of Cambria sand at different con-
fining pressures are shown in Fig. 17. In Fig. 17, the dots stand for the
test results and the solid lines represent the predicted results by the
proposed model. It is indicated that the proposed model can fit well the
test data for the whole testing range from 6.4 MPa to 68.9 MPa, which
illustrates that the proposed model is applicable to reflect the stress-
strain behaviors of granular materials over a very lager stress range.

(2) Undrained triaxial extension tests

The initial states before undrained shearing are shown by solid dots
in Fig. 18. The predictions and the results of undrained triaxial exten-
sion tests are represented in Fig. 19. Comparison with test results

Fig. 17. Undrained triaxial compression test results (data from Lade and
Yamamuro [15] and model predictions: (a) stress-strain relations; (b) pore
pressures; (c) stress paths.

Fig. 18. Isotropic compression test results (data from Yamamuro and Lade
[14]) and initial void ratios under undrained triaxial extension shearing.
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indicates that the model is capable of predicting responses of Cambria
sand subjected to undrained triaxial extension over a wide range of
stresses (12–52 MPa).

5. Conclusions

A constitutive model is proposed in this paper to describe the me-
chanical behaviors of granular materials subjected to large stress range.
It requests only 9 parameters, all of which have specific physical
meaning and can be conveniently determined by laboratory tests.

By adopting a single set of material parameters, the model is able to
describe the mechanical behaviors of granular materials subjected to
different load paths. The S-shaped compression line, as observed in
isotropic compression tests and one-dimensional compression tests, is
reasonably described. The phenomena that the volumetric strains will
not increase continually with growing initial confining pressures in
drained triaxial compression/extension tests is simulated. The pore
pressures in undrained triaxial compression/extension tests are simu-
lated accurately.

According to the literature we already have, the model may be the
first constitutive model to be able to predict the behaviors of granular
materials subjected to high stress of 68.9 MPa. In addition, the model is
verified by 42 sets of tests, and in these tests the ratio of maximum
confining pressure to minimum confining pressure is 275.6. This im-
plies that the model is applicable not only to high pressure, but also to
extra-large pressure range.
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