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A B S T R A C T

In this paper, we considered a thermal shock problem of a strip with an inner crack parallel to the
heated or cooled surface. The effect of the surface heat transfer properties and the non-Fourier
effect, which are modified by effective Biot’s number and the non-Fourier factor, were considered
to investigate the transient temperature field and the dynamic stress intensity factors (SIFs).
Fourier transform and Laplace transform were used to reduce this mixed boundary value problem
to singular integral equations (SIEs). The Gauss-Chebyshev numerical integration method was
applied to the SIEs and linear equations are obtained. Finally, numerical inverse Laplace trans-
form was used to obtain the temperature field and SIFs. The numerical results showed that Biot’s
number not only affects the uniformity of the temperature field and the magnitude of the SIFs
strongly, but also makes contributions to the non-Fourier effect. This finding can help better
understanding the fracture behaviors of advanced materials and making a progress to determine
the applicable conditions of the non-Fourier effect.

1. Introduction

The thermal shock problem is an important issue in improving the performance of advanced materials and high-temperature
engineering structures, such as thermal barrier materials [1–9]. To solve this problem, the temperature field should be determined
first. When the classical Fourier thermal conduction theory is applied on large temperature gradient, the assumption that thermal
disturbance will be felt instantaneously at distances infinitely far from its source becomes unacceptable [10]. Researchers began to
pay attention to this paradox science around 1950. Cattaneo [11,12] and Vernotte [13] modified the classical Fourier model by
introducing thermal relaxation time to the thermal conduction equation. The modified non-Fourier model, known as the hyperbolic
heat conduction model or the C-V model, results in a hyperbolic heat conduction equation and a finite heat wave propagation speed.
Joseph et al [14] proposed the Jefferey’s type model for heat conduction, which would predict a smoother heat wave front. Özişik and
Tzou [15–17] claimed that the relaxation of both heat flux and temperature gradient should be taken into account, which leads to the
dual phase lagging model. Alvarez and Jou [18] elucidated that the in nanosystems, the phonon wave package can be assumed to a
series of standing waves with the wavelength the fraction of characteristic size of systems.
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In recent years, a great amount of thermal elastic study of cracked materials has been carried out based on C-V model. Chen and
Hu [19,20] studied the temperature and SIF behavior of a cracked plate under thermal shock loading with considering the non-
Fourier effect. Guo et al [21] studied the similar problem with a model of a cracked cylinder. Atkinson et al [22] and Fu et al [23]
introduced the coupled effect of the thermos-elasticity to the cylinder model and pointed out that taking the thermomechanical
coupling effect into account does not bring too much difference in comparison with the uncoupled model. Moreover, Li et al [24] and
Li [25] comprehensively studied the thermal barrier effect of the crack, the non-Fourier effect and the inertia effect in his research.
The authors pointed out that the non-Fourier effect was not negligible when the study scale is very small or in some special materials,
such as some non-homogeneous materials [26] or biological tissue materials [27], while the inertia effect was only considerable in
small scale [25]. However, the thermal barrier effect of the crack, which is related to the heat conduction performance of crack gap,
was significant to the distribution of both temperature and stress field in both small and large scales. In addition, the magnitude of the
thermal barrier effect was influenced by many factors, such as the material properties, the filler of the crack gap, the temperature and
so on. Therefore, the thermal barrier effect study would help better understanding the failure mechanisms of the materials and
provide guidance for the design of new materials.

Apart from all these factors, another important factor in failure analysis of thermal shock is the surface heat transfer coefficient,
which may depend on many factors such as the thermal properties of the solid and the liquid, their temperatures at thermal shock, the
surface state of the solid etc. A high surface heat transfer performance leads to a high temperature gradient in the solid near the
surface, and therefore to high thermal stresses. Basing on hollow cylinder model, Guo [21,28] and Fu [10] found the Biot’s numbers
of the surfaces affect the temperature fields and the SIFs remarkably. However, the heat transfer study of the heated and free surfaces
of the crack problem is rare.

In this article, the surface heat transfer effect and non-Fourier effect on a cracked plate under thermal shock loading were studied
in a same framework. Newton’s law of cooling which describes the heat flux to or from a surface by convection heat transfer was
applied to the entire boundary, including the crack surfaces. Three heat transfer coefficients, which correspond to three different
effective Biot’s numbers in dimensionless form, were examined in this research. In addition, the hyperbolic heat conduction theory
was adopted to analyze the thermal fracture characteristics of an isotropic plate containing a crack. By solving mixed boundary
problem, the effect of effective Biot’s number and the non-Fourier effect on the thermal fracture response was analyzed.

2. Statement of the problem and basic equations

We consider a strip which contains a straight crack of half-length r parallel to the free surface, as shown in Fig. 1.
The material is assumed to be homogeneous, isotropic and linearly elastic. A Cartesian coordinate system is established with the x-

axis coincided with the crack plane and the origin at the crack center. The distance between the crack and the two boundaries are la
and lb, respectively, as shown in Fig. 1. In this work, only thermal loading is considered in evaluating the temperature and stress
fields. The initial temperature is assumed to be uniform and equals to T0 in the plate. Then the free surface y = − la is suddenly
exposed to a convective-medium of temperature T∞, while the ambient temperature in the range of y > lb stays the initial tem-
perature T0. Convective heat transfer conditions are applied at all the boundaries and surfaces.

2.1. Temperature fields

The famous Fourier’s law of heat conduction presents a linear relationship between the heat flux →q through a material and the
gradient of temperature T, as → = − ∇q k T , where k is the material thermal conductivity and ∇ is the gradient operator. In principle,
however, the Fourier’s law leads to an unphysical infinite heat propagation speed within a continuum for transient heat conduction
processes because of its parabolic characteristics. To overcome this contradiction, a hyperbolic model, named the Cattaneo-Vernotte
model, has been proposed by introducing a time-dependent term into the Fourier equation [26,29]. The introduced time-derivative
term describes a wavy nature of heat propagation at a finite speed, which has been proved in both theory and experiments [29–31].
The governing equation of hyperbolic thermal conduction writes

Fig. 1. A finite strip with an inner crack and initial temperature T0 suddenly exposed to a convective medium of temperature T∞.
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where the subscript 1 and 2 of T denote the temperature in the range of − la < y < 0 and 0 < y < lb, respectively; a = k/(ρ Cp)
stands for thermal diffusivity; t is the time; ρ, Cp and τ0 are the mass density, the specific heat capacity the thermal relaxation time,
respectively. Referring to Fig. 1, the hyperbolic heat Eq. (1) is subjected to the following boundary conditions:
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where hi (i = 1, 2, 3), in unit W/(m2·K), denote the heat transfer coefficient of the lower surface, the upper surface and the crack
surface, respectively. In the boundary conditions (2), equations (a) − (c) denote heat is transferred by convection in all the free
surfaces; Equations (d) and (e) denote the heat flow and temperature are continuous at the extension line of the crack. The initial
conditions of the thermal conduction problem are:
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2.2. Thermo-elastic field equations

The two-dimensional thermo-elastic theory provides formulations involving the solution of boundary-value problems. In this class
of problems two special cases, namely the plane stress and the plane strain should be distinguished. In the frame of the plane elasticity
theory, the solution of a plane stress problem can be converted to that of the corresponding plane strain problem and vice versa. The
basic equations of the 2-dimension thermos-elasticity problem for a homogeneous isotropic body are:

(1) Equilibrium equations in absence of the body forces:
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(2) Hooke’s law:
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where u and v are the displacement components; εx, εx, εxy, are the components of the strain tensor; μ and α are the shear modulus and
the coefficient of linear thermal expansion, respectively, κ = 3 − 4ν for plane strain and κ = (3 − ν)/(1 + ν) for generalized plane
stress. By substituting the stress-displacement relationships (5) into the equilibrium equations (4) we obtain:
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The thermal shock problem should be solved under the following boundary conditions and initial conditions:
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where the subscript 1 and 2 of the displacements and stresses denote the temperature in the range of− la < y < 0 and 0 < y < lb,
respectively. In (7), (a) − (d) translate the traction free conditions at the top and bottom surfaces of the plate; (e) and (f) denote the
stress continuity across the ligaments which extend the crack while (g) and (h) describe the traction free conditions of the crack
surfaces; (i) and (j) denote the displacements are continuous at the extension line of the crack. The initial conditions are written as
follows:
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3. Solving process

In the following, we present the resolution procedure of the above-defined thermo-elastic equations. Globally speaking, the
Laplace and the Fourier transform techniques and Gauss-Chebyshev numerical integration method are used in resolving the problem.

3.1. Temperature fields

As is discussed previously, the governing equations of the temperature fields and the displacements in the form of partial dif-
ferential equations with the mixed boundary conditions are obtained. Obviously, the solution of the temperature fields and dis-
placement fields can be written as:
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The form of solutions contains the coordinate variables × , y; the time variable t; the material parameters a, k, τ0, h1, h2, h3, α, μ, κ
and the geometrical parameters r, la, lb. The diversity of parameters makes the solving process and the expressions of the formulas
very complex. In general, nondimensionalizing the governing equations and the boundary conditions would benefit the solution and
analysis of engineering problems. This process often yields important dimensionless parameters and reduces the dependency of the
solution on a potentially large number of dimensional parameters.

Since the numerical techniques are heavily based on the properties of the related Chebyshev and Jacobi polynomials, it would be
useful to set the crack in the normalized coordinate interval [−1, 1]. Hence, we define the dimension-independent variables as
follows:
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The governing equation and the boundary conditions of the temperature fields have the following dimensionless forms:
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where the gradient operator ∇ is related to the dimensionless coordinates x* and y*. τ1 is the normalized thermal relaxation time
which we named the “Non-Fourier factor” (NFF) [24,32] and is defined as:
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The coefficient Bi is defined as
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and named “Effective Biot’s number”. It is worthy to note that in this work Bii (i= 1, 2, 3) differs slightly from the conventional Biot’s
number, which should be defined as Bioti = hi (la + lb)/k (i = 1, 2, 3). In this study, the values of la and lb are preset to be r and 4r
therefore the relations between Bii and Bioti is Bii = Bioti/5. In the following analysis, the superscript “*” will be omitted for
simplicity.

In heat conduction problems, the Laplace transform is generally applied to the time variable t. The Laplace transform is defined as:
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where the parameter “i” is the imaginary unit. It should not be confounded with the italic letter “i”, which is used as a subscript order.
γ is a real constant that exceeds the real part of all the singularities of g x y¯ ( , ). The functions g (x, y, t) and g x y¯ ( , ) are called a Laplace
transform pair [33]. By substituting the Laplace transform (17) to Eqs. (11) and (12), and taking use of the initial conditions (13), we
have the governing equations and boundary conditions in Laplace domain:
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By taking use of the Fourier transform, the general solutions of the temperature fields can be written as:
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where m= (ξ2 + p+ τ1 p2)1/2, CT,i (i= 1, 2, 3, 4) are unknown functions and can be obtained by the boundary conditions. Introduce
the density function as:
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and at the extension line of the crack, the density function satisfies:
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By substituting (21) into the boundary conditions (20) (a) − (c) and the density function (22), CT, i can be obtained and the
temperature fields in Laplace space can be expressed as:.
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where m0 = (p + τ1 p2)1/2. Noting that ϕ is the only undetermined function in (25), therefore, the boundary condition (e) in (20) is
sufficient to determinate the unknown. Substituting (25) into (20) (e), we obtain the integral equation in which the only unknown is
ϕ η( ).
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Eq. (27) is the singular integral equation of the first kind which arises from the formulation of the mixed boundary value
conditions. According to the singular properties of the crack tip, the solution of (27) can be rewritten as

=
−

ϕ x x
x
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An effective numerical solution of (27) can be obtained by using a quadrature formula of the Gaussian type with appropriately
selected orthogonal polynomial and values of xj (j = 1, 2, …, n − 1). Thereby Eq. (27) and (23) can be reduced to the following
system of linear algebraic equations of the unknown function Φ(ηi), written as

⎧

⎨
⎩

∑ + = = ⋯ −

∑ =

= −

=

( )η k x η g x j n

η

Φ( ) ( , ) ( ), 1, , 1

Φ( ) 0

π
n i

n
i η x j i j

i
n

i

1
1

1

i j

(31)

Once the function Φ(ηi) is obtained, the temperature fields in Laplace space can be obtained by using the following numerical
integration:

∫ ∑≅
−

=

dϕ ξx x π
n

η ξxsin( ) Φ( ) sin( )
i

n

i1

1

1 (32)

The temperature fields in time domain can be given by applying the Laplace inverse transform developed by Miller and Guy [34].

W. LI, et al. Engineering Fracture Mechanics 228 (2020) 106923

6



3.2. Displacement fields

Similarly, the dimensionless governing equations and boundary conditions of the displacement fields have the following form:

⎧

⎨
⎪

⎩⎪

+ + − + =

− + + + =

∂
∂

∂
∂

∂
∂ ∂

∂
∂

∂
∂

∂
∂

∂
∂ ∂

∂
∂

∗
∗

∗
∗

∗
∗ ∗

∗
∗

∗
∗

∗
∗

∗
∗ ∗

∗
∗

κ κ

κ κ

(1 ) ( 1) 2 4

( 1) (1 ) 2 4

u
x

u
y

v
x y

T
x

v
x

v
y

u
x y

T
y

2
2

2
2

2

2
2

2
2

2

(33)

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

= < ∞ = −

= < ∞ = −

= < ∞ =

= < ∞ =

= > =

= > =

= = ⩽ =

= = ⩽ =

= > =
= > =

σ x y l a

τ x y l b

σ x y l c

τ x y l d

σ σ x y e

τ τ x y f

σ σ x y g

τ τ x y h

u u x y i
v v x y j

0 | | , ( )

0 | | , ( )

0 | | , ( )

0 | | , ( )

| | 1, 0 ( )

| | 1, 0 ( )

0 | | 1, 0 ( )

0 | | 1, 0 ( )

| | 1, 0 ( )
| | 1, 0 ( )

y a

xy a

y b

xy b

y y

xy xy

y y

xy xy

1
* * * *

1
* * * *

2
* * * *

2
* * * *

1
*

2
* * *

1
*

2
* * *

1
*

2
* * *

1
*

2
* * *

1
*

2
* * *

1
*

2
* * * (34)

⎧
⎨⎩

= = < ∞ − < < =
= = = < ∞ − < < =

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗
u v x l y l t a
σ σ τ x l y l t b

0 | | , , 0 ( )
0 | | , , 0 ( )

i i a b

xi yi xyi a b (35)

In the following analysis, the superscript “*” will be omitted for simplicity. Applying the Laplace transform to (33) and (34),

⎧

⎨
⎪

⎩⎪

+ + − + =

− + + + =
=

∂
∂

∂
∂

∂
∂ ∂

∂
∂

∂
∂

∂
∂ ∂

∂
∂

∂
∂

κ κ

κ κ
i

(1 ) ( 1) 2 4

( 1) 2 (1 ) 4
, 1, 2

u
x

u
y

v
x y

T
x

v
x

u
x y

v
y

T
y

¯ ¯ ¯ ¯

¯ ¯ ¯ ¯

i i i i

i i i i

2
2

2
2

2

2
2

2 2
2 (36)

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

= < ∞ = −
= < ∞ = −
= < ∞ =
= < ∞ =

= > =
= > =
= = ⩽ =
= = ⩽ =

= > =
= > =

σ x y l a
τ x y l b
σ x y l c
τ x y l d
σ σ x y e
τ τ x y f
σ σ x y g
τ τ x y h
u u x y i
v v x y j

¯ 0 | | , ( )
¯ 0 | | , ( )
¯ 0 | | , ( )
¯ 0 | | , ( )
¯ ¯ | | 1, 0 ( )
¯ ¯ | | 1, 0 ( )
¯ ¯ 0 | | 1, 0 ( )
¯ ¯ 0 | | 1, 0 ( )
¯ ¯ | | 1, 0 ( )
¯ ¯ | | 1, 0 ( )

y a

xy a

y b

xy b

y y

xy xy

y y

xy xy

1

1

2

2

1 2

1 2

1 2

1 2

1 2

1 2 (37)

The above PDEs have the following characteristic polynomial obtained by setting their general solutions of the form eλy:

− + =λ λ ξ ξ2 04 2 2 4 (38)

The roots of the polynomial equation (38) are given by

= − = − = =λ ξ λ ξ λ ξ λ ξ, , ,1 2 3 4 (39)

The displacement fields in Laplace domain satisfying the boundary condition and regularity condition can be expressed as

∫
∫
∫
∫

⎧

⎨

⎪
⎪

⎩

⎪
⎪

= + + + + +

= + + + + +

= + + + + +

= + + + + +

−∞
∞ −

−∞
∞ −

−∞
∞ −

−∞
∞ −

d

d

d

d

u y C C y e C C y e u u e ξ

u y C C y e C C y e u u e ξ

v y B B y e B B y e u u e ξ

v y B B y e B B y e u u e ξ

¯ ( ) [( ) ( ) ¯ ¯ ]

¯ ( ) [( ) ( ) ¯ ¯ ]

¯ ( ) [( ) ( ) ¯ ¯ ]

¯ ( ) [( ) ( ) ¯ ¯ ]

i

i

i

i

π
H H ξ y H H ξ y

ϕ
P

δ
P ξx

π
H H ξ y H H ξ y

ϕ
P

δ
P ξx

π
H H ξ y H H ξ y

ϕ
P

δ
P ξx

π
H H ξ y H H ξ y

ϕ
P

δ
P ξx

1
1

2 1 2
| |

3 4
| |

1, 1,

2
1

2 5 6
| |

7 8
| |

2, 2,

1
1

2 1 2
| |

3 4
| |

3, 3,

2
1

2 5 6
| |

7 8
| |

4, 4, (40)

where Bi
H and Ci

H (i = 1, ⋯, 8) are unknown functions to be determined. The functions Bi
H and Ci

H (i= 1,⋯, 8) are inter-dependent.
Their relationships, obtained by substituting Eq. (40) into either one of Eq. (36), are given in (A.1). The expressions of

=u u v v i¯ , ¯ , ¯ , ¯ ( 1, 2)i ϕ
P

i δ
P

i ϕ
P

i δ
P

, , , , are given in (A.2) − (A.9).
To solve the unknown functions Ci

H (i = 1, ⋯, 8), the boundary conditions (a) − (f) in (37) can be used. This allows providing six
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equations. The other two equations are found by considering the mixed boundary conditions (g) and (h) in (37) which would give a
pair of dual integral equations. Now we define two dimensionless dislocation functions fi (i = 1, 2) along the crack lips y = 0 as
follows:

⎧
⎨
⎩

= − =

= − =

∂
∂

∂
∂

∂
∂

∂
∂

f x y

f x y

( ) 0

( ) 0

u
x

u
x

v
x

v
x

1
¯ ¯

2
¯ ¯

2 1

2 1
(41)

From the conditions (i) and (j) of (37), we know that fi (i = 1, 2) also satisfy the single-valued conditions:

∫ = =
−

df x x i( ) 0 ( 1, 2)i1

1

(42)

and

= = ⩾f x i x( ) 0 ( 1, 2) | | 1i (43)

Physically speaking, Eq. (43) means that the displacements are single-valued for the non-cracked portion along y = 0.
Ci

H (i = 1, ⋯, 8) can expressed in terms of fi (i = 1, 2) by applying the definition of the dislocation function fi (i = 1, 2) in (41)
and the boundary conditions (a) − (f) in (37):

∫∑ ∑= + = ⋯
= =

−
− dC γ

ξ
f e x iA A· 1

i
1, 2, , 8i

i
H

j
i j j

j
i j j

ξx

1

8

,
1

2

, 1

1

(44)

where A is a square matrix and γ is a column vector and are given in (A.10)− (A.12). The subscript i and j of A denote the ith row and
jth column of A. By applying the boundary conditions (g − h) in (37), it can be shown that fi (x) (i = 1, 2) satisfy the following
singular integral equations(SIEs):

∑ ⎜ ⎟∫ ⎛
⎝

∫ +
−

⎞
⎠

= ∫ =
= −

∞ ∞
f η K ξ x η ξ

δ
η x

η K ξ x ϕ ξ i¯ ( ) ( , , )d d ( , ) d , 1, 2
j

j i j
i j

i
1

2

1

1

0
,

,

0
,3 0

(45)

where Kij (i = 1, 2; j = 1, 2, 3) are given in − and ϕ0 is given by:

∑ ⎜ ⎟⎜ ⎟= ⎛
⎝

⎛
⎝

− ⎞
⎠

⎞
⎠=

ϕ ξ
π η

n
ηsin cos

(2 1)
2

Φ( )
i

n
i

i0
1 (46)

According to the singularity of the crack tips, the solution of the SIEs can be rewritten as

=
−

=f x F x
x

i( ) ( )
1

( 1, 2)i
i

2 (47)

where Fi (i = 1, 2) satisfies the Hölder condition on the closed interval of [−1,1] and Fi (−1) ≠ 0, Fi (1) ≠ 0. An effective numerical
solution can be obtained by using a quadrature formula of the Gaussian type with appropriately selected orthogonal polynomial and
values of xj (j = 1, ⋯, n − 1). Thereby the SIEs (45) can be reduced to the following system of linear algebraic equations of the
unknown function, written as

⎜ ⎟⎜ ⎟
⎧

⎨

⎪

⎩
⎪

∑ ⎛
⎝

∑ ⎛
⎝

∫ + ⎞
⎠

⎞
⎠

= ∫ =

∑ = =

= =

∞

−

∞

=

A K ξ x η ξ F η K ξ x ϕ ξ k

A F η l

( , , )d ( ) ( , ) d , 1, 2

( ) 0, 1, 2

l i

n

i k l j i
δ

η x l i k

i

n

i l i

1

2

1 0
,

0
,3 0

1

i j

i j

,

(48)

where Kk,l (k = 1, 2; l = 1, 2, 3) are given in (A.14) − (A.19). The discrete points ηi (i = 1, ⋯, n) correspond to the zeros of the
orthogonal polynomials which related to the particular Gaussian quadrature. The corresponding Gauss point are:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

= = ⋯

= = ⋯ −

= =

= = ⋯ −

−

−

−

( )
( )

η π i n

x π j n

A i n

A i n

cos , 1, ,

cos 1, , 1

1,

2, , 1

i
i

n

j
j

n

i
π

n

i
π

n

1
2

2( 1)

1 (49)

In this paper, the number of Gauss point is set to be 15.

3.3. Stress intensity factors

The dimensionless stress intensity factors (SIFs) at the right-side crack tip in Laplace space are defined as:
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⎧

⎨
⎩

= −

= −
→

→

K π x σ x

K π x τ x

¯ lim 2 ( 1) ¯ ( , 0)

¯ lim 2 ( 1) ¯ ( , 0)
x

y

x
xy

1
1

1

2
1

1 (50)

The stress components at the crack ligaments can be rewritten as

⎜ ⎟

⎜ ⎟

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪⎪

+ = ∫

+ ∑ ∫ ⎛
⎝

∫ ⎞
⎠

− ∫

+ = ∫

+ ∑ ∫ ⎛
⎝

∫ ⎞
⎠

− ∫

−
−

= −

∞ ∞

−
−

= −

∞ ∞

κ σ x f η η

f η K ξ x η ξ η K ξ x ϕ ξ

κ τ x f η η

f η K ξ x η ξ η K ξ x ϕ ξ

( 1) ¯ ( , 0) ( )d

( ) ( , , )d d ( , ) d

( 1) ¯ ( , 0) ( )d

( ) ( , , )d d ( , ) d

π
y η x

j
j j

π
xy η x

j
j j

2 1
1

1
1

2

1

2

1

1

0
2,

0
2,3 0

2 1
1

1
1

1

1

2

1

1

0
1,

0
1,3 0

(51)

The stresses are expected to be singular at the crack tip. It is clear from the definition of the stress intensity factors that no terms in
(51) is more singular than the square root singularity. Regarding the behavior of Cauchy integral [35]:

∫
−

= −
+

−
−

+ = ⩾
−

−

π
f η

η x
η F

x
F

x
F x i x1 ( )

d ( 1)e
2 1

(1)e
2 1

( ), 1, 2; | | 1i i i

1

1

0

π πi
2

i
2

(52)

where F0 (x) is a bounded function. By omitting the less singular terms, we deduce the dimensionless stress intensity factors as
follows:

⎧
⎨
⎩

= −

= −
+

+

K F

K F

¯ (1) (1)

¯ (1) (1)

π
κ

π
κ

1 1 2

2 1 1 (53)

The stress intensity factors in the time domain can be obtained from (53) by using the numerical Laplace transform developed by
Miller and Guy [34].

4. Numerical results

In this paper, the dimensionless geometrical parameters la and lb are preset to be 1 and 4, respectively; the Poisson’s ratio υ is
assumed to be a constant because the effect of its variation on the SIFs was shown to be negligible [36,37]. Here we choose κ = 2,
which corresponding to ν = 0.33 in plane stress and ν = 0.25 in plane strain. Therefore, the parameters that influence the dis-
tribution of the temperature field and the magnitude of the SIFs include the three effective Biot’s number Bii (i= 1, 2, 3) and the non-
Fourier Factor τ1. When Bi1 = ∞ and Bi2 = 0, the model is similar with the study of Hu and Chen [38]. The numerical results in this
paper corresponding well with the results given in previous literatures.

The coupling of the non-Fourier effect and the convection boundary conditions provides complex temperature and stress fields
near the crack. In the following we will study the effect of these four factors in detail.

4.1. Temperature fields

The temperature at the mid-points of the crack surface(TM) versus dimensionless time is shown in Fig. 2 for Bi1 = Bi2 = ∞,

Fig. 2. Effect of the non-Fourier factor τ1 on the normalized temperatures at the mid-points of the crack surfaces (T1 (0, 0−, t)− T0)/(T∞ − T0) and
(T2 (0, 0+, t) − T0)/(T∞ − T0) when Bi1 = Bi2 = ∞ and Bi3 = 0.
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Bi3 = 0. The solid red curve and the long-dashed curve denote the temperature at the mid-point of the lower crack surface while the
dotted red curve and the short-dashed curve denote the temperature at the mid-point of the upper crack surface, which is the same in
Fig. 3, Fig. 5 and Fig. 7.

As τ1 increases from 0 to 0.6, the magnitudes of the positive fluctuation on the lower face increase accordingly, while their steady
state values convergent to a same value as time is long enough. Because of the presence of the attenuation term ∂T/∂t in the
hyperbolic heat conduction Eq. (1), the oscillation amplitude and frequency of the curves decrease with the dimensionless time and
converge to 0 as t* goes to infinity. The general results for the hyperbolic model can be reduced to the Fourier heat conduction results
when either τ1 = 0, or t*→∞, as shown in Fig. 2. The effect of τ1 were more thoroughly studied by Li [24] and Fu and Chen [10,20].

Fig. 3 shows the effect of Bi1 on TM when τ1 = 0, Bi2 = ∞ and Bi3 = 0, respectively. Fig. 4 shows the maximum temperature
difference between the mid-points of the crack surfaces (MTD) versus Bi1 for different τ1. When Bi1 equals to 0, the lower surface is
thermally insulated and the temperature of the plate remain unchanged after the thermal shock loading. Therefore, Bi1 = 0.01, a
value that slightly larger than 0, is chosen as the smallest Bi1 for plotting the curves. As the increasing of Bi1, the heat transfer
performance of the lower surface increases, and therefore, the temperature field and the MTD increase too. It is also shown in Fig. 4
that the MTD is not sensitive of the non-Fourier effect for small Bi1 value, but becomes obviously sensitive and increase with τ1 when
Bi1 greater than 0.2.

Fig. 5 shows the effect of Bi2 on TM when τ1 = 0, Bi1 =∞ and Bi3 = 0. Fig. 6 illustrates theMTD versus Bi2 for different τ1. When
Bi2 equals to 0, the upper surface is thermally insulated. Therefor the heat accumulates over time in the plate and the temperature of
the plate increases and can reach up to the dimensionless thermal shock temperature when the dimensionless time is long enough.
The temperature field reaches a static equilibrium state and there is no heat flux in the plate. As the increasing of Bi2, the heat flow
out of the upper surface is no longer zero. Therefore, the temperature field would reach a dynamic equilibrium state when the
dimensionless time is long enough. In this case, the dimensionless temperature of the upper surface is less than 1 at the final state. It is
shown from Fig. 6 that the MTD is not sensitive of Bi2 and slightly decreases with Bi2, but increases significantly with τ1.

Figs. 7 and 8 show the effect of Bi3 on TM when Bi1 = Bi2 = ∞ and τ1 = 0, respectively. Fig. 8 illustrates the MTD versus Bi3 for
different values of τ1. When Bi3 equals to infinity, the crack surfaces have perfect thermal contact and the temperature field is the
same as that obtained from the non-cracked plate model. Correspondingly, the temperature curves of the two mid-points coincide

Fig. 3. Effect of Bi1 on the normalized temperatures at the mid-points of the crack surfaces (T1 (0, 0−, t) − T0)/(T∞ − T0) and (T2 (0, 0+, t) − T0)/
(T∞ − T0) when τ1 = 0, Bi2 = ∞ and Bi3 = 0.

Fig. 4. Effect of Bi1 on the maximum temperature difference between the mid-points of the crack surfaces (T1 (0, 0−, t) − T2 (0, 0+, t))/(T∞ − T0)
when Bi2 = ∞ and Bi3 = 0.
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together (the orange curves in Fig. 7). The thermal insulation of crack gap increases with Bi3 and the temperature curves of the two
mid-points get away from each other. Fig. 8 shows that the values ofMTD are not sensitive of the non-Fourier effect for big Bi3 values,
but increase evidently with τ1 when Bi3 < 20.

4.2. Stress intensity factors

The inertia effect of the stress wave and the coupled effect between the temperature and the stress are ignored in this study.
Therefore, the temperature field is the only source which generates the thermal stress. Predictably, the SIFs have the similar prop-
erties to those of the temperature field. In the following we will analyze the properties of the SIFs by using the similar method to that
described in the previous section.

Fig. 9 shows the effect of the non-Fourier factor, τ1, on the normalized SIFs (K1*, K2*) = (K1, K2)/(μαr1/2(T∞ − T0)) when

Fig. 5. Effect of Bi2 on the normalized temperatures at the mid-points of the crack surfaces (T1 (0, 0−, t) − T0)/(T∞ − T0) and (T2 (0, 0+, t) − T0)/
(T∞ − T0) when τ1 = 0, Bi1 = ∞ and Bi3 = 0.

Fig. 6. Effect of Bi2 on the maximum temperature difference between the mid-points of the crack surfaces (T1 (0, 0−, t) − T2 (0, 0+, t))/(T∞ − T0)
when Bi1 = ∞ and Bi3 = 0.

Fig. 7. Effect of Bi3 on the normalized temperatures at the mid-points of the crack surfaces (T1 (0, 0−, t) − T0)/(T∞ − T0) and (T2 (0, 0+, t) − T0)/
(T∞ − T0) when τ1 = 0 and Bi1 = Bi2 = ∞.
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Bi1 = Bi2 = ∞ and Bi3 = 0. The solid red curve and the long-dashed curve denote K1* while the dotted red curve and the short-
dashed curve denote K2*. This graphical convention applies also to Figs. 10, 12 and 14. In Fig. 9, the red curve (τ1 = 0) is obtained by
neglecting the non-Fourier effect. As τ1 grows, the oscillation property appears in the evolution curves of the SIFs, similarly to that of
the temperature field. The steady state values of the SIFs converge to a constant value when the time is long enough. From the
tendency of these two groups of curves, we can conclude that the principal effect of the non-Fourier factor on the stress field is the
oscillation of the later during the thermal shock process. It is clear that the stress oscillation occurs as the consequence of the
temperature wave. More importantly, the maximum SIFs can be much higher than those obtained with the conventional Fourier heat
conduction analysis.

The curves SIFs versus dimensionless time for different Bi1 and the curves maximum SIFs versus Bi1 for different τ1 are shown in
Figs. 10 and 11, respectively. There is no temperature change in the plate and no stress concentration at the crack tips when the lower
surface is completely heat insulated. Similarly, when Bi1 is small, the surface heat resistance is large and the variation of temperature
field around the crack is small, which lead to small SIFs. The magnitude of SIFs increase as the effective Biot’s number Bi1 increase
and reach the peak value at Bi1 = ∞. The orange curves in Fig. 10 correspond to the red curves in Fig. 9.

Fig. 8. Effect of Bi3 on the maximum temperature difference between the mid-points of the crack surfaces (T1 (0, 0−, t) − T2 (0, 0+, t))/(T∞ − T0)
when Bi1 = Bi2 = ∞.

Fig. 9. Effect of the non-Fourier factor τ1 on the normalized stress intensity factors (K1*, K2*) = (K1, K2)/(μαr1/2(T∞ − T0)) when Bi1 = Bi2 = ∞
and Bi3 = 0.

Fig. 10. Effect of Bi1 on the normalized stress intensity factors (K1*, K2*) = (K1, K2)/(μαr1/2(T∞ − T0)) when τ1 = 0, Bi2 = ∞ and Bi3 = 0.
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The variation of SIFs versus dimensionless time for different Bi2 and the variation of peak-value of SIFs versus Bi2 for different τ1
are shown in Figs. 12 and 13, respectively. It is clear from these two figures that the magnitude of Bi2 doesn’t change the peak value of
the SIFs, whereas the final convergence value and the convergence speed of SIFs increase as Bi2 increases. Especially, the di-
mensionless time used to reach a stable state when Bi2 = 0 is almost 4 times higher than the corresponding time when Bi2 tends to
infinity.

Figs. 14 and 15 exhibit the variation of SIFs versus dimensionless time for different Bi3 and the variation of peak-value of SIFs
versus Bi3 for different τ1, respectively. When Bi3 equals to infinity, the temperature field is the same as that obtained from the non-
cracked plate model and the temperature gradient has no singularity at the crack tips. Therefore the SIFs are almost 0. As the decrease
of Bi3, the thermal insulation of the crack gap increases and then the SIFs increase. The absolute value of K1 and K2 increase at the
beginning and decrease after they reach the top value. The peak values increase as the effective Biot’s number Bi3 decreases. This
trend is directly related to the dependence of the temperature field on effective Biot’s number. As discussed above, the crack behaves
as a thermal resistance: smaller effective Biot’s numbers signify bigger thermal resistance. Therefore, the smaller the effective Biot’s
number is, the higher the temperature gradient is around the crack and consequently, the higher the SIFs will be.

Fig. 11. Effect of Bi1 on the maximum stress intensity factors (K1max*, K2max*) = (K1max, K2max)/(μαr1/2(T∞ − T0)) when τ1 = 0, Bi2 = ∞ and
Bi3 = 0.

Fig. 12. Effect of Bi2 on the normalized stress intensity factors (K1*, K2*) = (K1, K2)/(μαr1/2(T∞ − T0)) whenτ1 = 0, Bi1 = ∞ and Bi3 = 0.

Fig. 13. Effect of Bi2 on the normalized stress intensity factors (K1max*, K2max*) = (K1max, K2max)/(μαr1/2(T∞ − T0)) when τ1 = 0, Bi1 = ∞ and
Bi3 = 0..
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5. Conclusions

The thermal shock problem of a cracked thermoelastic plate has been studied using the hyperbolic thermal conduction theory.
Surface heat transfer properties are considered in all the boundaries during the analysis. The governing equation and the boundary
conditions are written in dimensionless form. The Laplace transform and the Fourier transform are applied to solve the mixed-
boundary condition problem. The numerical integrations and the numerical Laplace transform are used to obtain the temperature and
the stress intensity factors in the time domain.

The curves in Figs. 4, 6, 8, 11, 13 and 15 are almost parallel to each other, which means the non-Fourier effect and the heat
transfer condition of the surfaces are uncoupled. On the one hand, larger τ1 always leads to larger maximum values of the tem-
perature difference between the two crack surfaces and therefore to the larger values of the SIFs for a given group of boundary
conditions. On the other hand, the influence of Biot’s numbers on the temperature field and on the SIFs is quite similar for different τ1
values.

It is suggested that in designing engineering structures, decreasing Bi1 and Bi3 and increasing Bi2 will help to increase the thermal
shock resistance and the strength against thermal fatigue. In this spirit, trying to modify the effective Biot’s numbers remains an
efficient way to improve the high temperature performance of structures without changing the physical properties of the material.
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Appendix

The relations between Bi
H and Ci

H (i = 1, ⋯, 8) in (40) are:
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where sgn(ξ) is the signum function.
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A and γ are in (44) are defined as:

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

− − − −
− − − −

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−a a a a
a a a a

a a a a a a a a
a a a a a a a a

a a a a
a a a a

B B B B B B B B

A

0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0

1 1 1 1 1 1 1 1

1,1 1,2 1,3 1,4

2,5 2,6 2,7 2,8

3,1 3,2 3,3 3,4 3,5 3,6 3,7 3,8

4,1 4,2 4,3 4,4 4,5 4,6 4,7 4,8

5,5 5,6 5,7 5,8

6,5 6,6 6,7 6,8

1 2 3 4 1 2 3 4

1

(A.10)

where

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

= + = ⋯
= + = ⋯
= − + = ⋯
= − + = ⋯
= + = ⋯
= + = ⋯

−

−

−

−

a ξν B λ j
a ξB λ j
a ξν B λ j
a ξB λ j
a ξν B λ j
a ξB λ j

(i )e 1, , 4
(i )e 1, , 4
( 1) (i ) 1, , 8
( 1) (i ) 1, , 8
(i )e 5, , 8
(i )e 5, , 8

j j j
λ l

j j j
λ l

j
H j

j j

j
H j

j j

j j j
λ l

j j j
λ l

1,

2

3,
( 4.5)

4,
( 4.5)

5,

6,

j a

j a

j b

j b (A.11)

W. LI, et al. Engineering Fracture Mechanics 228 (2020) 106923

15



=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

−

−

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

− +
− + +

+ − +
− + − + +

− +
− −

+ −
− + − + +

− + +

+ +

+

+

γ

δ ξ( )

0
0

0

ν ξ p τ
p m ξ p τ

m p ϕ ξ δ ξ
p m ξ p τ

ϕ ν ξ p τ
ξ m ξ p τ

m ϕ p δ ξ ξ
p m ξ p τ

ϕ
m ξ p τ

(1 )
( )

2 [ (e e )
~̄

i (1 e ) ( )]
( 1 e ) ( )

i
~̄

((1 ) )
( )

2e [(1 e )
~̄

2ie ( ) ]
( 1 e ) ( )

~̄

lam la lb m la lb m

la lb m

lbm lam lam

la lb m

2 2
2
2

2 2 2
2
2

( 2 ) 2( )

2( ) 2 2 2
2
2

2 2
2
2

2 2 2
2
2

2

2( ) 2 2 2
2
2

2 2 2
2
2

(A.12)

where H(x) in (A.11) is the Heaviside step function. It is a discontinuous function whose value is zero for negative argument and one
for positive argument:
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Kk,l (k = 1, 2; l = 1, 2, 3) in (48) are written as:
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where the subscript i (i = 1, 2, 3, 4) of A denotes the ith column of A and the operator “·” denotes dot product of vectors.
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