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a b s t r a c t 

Unlike obviously topological defects in crystals, “defect” identification in metallic glasses (MGs) is still 

controversial and under investigation. Based on molecular simulations and analysis of MG samples, a 

structural parameter related to the Laplacian of local equivalent stiffness is proposed for prediction of 

localized shear deformation in MGs. It is found that local regions with the parameter of positive and rel- 

atively large value represent several particular modes of “stiffness valleys” in initial configuration which 

will strengthen local shear deformation and lead to the formation of shear transformation zones (STZs). 

More than 80% of the locations where STZs are formed in six types of MG samples under athermal quasi- 

static shear deformation match well with the regions predicted by the parameter calculated from initial 

configuration of the samples. The parameter not only reveals the relationship among local heterogene- 

ity, nonaffine displacement, and shear localization, but also provides an efficient way for predicting the 

activation of STZs in MGs. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Defects of crystals are obvious for their unique topological

tructures ( Taylor, 1934 ), while “defects” of metallic glasses (MGs)

nd their plastic behaviors are further obscure. Relentless research

as paved the way for these fundamental issues during the past

ecades by experiments, physical models and computational sim-

lations ( Argon, 1979 ; Ding et al., 2014 a, 2014b ; Jiang et al., 2010 ;

iang and Dai, 2010 ; Maloney and Lemaître, 2006 ; Spaepen, 1977 ;

ian et al., 2017 ; Yang et al., 2016 ). Though a well-defined “de-

ect” is not clear in metallic glasses yet, activation of shear trans-

ormation zones (STZ) is regarded as the most critical plastic event

 Argon, 1979 ) and a kind of “flow defect” ( Schuh et al., 2007 ). The

ercolation of these events eventually results in shear band forma-

ion ( Greer et al., 2013 ). Nevertheless, the structural origin of STZs

s far from explicit ( Wang and Wang, 2019 ). 

Recently, soft spots and soft modes in MGs are reported to have

trong correlation with the origin of STZs by plenty of molecu-

ar simulations and mathematical deduction ( Ding et al., 2014 a,

014b ; Fultz, 2010 ; Manning and Liu, 2011 ; Widmer-Cooper et al.,

008 ). By analyzing phonon modes derived from the dynamical

atrix and local atomic packing structures in molecular simula-
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ions, the soft spots are related to short-range order (SRO) in-

luding geometrically unfavored motifs (GUM) and local five-fold

ymmetry (L5FS) of MG in predicting STZ locations ( Ding et al.,

014 a, 2014b ). However, defects identification based on soft spots

s not so perfect as in crystals ( Rottler et al., 2014 ) that several

tructure parameters were further proposed, like flexibility vol-

me ( Ding et al., 2016 ), inversion-symmetry order ( Milkus and Zac-

one, 2016 ), atomic bond length deviation (BLD) ( Peng et al., 2017 ),

rientational order ( Yang et al., 2019 ), and softness ( Cubuk et al.,

016 ). 

Broadly speaking, these methods and parameters are kinds of

epresentations of structural heterogeneity. Apparently, the lack

f inversion symmetry in the local nearest-neighbor environ-

ent is intimately connected with nonaffinity ( Zaccone, 2013 ;

accone and Scossa-Romano, 2011 ). Order parameters regarding

he local non-centrosymmery were found strongly related to boson

eak and nonaffine softening in glass and crystals ( Milkus and Zac-

one, 2016 ). The break of atomic level centrosymmetry leads to lo-

al heterogeneity of mechanical properties. Wang et al. discovered

he percolation of STZs and shear band formation are dependent

n the spatial heterogeneity of local shear moduli ( Wang et al.,

018 a, 2018b ). Local shear relaxation events are found to be re-

ated to locally unstable eigenvalues, also referred as instantaneous

ormal modes ( Palyulin et al., 2018 ; Zhang et al., 2019 ). 

The local heterogeneity of mechanical properties then fur-

her induces special deformation behavior under external loadings.

https://doi.org/10.1016/j.ijsolstr.2020.01.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2020.01.012&domain=pdf
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364 R. Shi, P. Xiao and R. Yang et al. / International Journal of Solids and Structures 191–192 (2020) 363–369 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

g  

o  

t  

c  

s  

o  

t  

s  

h  

L  

a  

l  

t  

t  

A  

s  

p  

t  

m

3

3

 

f  

s  

e  

l  

F

o  

p  

a  

l  

c  
Specifically, nonaffine displacement driven by derivatives of lo-

cal moduli ( DiDonna and Lubensky, 2005 ) and Eshelby quadrupo-

lar nonaffine displacement pattern around STZ ( Bulatov and

Argon, 1994 ; Hieronymus-Schmidt et al., 2017 ; Maloney and

Lemaître, 2006 ) were observed by early research. However, the re-

lationship between the local nonaffine displacement and the initial

configuration of MG remains unclear. Recently, Xu et al. reported

that the protocol-dependent behavior of STZ activation is governed

by the stress gradient. They adopted activation-relaxation tech-

nique nouveau (ARTn) with a sacrifice of time efficiency to seek

higher accuracy in defects identification in MG ( Xu et al., 2018 ).

These advances are promising and inspiring, but a simple univer-

sal quantified correlation of the heterogeneity and STZ activation is

still a formidable challenge. 

Here, we propose a distinct structural parameter which is re-

lated to the Laplacian and gradient of local equivalent stiffness in

MG. This parameter could be a universal statistical parameter for

“defects” identification in MGs. The parameter is also a kind of de-

scription of local heterogeneity, and its relation to nonaffine dis-

placement and localized shear deformation is explained. 

2. Methods 

The mechanical analysis is based on results from molecular

simulations on Cu 64 Zr 36 MG systems with the embedded atom

method (EAM) potentials ( Cheng et al., 2009 ). Samples of five dif-

ferent sizes and six different components are covered in our sim-

ulations. The selected MG sample as shown in Fig. 1 (a) is gener-

ated by first equilibrating a Cu 64 Zr 36 atomic system at 2500 K for

2 ns, and followed by rapid quenching (10 13 K/s) to 1 K within

NPT ensemble, during which the external pressure is held at zero.

The radial distribution function (RDF) of the sample is analyzed

to ensure its glass state ( Ding et al., 2014 a, 2014b ). The pre-

pared MG sample contains 90 0 0 atoms with dimensions of about

6.0 × 12.0 × 2.0 nm. Nowadays, simulations of a larger metallic
Fig. 1. (a) Configuration of the Cu 64 Zr 36 metallic glass. (b)–(d) Distribution of ηi 
Mises at 

AQS loading condition. (f) Accumulated ηi 
Mises of atoms averaged in slices at different y c
lass system are not so difficult. Here we try to limit the dimension

f our simulation box based on several considerations: (1) ensure

hat basic plastic events such as STZs and shear band nucleation

an be observed; (2) try to use a quasi 2D simulation configuration,

o a simplified 2D analysis can be performed and; (3) the condition

f external loading can be transferred to local regions more effec-

ively. Periodic boundary conditions are applied in all three dimen-

ions. Athermal quasi-static (AQS) shear is conducted on the in-

erent structure by conjugate-gradient (CG) method ( Maloney and

emaître, 2006 ). It is worth mentioning that results from both AQS

nd molecular dynamics (MD) in other works indicate that simi-

ar localized shear deformation occurs in MGs no matter whether

here is temperature. Therefore, AQS simulation is performed here

o get rid of noises caused by temperature as in MD simulations.

t each loading step, a shear strain ( γ ) of 0.01% is imposed on the

ystem, and followed by energy minimization. The whole loading

rocess includes 30 0 0 steps with total γ up to 30%. The simula-

ions are performed using the code LAMMPS ( Plimpton, 1995 ) and

olecular visualization is rendered using Ovito ( Stukowski, 2010 ). 

. Results and discussion 

.1. Shear deformation of MG sample 

The strain-stress curve in Fig. 1 (e) indicates the sample deforms

rom elastic stage to shear flow state under the applied shear

train. The von Mises invariant ( ηMises ) ( Shimizu et al., 2007 ) for

ach atom ( ηi 
Mises ) is calculated to examine the location and evo-

ution of STZs and shear bands at γ = 8%, 10% and 15% as shown in

ig. 1 (b)–(d), respectively. Fig. 1 (f) shows the accumulated ηi 
Mises 

f atoms averaged in slices at different y coordinates ( ηi 
Mises ). Ap-

arently, for y in range 5.0 to 10.0 nm where shear band is formed

t the end, the variation of ηi 
Mises with γ indicates that the evo-

ution of STZs is history-dependent. In another words, the initial

onfiguration of MG sample is related to the activation and evolu-
γ = 8%, 10% and 15%, respectively. (e) Stress–strain response of the sample under 

oordinates. 
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h  
ion of STZs ( Hu et al., 2016 ). Therefore, it is logical that there exist

ome “defects” in the initial configuration that would lead to the

ctivation of STZs and finally to the formation of the shear band. 

.2. Characterization of local equivalent stiffness 

Heterogeneity of the sample at its initial state is analyzed based

n properties of its local dynamical matrix to identify the potential

defects” in the initial configuration. For a system with N atoms,

he 3 N × 3 N full dynamical matrix ( D full ) is usually used to ana-

yze vibrational modes of the systems as done in soft spots anal-

sis ( Ding et al., 2014 a, 2014b ; Manning and Liu, 2011 ; Widmer-

ooper et al., 2008 ). The local dynamical matrix for each atom (de-

oted by D i ) is a 3 × 3 matrix extracted from the diagonal of D full 

nder local harmonic approximation ( LeSar et al., 1989 ). Here the

sage of D i instead of D full is due to several considerations. Firstly,

 i is more convenient for local structural analysis than D full . Oper-

tions of D full are usually related to global properties of an atomic

ystem, e.g., frequency spectrum ( Fultz, 2010 ), while D i is a local

tomic quantity. Secondly, the computational cost of D i is much

maller than that of D full . Specifically, the computational complex-

ty of D full with 3 N × 3 N elements is O ( N 

2 ), while it is O ( N ) for all

 i with N × 3 × 3 elements. For example, in order to find a sad-

le point of an atom, ARTn has to determine D full and its eigenval-

es many times ( Wei et al., 2019 ). Thirdly, the physical meaning of

 i is explicit. Eigenvalues of D i represent local vibrational frequen-

ies of atom i . The determinant of D i (| D i |), which is related to the

roduct of the three eigenvalues, can be used as a measure to the

ocal “stiffness” of atom i in the cluster constructed with its neigh-

ors. Here we refer the “stiffness” to a kind of equivalent stiffness

or simplicity. Usually, | D i | is statistically proportional to the local

ensity of atom i . The higher the local density is, the larger | D i |

r stiffness will be. However, | D i | implies more than that, e.g. it

ncludes the interactions between the atom and its neighbors and

he atomic mass of different element. Moreover, | D i | can be utilized

o express the Helmholtz free energy. Specifically, the Helmholtz

ree energy of an atomic system under the harmonic approxima-

ion can be given by ( LeSar et al., 1989 ) 

 = V + k B T 

3 N ∑ 

i =1 

ln 

[
2 sinh 

(
h ω i 

2 k B T 

)]
(1)

here the first term V is potential energy, � is reduced Planck con-

tant and k B is Boltzmann constant. The second term in Eq. (1) rep-

esents the energy from configurational and vibrational entropies.

 i is the eigen frequency which can be determined by diagonal-

zing D full . In the local harmonic approximation and classical limit,

 sinh ( 
h ω i 

2 k B T 
) ∼ h ω i 

k B T 
( LeSar et al., 1989 ), Eq. (1) can be further sim-

lified to 

 = V + 3 k B T 

N ∑ 

i =1 

ln 

h̄ | D i | 1 / 6 
k B T 

, (2)

here | D i | = ( ω 1 i ω 2 i ω 3 i ) 
2 is the determinant of the local dynamical

atrix of atom i . Eq. (2) has been successfully applied in molec-

lar statistical thermodynamics (MST) method and several other

ulti-scale methods ( Wang et al., 2008 ; Xiao et al., 2012 ) to char-

cterize dislocations and phase transformations of nanostructures.

t is worth noting that | D i | is related to the quartic term in a Tay-

or expansion of the interatomic potential and will be negative

ue to imaginary eigenfrequencies when local atomic configura-

ion becomes unstable. According to the experience of applying

q. (2) to investigate the mechanical behavior of different atomic

ystems ( Wang et al., 2008 ; Xiao et al., 2012 ) at finite tempera-

ure by minimizing the Helmholtz free energy, imaginary eigenfre-

uencies appear only when local configuration becomes unstable,
.g. occurrence of dislocations or phase transformation. However,

f | D i | is calculated only for the initial configuration at statistical

table state, there is no imaginary eigenfrequency. The dimension-

ess factor D 

∗
i 

= ln ( h̄ | D i | 1 / 6 / k B T ) in Eq. (2) represents part of the

ocal entropy energy of atom i . The temperature T in Eq. (2) is

onstant and set to be 1.0 K in the calculation to keep D 

∗
i 

dimen-

ionless and approximate the temperature close to 0 K. Once tem-

erature is given, only | D i | 
1/6 is variant in the analysis and oth-

rs are constants. Therefore, it is physically meaningful to use D 

∗
i 

or local heterogeneity analysis. Like many other atomic quantities

sed for structural analysis ( Wei et al., 2019 ), whose critical length

f distribution should approximate that of STZ ( Zink et al., 2006 ),

istribution of D 

∗
i 

becomes distinct only when D 

∗
i 

is averaged in

 certain range around atom i . Here we refer D̄ 

∗
i 

to the averaged

 

∗
i 

with a specific averaging radius ( r aver ); and r ave r is selected to

e 1.0 nm which is around the fourth trough of RDF within which

he interaction of surroundings is indispensable ( Wei et al., 2019 ;

ang et al., 2016 ). 

Although the field D̄ 

∗ reflects the distribution of local equiv-

lent stiffness in the atomic system, neither D̄ 

∗ nor its gradient

 ̄D 

∗ shows a significant or direct correlation with the activation

f STZs. However, it is found that a product of the divergence and

he absolute component difference of ∂ ̄D 

∗ is spatially related with

TZ atoms, as shown in Fig. 2 (a). The combined parameter (de-

oted as ξ ) is the product of two factors: the divergence of ∂ ̄D 

∗,

.e., Laplacian of D̄ 

∗ (denoted as ∇ 

2 D̄ 

∗) and the absolute compo-

ent difference of ∂ ̄D 

∗ (denoted as diff ∂ ̄D 

∗). If we focus on a 2-

imensional (2D) system for simplicity, the second factor can be

xpressed as 

√ 

| ̄D 

∗
x 

2 − D̄ 

∗
y 

2 | , where D̄ 

∗
x and D̄ 

∗
y represent the x and y

omponent of ∂ ̄D 

∗, respectively. Therefore, for the 2D system, the

imensionless parameter ξ can be calculated as 

= ∇ 

2 D̄ 

∗ ·
√ ∣∣D̄ 

∗
x 

2 − D̄ 

∗
y 

2 
∣∣ · v a v er , (3) 

here v a v er ∼ r 3 a v er is the volume on average. 

.3. Correlation between ξ and STZs 

The correlation between ξ and STZs is presented in Fig. 2 . The

ontoured plot in Fig. 2 (a) shows the distribution of ξ which is

alculated based on the atomic configuration at the initial state

 γ = 0). The dark circles represent STZ atoms selected based on

he change of ηi 
Mises as done in the other work ( ̧S opu et al., 2017 ;

ian et al., 2017 ; Xu et al., 2018 ). At a specific γ , atoms with

ηi 
Mises ( γ ) = ηi 

Mises ( γ ) − ηi 
Mises ( γ − �γ ) > �ηt are deemed to

e STZ atoms, where �γ = 0.1%, �ηt = 0.005 which is the lowest

ηMises of the first plastic event in Fig. 1 (b). Since STZ appears step

y step at different shear strain, Fig. 2 (a) shows the distribution

f STZ atoms from γ = 0.1% to 9.0%. The 9.0% is chosen because

ost of the samples start to yield at this strain, which is apparent

n the stress-strain curve in Fig. 1 (b). Obviously, most of the STZ

toms are located where ξ is positive and relatively large. Fig. 2 (b)

hows the correlation between ξ and STZs in a more quantitative

ay. There are three atom sets defined in Fig. 2 (b): 

(i) Set S γ contains STZ atoms appearing at γ , i.e., atoms with

�ηi 
Mises ( γ ) > �ηt during interval [ γ − �γ , γ ]; 

(ii) Set S contains all the STZ atoms that have experienced shear

transformation before γ = 9.0%. Therefore, all the atoms in

S can be determined by S = ∪ 

9 . 0% 
γ =0 . 1% 

S γ ; 

(iii) Set P contains atoms with ξ i > ξ t , where the threshold value

ξ t = 2 × 10 −4 is selected based on the distribution of ξ , i.e.,

atoms in set P are predicted to be near regions of preexisted

defects. 

The data bar at γ in Fig. 2 (b) shows the value of N S γ ∩ P / N S γ , i.e.

ow many atoms in S γ is successfully predicted, where N S γ is the
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Fig. 2. Spatial correlation of STZ atoms and the structure parameter ξ . (a) The contoured plot shows distribution of ξ , while dark circles represent STZ atoms with red arrow 

indicating the vector ∂ ̄D ∗ . A and B on the right side are partial enlargement of the regions A and B in the left contoured plot. (b) Correlation index of the STZ atoms and ξ

at each loading step (blue bar) and cumulative correlation index (red solid curve) calculated by Eq. (3) . (c) The cumulative correlation index of all the six types of MGs at 

γ = 0.9%. For each type of MG, the cumulative correlation index is the averaged among five different samples. 
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number of atoms in the set S γ . S γ ∩ P is the intersection of atom

sets S γ and P . There is no data bar in Fig. 2 (b) at some loading

steps means that no STZ is activated during the strain interval of

[ γ − �γ , γ ]. The results show that at the strain of 9.0%, there

are 89.8% of atoms in S γ which are also in the predicted set P .

The solid curve in Fig. 2 (b) depicts the correlation parameter C ( γ )

employed by Manning and Liu (2011 ) in the correlation analysis of

soft modes: 

(γ ) = 

ˆ S (γ ) · ˆ P 

N P 

+ 

[
I − ˆ S ( γ ) 

]
·
[
I − ˆ P 

]
N − N P 

− 1 , (4)

where N is the number of total atoms in the sample. ˆ S (γ ) and P̂ 

are binary vectors. ˆ S (γ ) = { ̂  S i (γ ) ∈ { 0 , 1 }} , where ˆ S i (γ ) = 1 if atom

i is experiencing shear transform during interval [ γ − �γ , γ ].
ˆ P = { ̂  P i ∈ { 0 , 1 }} , where ˆ P i = 1 if atom i has ξ > ξ t . C ( γ ) = 1.0 only

if ˆ S (γ ) and 

ˆ P are perfectly matched, while C ( γ ) = 0.0 if ˆ S (γ ) and P̂ 

are uncorrelated. When γ < 5.0%, only a few STZ atoms have been

activated, so C ( γ ) is reasonably much less than 1.0. However, as

there are more and more STZ atoms, C ( γ ) approaches 1.0. Particu-

larly, C ( γ ) at γ = 0.9% is 0.9, indicating that around 90% of the STZ

activation occurs in the atom set P before shear band formation.

We have simulated several other types of MGs with results shown

in Fig. 2 (c), where all C ( γ ) at γ = 0.9% are around 0.8. Therefore,

the parameter ξ is valid for prediction of activation of STZs in MGs

with diverse types of element. 

3.4. Relationship between ∂ ̄D 

∗ and nonaffine displacement 

According to the definition of ξ in Eq. (3) and the simulation

results, the regions with positively large ∇ 

2 D̄ 

∗ and diff ∂ ̄D 

∗ are the
ost possible locations where STZ will be activated during shear

oadings. Recall that D̄ 

∗ is statistically proportional to local equiva-

ent stiffness, therefore, atoms with positive ∇ 

2 D̄ 

∗ are correspond-

ng to localized soft regions, i.e. the center of positive ∇ 

2 D̄ 

∗ re-

ion is relatively softer than peripheral regions. The relationship

etween soft regions and STZ activation is similar to the conclu-

ion of some other work based on experiments and simulations of

Gs. For example, Ş opu et al. suggested a model of shear band

omposed of sequential soft STZs and hard icosahedral clusters

 ̧S opu et al., 2017 ). Recently, Wang et al. proposed a localized “gra-

ient atomic packing structure” comprising solid-like, transition,

nd liquid-like region ( Wang et al., 2018 a, 2018b ). However, local-

zed soft region is a necessary but not sufficient condition for STZ

ctivation. The type of external loading ( Gendelman et al., 2015 )

nd the distribution shape of ∂ ̄D 

∗ also affect the formation of STZ,

o diff ∂ ̄D 

∗ is introduced in the parameter ξ . 

Mechanism behind ξ is the relationship among local hetero-

eneity, atomic nonaffine displacements and localized shear de-

ormation in MGs. Firstly, how the ∂ ̄D 

∗ is related to atomic non-

ffine displacements is demonstrated in Fig. 3 . In a 2D equilib-

ium MG system as shown in Fig. 3 (a), the force on an atom

s equilibrated in different directions by interactions of neighbor

toms. However, the equivalent stiffness around the atom could

e unequal in different directions due to the random distribu-

ion of neighbors in MG system. Local dynamical matrix D i in

q. (2) represents the anisotropy of local equivalent stiffness of

he atom. For simplicity, suppose the axes 1 and 2 in Fig. 3 (a)

verlap the two principal directions of external loading strain; ε1 

nd ε2 are the two corresponding principal strain. k 1 − , k 1 + ,

 2 − , and k 2 + are used to represent different local equivalent
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Fig. 3. (a) and (b) Are schematic plots of the physical model, in which red arrow represents ∂ ̄D ∗ of the center atom; four springs imitate the interactions between the center 

atom and its neighbors; and blue arrow in (b) represents the nonaffine displacement vector ( r ∗) of the center atom. (c) Schematic plot of the relationship between ∂ ̄D ∗ and r ∗

in a system under shear loading. The arrows of ∂ ̄D ∗ and r ∗ in (a), (b) and (c) could be in any length and direction, which are dependent on the real vectors. (d) Distribution 

of the angle ( 
	 

θ ) between the predicted directions of r ∗ based on Eq. (9) and the directions of r ∗ obtained from simulations. The different curves show distributions of 
	 

θ for 

various threshold values of the magnitude of ∂ ̄D ∗ . 
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l  
tiffness in different directions due to the break of centrosym-

etry ( Zaccone, 2013 ; Zaccone and Scossa-Romano, 2011 ). The

prings in Fig. 3 (a) are used to represent the simplified inhomo-

eneous stiffness environment contributed by all the neighbors of

n atom instead of just the nearest-neighbor bonds, so the bound-

ry of the rectangular box in Fig. 3 (a) does not represent the sym-

etric positions of nearest-neighbors but an arbitrary local re-

ion around an atom. Zaccone et al. have presented a mathemati-

al deduction of nonaffine displacements under elastic heterogene-

ty and non-centrosymmetry ( Zaccone, 2013 ; Zaccone and Scossa-

omano, 2011 ), which is applied here to analysis the simplified

D physical model. According to the definition of affine force �

 Zaccone and Scossa-Romano, 2011 ) 

jk = D i j 

d r i 
∗

d ε k 

∣∣∣∣
ε k =0 

, (5) 

here the nonaffine displacement r ∗ can be expressed under the

rst-order approximation by 

 j 
∗ = 

� j ε j 
D j 

, (6) 

here D ij = 0 and �ij = 0 when i � = j under coordinates of the prin-

ipal direction, so D jj is abbreviated as D j and �jj is abbreviated as

j . Here D j = k j + + k j − is the component of local dynamical ma-

rix. Then �j can be also written as ( Zaccone, 2013 ) 

j = −
(

∂ 2 V 

∂ r j ∗∂ r j o 

)∣∣∣∣
r ∗

j 

∂ r j 
o 

∂ ε j 
= a ( k j+ − k j−) , (7)

here r j 
o is the affine displacement, j = 1, 2 indicates the direction

nd a is the length of the local region. As a result, when the sys-

em is subjected to external strain ε 1 and ε 2 , the atomic nonaffine

isplacement r ∗ can be calculated as 

 

∗
j = ε j a 

k j+ − k j−
k j+ + k j−

, (8) 
here 
k j+ −k j−
k j+ + k j− represents the variation of equivalent stiffness in the

irection j . Recall that the D̄ 

∗ field reflects the distribution of stiff-

ess in the atomic system, then the j th component of ∂ ̄D 

∗ should

e proportional to 
k j+ −k j−
k j+ + k j− , i.e., 

k j+ −k j−
k j+ + k j− ∼ a 

D̄ j 

d D j 
d x j 

∼ a∂ ̄D 

∗
j 
. As a result,

he nonaffine displacement r ∗ is related to ∂ ̄D 

∗ as 

 

∗
j ∼ ε j a 

2 ∂ D̄ 

∗
j (9) 

For the special loading case of pure shear with the principal

train of ε1 = γ 0 and ε2 = −γ 0 , according to Eq. (9) , the direc-

ion of r ∗ and ∂ ̄D 

∗ is symmetric about axis 1 or the axis y = x as

hown in Fig. 3 (c). To confirm this conclusion, distribution of the

ngle (denoted by 
	 

θ ) between the predicted directions of r ∗ based

n Eq. (9) and the directions of r ∗obtained from simulations is pre-

ented in Fig. 3 (d). The distribution peak located at zero indicates

hat most of the predicted directions of r ∗ are coincident with that

rom simulations. The different distribution curves in Fig. 3 (d) are

btained from atoms selected by various threshold values of the

agnitude of ∂ ̄D 

∗ ( | ∂ ̄D 

∗| ). Apparently, the larger | ∂ ̄D 

∗| is, the bet-

er Eq. (9) predicts, that’s because larger | ∂ ̄D 

∗| implies higher local

eterogeneity or non-centrosymmetry. 

.5. Mechanism of ξ

Once the relationship between r ∗ and ∂ ̄D 

∗ is established by

q. (9) , why regions with positive and large ξ will lead to activa-

ion of STZs can be explained. For the first factor of ξ , i.e., ∇ 

2 D̄ 

∗, if

e consider D̄ 

∗ as a kind of stiffness potential field, then the land-

cape of the potential around a region with positive and relatively

arge value of ∇ 

2 D̄ 

∗ is similar to a valley with vectors of ∂ ̄D 

∗ point-

ng against the center of the region. The larger ∇ 

2 D̄ 

∗ is, the steeper

he valley will be. While ∇ 

2 D̄ 

∗ controls the steepness of the val-

ey, the second factor of ξ , i.e., 

√ 

| ̄D 

∗
x 

2 − D̄ 

∗
y 

2 | , controls the shape
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Fig. 4. (a) Distribution of ∂ ̄D ∗ in different modes. (b) Corresponding nonaffine displacement fields ( r ∗) for different distribution modes of ∂ ̄D ∗ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

d  

c  

o  

d

s  

I  

c  

l  

c  

v  

a  

r  

e  

a  

p  

i  

4

 

s  

l  

t  

o  

t  

s  

t  

c  

t  

t  

s  

p  

o  

c  

i  

ξ  

s  

e  

n  

a  

o  

w  
of the valley. Specifically, the region with larger 

√ 

| ̄D 

∗
x 

2 − D̄ 

∗
y 

2 | con-

tains vectors ∂ ̄D 

∗ with relatively larger length and direction along

near either x or y axes. Five different distributions of ∂ ̄D 

∗in re-

gions with positive ∇ 

2 D̄ 

∗ are illustrated in Fig. 4 (a). The distri-

butions are related to different nonaffine deformation modes. In

the modes I, II and III, 

√ 

| ̄D 

∗
x 

2 − D̄ 

∗
y 

2 | is relatively large, so the ma-

jor ∂ ̄D 

∗ points along near either x or y axes; while in the modes

IV and V with relatively small 

√ 

| ̄D 

∗
x 

2 − D̄ 

∗
y 

2 | , the major ∂ ̄D 

∗ points

along near axes y = x or y = −x . Based on the relationship between

r ∗ and ∂ ̄D 

∗ as discussed above, nonaffine displacement fields for

the five modes can be predicted as shown in Fig. 4 (b). Specifi-

cally, in the mode I, ∂ ̄D 

∗ along x and y axes is relatively large,

so r ∗ shows quadrupolar-style field which will strengthen shear

deformation in this region. Actually, the quadrupolar-style non-

affine displacement fields have been observed in several previous

work ( Bulatov and Argon, 1994 ; Hieronymus-Schmidt et al., 2017 ;

Maloney and Lemaître, 2006 ) in which its connection with STZs

has been discussed. In the modes II and III with major ∂ ̄D 

∗ along x

and y direction, respectively, the nonaffine displacement field im-

poses shear-like loading to the region which also strengthens shear

deformation in the local region. Similar modes can be found in

the simulation results as shown in Fig. 2 (a) with A and B regions

matching the modes II and III, respectively. While in the modes

IV and V, the nonaffine displacement field around the local re-

gion corresponds to tension and compression deformation pattern

respectively, and no shear deformation is strengthened. Therefore,

STZs are more likely formed in mode I, II and III for local regions

with positive and relatively large ξ . Recently, Ş opu et al. also dis-

covered that the STZ activation mechanism resembles the modes

in shear band multiplication ( ̧S opu et al., 2020 ). 

Although the analysis is focused on a quasi-2D MG system un-

der shear deformation, the philosophy of the parameter ξ can be

extended to identify similar defects in MGs under complex con-

ditions. Here we refer the “defect” in MGs to atomic-level struc-

tural unit in the initial configuration which will lead to activation

of STZs under specific external loadings. The two factors of ξ are

corresponding to two steps in the defect identification. Firstly, re-

gions with positive and relatively large ∇ 

2 D̄ 

∗ are potential defects.

Physically, the “stiffness valleys” identified by ∇ 

2 D̄ 

∗ are metastable

regions in which localized STZ might be triggered by external load-

ing. The mechanism of ∇ 

2 D̄ 

∗ is independent on external loading,

so the first step is suitable for analysis in general cases. However,
 t
he second factor is loading-dependent. Under a given loading con-

ition, only “stiffness valleys” with specific shapes will lead to lo-

alization or formation of STZs. Therefore, for loading conditions

ther than shear, the second factor of ξ would be different. Ad-

itional analysis based on the relationship between r ∗ and ∂ ̄D 

∗

hould be performed to determine the form of the second factor.

t is worth noting that as the sample deformed, STZ events would

hange the local configuration around STZs, so the local equiva-

ent stiffness distribution and loading condition will change ac-

ordingly. To accommodate these changes, one should track the

ariation of configuration step by step and perform more general

nalysis for different loading conditions. Moreover, usage of the pa-

ameter can be extended to systems at finite temperature. In gen-

ral, once the temperature is given, D̄ 

∗ is primarily dependent on

tomic configuration, and its derivatives are independent on tem-

erature. Therefore, in MD simulation at finite temperature, the

nitial configuration should be time averaged before calculating D̄ 

∗.

. Summary 

In summary, molecular simulations of MG samples under AQS

hear loading condition are carried out to investigate the atomic-

evel origin of STZs. It is found that a structural parameter ξ in ini-

ial configuration of MGs shows strong correlation to the formation

f STZs in the samples. Quantitative analysis indicates that more

han 80% of the STZ atoms can be effectively predicted by ξ in MG

amples with different types of element. The parameter consists of

wo important factors which are the divergence and the absolute

omponent difference of ∂ ̄D 

∗, where ∂ ̄D 

∗ is a vector representing

he gradient of local equivalent stiffness. Physically, the first fac-

or of ξ (i.e. ∇ 

2 D̄ 

∗) with positive and relatively large value repre-

ents the “stiffness valleys” in the initial configuration which are

otential defects; while the second factor of ξ reveals the shape

f the stiffness valleys. Results show that only regions with spe-

ific shapes of stiffness valleys will lead to the formation of STZs

n MGs under shear loading. The mechanism behind the parameter

is explained based on the analytical derivation of the relation-

hip between atomic nonaffine displacement and ∂ ̄D 

∗. The param-

ter ξ not only reveals the relationship among local heterogeneity,

onaffine displacement, and shear localization, but also provides

n efficient way for predicting activation of STZs in MGs. More-

ver, the ideology of ξ using Laplacian of local equivalent stiffness

ould bridge the analysis between atomic simulations and tradi-

ional mechanical theory for defects identification in MGs. 
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