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A B S T R A C T   

Caved carbonate reservoirs are very special because of the strong heterogeneity. The pressure transient behavior 
of the caved carbonate reservoirs is quite different from the conventional homogeneous or dual medium res
ervoirs because of the presence of large-scale cavities. There are two types of cavities: filled and unfilled, which 
dominated the production of the reservoirs. Fluid flow in the unfilled cavity should be described by Stokes’ 
equation rather than Darcy’s law. It is needed to better understand the role of the unfilled cavities plays in the 
pressure transient analysis. The objective of this work is to analyze the pressure transient behavior of the unfilled 
cavities. A coupled Stokes-Darcy pressure transient model is developed and the finite element method is applied 
in the solutions of the mathematical models. Then, the numerical pressure transient model is used in the analysis 
of two typical cases: a well drilled into the unfilled cavity (WIC) and a well not drilled into the unfilled cavity 
(WOC). The type curves of the WIC model indicate that flow in the unfilled cavity is an oscillated pressure-drop 
rather than a radial flow. The unfilled cavity that the well drilled into would be considered as an enlarged 
wellbore which is equivalent to a negative skin factor, as a consequence the wellbore storage coefficient will 
increase. Main characteristics of type curves for WOC model are the valley on the pressure derivative. A cavity 
with a larger size and smaller distance from the wellbore would give rise to a deeper valley. Comparative results 
indicate that unfilled cavities described by the Stokes’ equation are not the limit of the filled cavities with 
extremely large mobility, which was predicted by previous work.   

1. Introduction 

The naturally fractured-vuggy carbonate reservoirs are ubiquitous in 
the world (Li et al., 2018). The pores in this kind of reservoirs are 
comprised of the matrix, fractures, and vugs. The size of vugs in natu
rally fractured reservoirs is centimeters or millimeters in diameter (Wu 
et al., 2011; Huang et al., 2013). However, in the Tarim oil field in 
China, large-scaled vugs also named cavities of several meters or even 
tens of meters are found in the formation (Zhao et al., 2014), which can 
be identified by “beads-like” reflection in the seismic profile (Xiao et al., 
2010). The existence of cavities is also supported by the drilling breaks 
and mud leakage (Zhu et al., 2015; Li et al., 2016), and the cavities with 
drilling breaks are unfilled. Except for the unfilled cavities, there are 
some cavities filling with sand, gravel, and mud (Popov et al., 2009; Hu 
et al., 2014; Wan et al., 2018a). We call the reservoirs composed of the 

matrix and cavities caved carbonate reservoirs. It is notable that the 
cavities in this context indicate the large-scale entities in the reservoirs 
which should be differentiated from the vugs. 

In order to understand the hydraulic behaviors of the caved reser
voirs, pressure transient analysis is widely used (Wan et al., 2016, 
2018b; Wan and Liu, 2016), which can obtain the reservoirs’ informa
tion through the pressure behavior vs. time at the wellbore. However, 
the pressure transient analysis for the caved carbonate reservoirs is 
difficult because of the large-scale cavities. For the filled cavities, the 
continuous theories can be applied and the flow in the filled cavities 
obey Darcy’s law (Popov et al., 2009). Some dual media models are 
established to analyze the pressure transient behavior of caved car
bonate (Djatmiko Hansamuitet al., 2010; Gomez et al., 2014). In these 
models, the filled cavities are considered as the secondary porosity and 
fluid transfer from the cavities to the matrix described by a transient 
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function. Taking fractures into account, some researchers developed 
triple porosity models which consider the fluid transformation from 
matrix and cavities to fractures (Wu et al., 2007). Nevertheless, the 
dual/triple media models essentially assume that the cavities are 
distributed uniformly in the whole reservoirs, which doesn’t correspond 
with the geological characterization of caved carbonate reservoirs. Wan 
et al. (2018a), pointed out that the dual media models are not appro
priate in the caved carbonate reservoirs. They proved that the valley on 
the pressure derivative curve is dominated by the cavities rather than 
the dual media effect. The dual media models would overestimate the 
storage capability of the cavities. Thus, discrete models are developed to 
analyze the pressure transient behavior of filled-caved carbonate res
ervoirs. In these models, the cavities are described explicitly by Darcy 
flow zones with an extremely high permeability and porosity. The re
gions beyond the cavities are treated as single-porosity media with lower 
permeability or dual-porosity media (Gao et al., 2016). As much 
research pointed out (Zhang et al., 2012; Hu et al., 2014; Wan et al., 
2018a), the pressure transient behavior is dominated by the cavities. 
Whether a well is drilled into a cavity has a great effect on the pressure 
transient behavior, so the analytical or numerical models of a well in the 
cavity and not in the cavities are proposed respectively (Zhang et al., 
2009; Gao et al., 2016; Wan et al., 2018a). These models have been 
successfully implemented in the interpretation of field data. 

The situation in the case of unfilled cavities is more complicated and 
quite different from filled cavities. As unfilled, the cavities can’t be 
considered as porous media, and naturally, Darcy’ law is inapplicable. In 
the previous work, the Stokes equation is used to describe the fluid flow 
in the unfilled cavities, thus the core of the fluid flow becomes a Stokes- 
Darcy coupled problem (Arbogast and Gomez, 2009; Gulbransen et al., 
2010; Huang et al., 2011). In this problem, the boundary condition of 
the interface between a Stokes flow region and a Darcy flow region is the 
key. It is difficult because the Stokes equation is second-order but the 
Darcy’s law is no-order, which leads to discontinuity on the interface 
(Mikelic and J€ager, 2000; Deng and Martinez, 2005). The obvious 
condition on the interface is the continuity of the fluid flow in the 
normal direction and the fluid flow in the tangential direction is ignored. 
However, this condition cannot describe the true behavior of the fluid 
flow through the interface (Mikelic and J€ager, 2000). Beavers and Jo
seph (Beavers and Joseph, 1967; Beavers et al., 1970) proposed a con
dition that the difference of the velocity in the tangential direction 
between the Stokes’ zone and Darcy’s zone is proportional to the shear 
rate of the free fluid (Mikelic and J€ager, 2000). Saffman (1971) modified 
the condition by ignoring the Darcy’s velocity. The 
Beavers-Joseph-Saffman boundary condition is the most commonly used 
one for the Stokes-Darcy coupled flow. 

The method that divides the whole problem into two domains 
composed of free fluid flow region and Darcy’s flow region and in
troduces the boundary on the interface is called the dual domain method 
(Yao et al., 2010; Deng and Martinez, 2005). Besides, researchers 
combined the Stokes’ equation and Darcy’s law and developed a uni
form governing equation for both the Stokes and Darcy flow region. 
Thus the free-fluid flow region and Darcy flow region are combined to a 
composite domain. A parameter in the uniform governing equation is 
proposed to discriminate the two regions. This method is called the 
single domain method (Deng and Martinez, 2005; Huang, 2012). Since 
the two domains are collapsed into one composite domain, there is no 
need the condition on the interface any more. This one-domain method 
is validated by Deng et al. (Deng and Martinez, 2005). 

Peng et al. (2009),’ s research shows that the saturation and pressure 
distribution of a Stokes-Darcy model and conventional Darcy model is 
very similar in the Darcy-flow region. However, in the Stokes equation 
governed region, velocities of the Stokes-Darcy model are more accu
rate. The results of the Stokes-Darcy coupled simulation also indicate 
that the pressure spreads very quickly in cavities, so the cavities can be 
treated as equipotential bodies (Gao et al., 2016). Chen et al. (2016), 
developed a pressure-transient model for the well is not drilled into the 
cavity which is treated as an equipotential body, while Liu et al. (Liu and 
Wang, 2012), developed a simplified radial composite for the well is 
drilled into a cavity. Some other researchers also proposed similar 
models accounting for dual porosity media in the Darcy-flow region 
(Xing et al., 2018). 

It should be noticed that fractures are also very common in the caved 
carbonate reservoirs. The large-scale fractures have strong effects on the 
pressure behavior (Wan et al., 2019; Jiang et al., 2019; Raghavan and 
Chen, 2019), and the behavior of the cavities may be covered by the 
fractures. Since we want to focus on the behavior of the cavities espe
cially the unfilled ones, the large-scale fractures are ignored. The 
behavior of large numbers of small fractures can be described by 
dual-media theory, and a valley on the pressure derivative curve will be 
observed. However, in the fractured-caved carbonated reservoir, the 
interporosity flow coefficient λ is quite small because the permeability of 
the matrix is extremely low. Consequently, the valley caused by the 
dual-media effect appears at very late time and always cannot be 
detected by the well-test which is last for no more than 200 hours. Thus, 
we assume that the fractures are merged in the matrix and an equivalent 
“matrix” with an equivalent permeability is presented. 

The cavities can be treated as equipotential bodies because the time 
of pressure spreading in cavities is very small which means the pressure 
in the cavity is almost the same. However, in the pressure transient 
analysis, the bottom-hole pressure is the function of time and the 

Fig. 1. Physical concept model (modified from Wan et al., 2018a).  
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pressure derivative can capture physical processes in a very small-time 
scale especially in the early time of the logarithmic coordinates. 
Hence, the equipotential assumption may be fine in the numerical 
simulation, but miss some important behaviors in the pressure transient 
analysis. The objective of this study is to analyze the pressure transient 
behavior of the unfilled cavities directly based on the Stokes-Darcy 
coupled model. 

2. Physical concept and mathematical model 

2.1. Physical concept model 

As analyzed above, the pressure behaviors of a well drilled into the 
cavity and not into the cavity which are abbreviated as WIC and WOC 
respectively, are quite different. Thus, these two models are considered 
in this study. Fig. 1 shows the physical model, in which the cavity is 
represented by a circle with a radius rv. The distance from the wellbore 
to the center of the cavity is d. Moreover, some other assumptions are 
made as followings:  

� The cavity is unfilled and Stokes’ equation is applied in the 
description of fluid flow. The region beyond the cavity is matrix 
porous media and the Darcy’s law is applied.  
� The cavity is full of fluid and the fluid in the cavity is incompressible, 

while the fluid in the pores is lightly compressible and the 
compressibility coefficient is constant.  
� The wellbore storage effect are considered, but skin, gravity, and 

capillary effect are neglected. 

2.2. Mathematical model 

The mass conservation for lightly compressible fluid flow in the 
matrix is: 

φct
∂pm

∂t
þ▽um ¼ 0 (1)  

where φ is the porosity of the matrix, pm is the pressure in the matrix, um 
is the Darcy’s seepage velocity vector, and ct is the total compressibility 
coefficient. 

The flow in the matrix region obey Darcy’s law, and the momentum 
conservation equation is: 

um¼ �
km

μ ▽pm (2)  

where km is the permeability of the matrix, μ is the viscosity of the fluid. 
The mass conservation for the fluid in the cavity region is: 

▽uc¼ 0 (3)  

where uc is the fluid flow velocity vector in the cavity. 
The Stokes’ equation is applied in the fluid flow description in the 

unfilled cavity: 

ρ ∂uc

∂t
¼ � ▽pc þ μ▽2uc (4)  

where ρ is the fluid density, pc is the pressure in the cavity. 
Using the single domain method, the mass conservation equations 

(1) and (3) can be written as: 

ð1 � DÞφct
∂p
∂t
þ▽u ¼ 0 (5)  

where D is a model control coefficient, and in the cavity region D ¼ 1 
equation (5) reduces to equation (3), otherwise in the matrix region D ¼
0 equation (5) reduces to equation (1). 

In the same way, the momentum conservation equation (2) and 

equation (4) can be written as: 

Dρ ∂u
∂t
¼ðD � 1Þ

μ
km

uþ Dμ▽2u � ▽p (6)  

and in the cavity region D ¼ 1, equation (6) reduces to equation (4); in 
the matrix region D ¼ 0, equation (6) reduces to equation (2). 

Then the governing equation of two-dimension for the unfilled- 
cavity model is: 
8
>>>>>>>>><

>>>>>>>>>:

ð1 � DÞφct
∂p
∂t
þ

∂u
∂x
þ

∂v
∂y
¼ 0

Dρ ∂u
∂t
¼ ðD � 1Þ

μ
k

uþ Dμ
�

∂2u
∂x2 þ

∂2u
∂y2

�

�
∂p
∂x

Dρ ∂v
∂t
¼ ðD � 1Þ

μ
k

vþ Dμ
�

∂2v
∂x2 þ

∂2v
∂y2

�

�
∂p
∂y

(7)  

where u and v are the fluid flow velocities in the x and y directions, 
respectively. 

The initial condition is that the pressure maintains the initial pres
sure of the reservoir, and the velocity is zero, that is: 

u¼ 0; v ¼ 0; p ¼ pi (8)  

where pi is the initial reservoir pressure. 
The inner boundary condition is the mass conservation in the well

bore boundary, that is: 

2πrwunjΓi
¼ qBþ C

dpw

dt
(9)  

where rw is the wellbore radius, un is the fluid flow velocity in the di
rection normal to the wellbore boundary Γi; q is the rate and assumed as 
constant, B is the volume factor of the fluid, C is the wellbore storage 
coefficient, pw is the wellbore pressure. 

The reservoir boundary condition is assumed to be no fluid flow 
boundary, that is: 
�

∂p
∂n

�

Γo

¼ 0 (10)  

where Γo represents the reservoir boundary, and n is the normal direc
tion of Γo. 

The continuous boundary condition between the interface between 
the cavity and the matrix is satisfied automatically because the fluid 
flow in the two regions is described by the same governing equation (7). 

2.3. Numerical simulation 

The Galerkin weighted residual method is used to discretize the 
governing equation (7). There are three equations in (7) and each of 
them has different physical essence, so the weight function of them 
should be chosen respectively. The first equation in (7) is the mass 
conversation formula, which represents the volume changes of fluid 
caused by the pressure changes. Thus, we choose the variational pres
sure δp as the weight function. The second and third equation in (7) is 
the momentum equation in the x and y direction, and the Galerkin form 
the equation should be the virtual power balance of the fluid flow. Then, 
the weight function should be δu and δv, respectively. Then, the Galerkin 
form equations of (7) are as follows: 
ZZ �

ð1 � DÞφct
∂p
∂t
þ

∂u
∂x
þ

∂v
∂y

�

δpdxdy¼ 0 (11)  

ZZ �

ρ ∂u
∂t
¼ðD � 1Þ

μ
k

uþDμ
�

∂2u
∂x2 þ

∂2u
∂y2

�

�
∂p
∂x

�

δudxdy¼ 0 (12)  
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ZZ �

Dρ ∂v
∂t
¼ðD � 1Þ

μ
k

vþDμ
�

∂2v
∂x2þ

∂2v
∂y2

�

�
∂p
∂y

�

δvdxdy¼ 0 (13) 

Further, after order reducing, the above equations are derived to 
weak forms. 

The weak form of equation (11): 
ZZ �

ð1 � DÞφct
∂p
∂t
þ

∂u
∂x
þ

∂v
∂y

�

δpdxdy

¼

ZZ �

ð1 � DÞφct
∂p
∂t

δpþ
�

∂ðuδpÞ
∂x

þ
∂ðvδpÞ

∂y

�

�

�

u
∂δp
∂x
þ v

∂δp
∂y

��

dxdy

¼

ZZ

ð1 � DÞφct
∂p
∂t

δpdxdyþ
Z

unδpds �
ZZ

�

�

u
∂δp
∂x
þ v

∂δp
∂y

�

dxdy ¼ 0

(14)  

where s represents the boundary of the model. 
The weak form of equation (12) is: 

Z Z �

Dρ∂u
∂t
� ðD� 1Þ

μ
k

u� Dμ
�

∂2u
∂x2þ

∂2u
∂y2

�

þ
∂p
∂x

�

δudxdy

¼

Z Z �

Dρ∂u
∂t

δu� ðD� 1Þ
μ
k

uδuþ
∂p
∂x

δu
�

dxdy

�

Z Z

Dμ
�

∂
∂x

�

δu
∂u
∂x

�

þ
∂
∂y

�

δu
∂u
∂y

��

dxdyþ
Z Z

Dμ
�

∂u
∂x

∂δu
∂x
þ

∂u
∂y

∂δu
∂y

�

dxdy

¼

Z Z �

Dρ∂u
∂t

δu� ðD� 1Þ
μ
k

uδuþ
∂p
∂x

δu
�

dxdyþ
Z Z

Dμ
�

∂u
∂x

∂δu
∂x
þ

∂u
∂y

∂δu
∂y

�

dxdy

�

Z

Dμ∂u
∂n

δuds¼0

(15) 

The weak form equation (13) are the same with equation (15) except 
that the variable u should be v, so it is omitted here. 

The interpolations of the variables in an element are: 

pðx; y; tÞ ¼
XG

i¼1
Piðx; yÞpiðtÞ

uðx; y; tÞ ¼
XR

j¼1
Njðx; yÞujðtÞ

vðx; y; tÞ ¼
XR

j¼1
Njðx; yÞvjðtÞ

(16) 

The interpolation function of variable p is P, and the number of 
interpolation points is G. The interpolation function of variable u, v is N, 
and the number of interpolation points is R. As can be seen from 

equation (7), the derivative order of the variable u, v is two, and that of 
the variable p is one, so the order of the interpolation function N for u, v 
should be greater than that for p. Usually, the order of N is two and that 
of p is one. Thus, the element with six nodes in Fig. 2 should be used. As 
shown in Fig. 2, the interpolating points for p are the vertex of the tri
angle and that for u, v includes the midpoint of the edges besides the 
vertex, which indicates that G ¼ 3, R ¼ 6. 

Substituting equation (16) into equations (14) and (15), we get: 

XG

m¼1

XG

i¼1
Kpp

im _pi �
XG

m¼1

XR

j¼1
Kpu

jmuj �
XG

m¼1

XR

j¼1
Kpv

jmvj ¼
XG

m¼1
Qm (17)  

XR

m¼1

XR

j¼1
Auu

jm _uj �
XR

m¼1

XR

j¼1
Buu

jmuj �
XG

m¼1

XG

i¼1
Cup

impi ¼
XR

m¼1
Em (18)  

XR

m¼1

XR

j¼1
Avv

jm _vj �
XR

m¼1

XR

j¼1
Bvv

jmvj �
XG

m¼1

XG

i¼1
Cvp

impi ¼
XR

m¼1
Em (19)  

where 

Kpp
im¼

Z Z

ð1� DÞφctPiPmdxdy

Kpu
jm¼

Z Z ∂Pm

∂x
Njdxdy

Kpv
jm¼

Z Z ∂Pm

∂y
Njdxdy

Qm¼�

Z

unPmds

Buu
jm¼Bvv

jm¼

Z Z

ð1� DÞ
μ
k
NjNmdxdyþ

Z Z

Dμ∂Nj

∂x
∂Nm

∂x
dxdyþ

Z Z

Dμ∂Nj

∂y
∂Nm

∂y
dxdy

Auu
jm¼Avv

jm¼

Z Z

DρNjNmdxdy

Cup
im¼

Z Z ∂Pi

∂x
Nmdxdy

Cvp
im¼

Z Z ∂Pi

∂y
Nmdxdy

Em¼

Z

Dμ∂Nj

∂n
Nmds 

The matrix form of equations (17)–(19) is: 

Fig. 2. The element used in the Galerkin method.  

Fig. 3. The log-log plots of the bottom hole pressure and pressure derivative 
versus time for the WIC model. 
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2

4
Kpp 0 0
0 Auu 0
0 0 Avv

3

5

2

4
_p
_u
_v

3

5þ

2

4
0 Kpu Kpv

Cup Buu 0
Cvp 0 Bvv

3

5

2

4
p
u
v

3

5¼

2

4
Q
E
E

3

5 (20) 

The wellbore boundary and reservoir boundary are the natural 
boundary conditions, they can be substituted into equation (20). The 
element stiffness equation (20) are assembled to a global stiffness 
equation and it is solved by the open source toolkit SuperLU (Li et al., 
1999; Li, 2005). 

3. Results and analysis 

3.1. WIC model 

3.1.1. Bottom hole pressure response 
Fig. 3 shows bottom hole pressure pw and the derivative pw’ versus t 

and the input parameters are listed in Table 1. It can be divided into six 
stages:  

� Stage I: Wellbore storage stage. In this stage, the production is 
dominated by the compressed fluid in the wellbore while the sand 
face rate is zero. The pressure and derivative curves are a straight 
line with unit-slope.  
� Stage II: Free-fluid flow stage. With the increase of the sand face rate, 

the free-fluid flow in the unfilled cavity begins. As can be seen in this 
stage, the pressure drops sharply and curves oscillate. This is because 
the free-fluid flow in the unfilled cavity is very fast and it has a good 
fluid supply for the flow, so the bottom hole pressure decreases in 
this stage. Fig. 4(a) is the pressure filed of t ¼ 10� 6 h which the end 
time of this stage, it shows that the pressure in the unfilled cavity is 
almost the same and it can be treated as an equipotential body.  
� Stage III: Quasi-wellbore storage flow stage of the cavity. After 

reaching the boundary of the cavity, the fluid flow transforms from 
the unfilled cavity to the porous matrix. However, the permeability 
of the matrix is small, and the unfilled cavity acts like the wellbore. 
The pressure-drop of the cavity is linear with time, which is called a 

Fig. 4. Pressure filed of the unfilled WIC model.  

Table 1 
The input parameters for the unfilled WIC model.  

Parameters Value Unit 

C 0.001 m3/MPa  
km  1 mD 
rv  50 m 
φ 0.1  
μ 1 mPa s 
ct  0.0035 MPa–1 

rw  0.1 m  

Fig. 5. The comparison of log-log plots between filled WIC model and unfilled WIC model.  
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quasi-wellbore storage flow stage. The pressure and derivative are 
also a straight line with unit-slope in the log-log plot. It can be 
verified by the pressure field which is presented in Fig. 4(b). In Fig. 4 
(b) the pressure-drop is kept in the region of the cavity, but the 
pressure value is smaller than that in the previous stage.  
� Stage IV: Transition stage. With the decrease of the pressure in the 

cavity, the effect of the fluid in the matrix on the bottom hole pres
sure is increasing and the flow transits from the cavity to the matrix.  
� Stage V: Radial flow stage. After the fluid flow transits to the matrix 

and the fluid flow gradually develops to radial form which is shown 
in Fig. 4(c). The derivative curve is a horizontal line in the log-log 
plot.  
� Stage VI: The reservoir boundary response stage. As arriving at the 

reservoir boundary, the fluid flow has no supply for a closed 
boundary. Then the bottom hole pressure will increase linearly with 
time, and pressure derivative is an upward straight line with unit- 
slope. 

Fig. 3 shows the type curves of the unfilled WIC model. It should be 
noticed that the time scale for the wellbore storage stage and the free- 
fluid flow stage is quite small, and limited by the accuracy of pressure 
gauges, the characteristic of the type curves may not be recognized by 
the field test data. 

3.1.2. Comparison with the filled cavity 
After analyzing the type curves of the unfilled-cavity model, we also 

make a comparison with the filled-cavity model. Fig. 5 is the compara
tive results with the filled model from Wan et al. (2018a). In Fig. 5, the 
solid lines numbered 1 and 2 are the plots for filled WIC model which the 
mobility ratio (M) of the cavity is 104 and 106 which are published in 
Wan et al. (2018a),’s paper. The dotted lines numbered 3 are the plots 
for the unfilled WIC model which is shown in Fig. 3. As can be seen, in 
the wellbore storage stage, the curves of unfilled WIC model and the 
filled WIC model overlap with each other because the wellbore storage is 
caused by the fluid compressibility in the wellbore and is independent of 
the reservoirs. However, in the cavity flow stage, the curves of the two 

Fig. 6. The matching results of the extracted data with the single-phase Darcy’s flow model.  

Fig. 7. Log-log plots of the pw and pw’ vs. t for the WIC model with different cavity radius rv.  
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models are quite different. For the filled WIC model, a radial flow of a 
zero-sloped derivative in the cavity is observed because the cavity is 
porous media. For the unfilled WIC model, the flow in the cavity is 
free-fluid flow and a pressure-drop with oscillations rather than a radial 
flow is found. In the quasi-wellbore storage stage, the straight line of the 
unfilled WIC model is on the left side of the straight line which repre
sents the transition flow from the cavity to the matrix in the filled WIC 
model. In the radial flow and reservoir boundary stages, the type curves 
for filled and unfilled WIC model are exactly the same because the re
gion beyond the cavity are the same. 

As analyzed above, the stage iii is the quasi-wellbore storage flow. In 
this stage, the pressure and derivative curve is an upward straight line 
with unit-slope and it can be considered as a quasi-wellbore effect. Thus, 
we extract the data from stage iii to stage vi as a new well test case and 
used the homogeneous single-phase Darcy’s flow model to match the 
extracted data. Fig. 6 is the matching result. The matched permeability 
of the matrix is exactly the same as the unfilled WIC model. The matched 
wellbore storage C’ is 3.386 m3/MPa and the skin factor S is � 6.2. As 
mentioned above, the unfilled cavity can be treated as wellbore and thus 
the radius of the cavity is the effective wellbore radius. Then, we use the 
effective wellbore radius model to compute the skin factor. We get, 

rv¼ rwe� S (21) 

The radius of the cavity is rv ¼ 50 m and the radius of the wellbore is 
rw ¼ 0:1 m, substituting into equation (21) to compute the skin factor, 

S¼ � ln
rv

rw
¼ � ln

50
0:1
¼ � 6:21 (22)  

and results are the same with the matched result from Fig. 6. This ver
ifies that it is feasible to treat the unfilled cavity as a wellbore and as a 
consequence the wellbore storage coefficient increases. This explained 
why a large wellbore storage and negative skin factor are observed in the 
field test of the caved carbonated reservoirs. 

3.1.3. Influence of the cavity radius rv 
Fig. 7 is the log-log plots of the pw and pw’ vs. t with different cavity 

radius rv. As can be seen, the upward straight line in the stage iii is 
shifted to the right when the rv increases, which indicates that the quasi- 
wellbore storage coefficient increase with the cavity radius. 

3.2. WOC model 

3.2.1. Bottom hole pressure response and comparison with filled WOC 
model 

Fig. 8 is the log-log plots of the pw and pw’ versus t for the unfilled 
WOC model (curves numbered 1) and the filled WIC model (curves 
numbered 2 and 3). As Wan et al. (2018a), analyzed, the characteristic 
of the type curves for the WOC model is the valley on the derivative, 
which is caused by the high permeability of the cavity. As can be seen 
from Fig. 8, the type curves of the unfilled WOC model are very similar 
to the unfilled WOC model. It is because the cavity is a good fluid supply 
for the wellbore no matter it is filled or unfilled. The depth of the valley 
is dependent on the mobility ratio of the cavity M which determines the 
fluid mobility in the cavity. The greater M, the deeper the valley, but 
there is a limit of the depth, which is believed to be the unfilled cavity. 
However, from Fig. 8, we can see that the depth of the unfilled cavity is 
smaller than the filled cavity. We believe it is because the fluid flow in 
the cavity is assumed to be incompressible and the contribution of the 
fluid compressibility to the valley is neglected. 

3.2.2. Influence of the cavity radius rv 
Fig. 9 is the log-log plots of the WOC model with different cavity 

radius rv, which could be 30 m, 50 m, and 100 m. As can be seen, the 
larger the cavity is, the deeper the valley on the derivative, which is the 
same with the filled WOC model (Wan et al., 2018a). In Fig. 9, we can 
see that the valley on the derivative is not very deep even if the radius of 
the cavity is as much as 100 m. It means that the influence of the cavity 

Fig. 8. Log-lot plots of the pw and pw’ vs. t for the filled and unfilled WOC model.  

Fig. 9. Log-log plots of the pw and pw’ vs. t for the WOC model with different rv.  
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on the pressure derivative in the case of WOC is quite small compared 
with the case of WIC. 

3.2.3. Influence of the distance d from the cavity to the wellbore 
Fig. 10 is the log-log plots for the WOC model with different cavity 

position. The curves numbered 1, 2, and 3 are the cases of the d is 10 m, 
20 m, and 30 m, respectively. As can be seen, the farther the cavity is 
from the wellbore, the later the valley begins and the smaller the depth 
of the valley on the derivative, which is also the same the filled WOC 
model. From Fig. 10, we can see that the influence of the cavity is 
obvious only when it is close to the wellbore. On the other hand, the 
cavities far from the wellbore can be ignored in the well test 
interpretation. 

4. Conclusion 

This paper develops a numerical pressure transient model based on 
Stokes-Darcy coupled theory for the caved-carbonate reservoirs with 
unfilled cavities, in which the flow is described by Stokes’ equation. The 
finite element method is applied in the solutions of the mathematical 
models. The type curves of two typical cases of a well drilled into the 
cavity and not drilled into the cavity are analyzed. Conclusions can be 
drawn as followings:  

� The type curves of the well drilled into the unfilled cavity model can 
be divided into six stages. The stages dominated by the unfilled 
cavity are the free-fluid flow stage and the quasi-wellbore storage 
flow stage.  
� Compared with the filled cavity model presented in the previous 

work, in the free-fluid flow stage, a pressure-drop with oscillations 
rather than a radial flow is observed. After the free-fluid flow stage, a 
long duration of quasi-wellbore storage stage is found in which the 
unfilled cavity is an equipotential body.  

� An unfilled cavity can be considered as an enlarged wellbore which 
can be equivalent to a negative skin factor and a larger wellbore 
storage coefficient would be obtained.  
� The type curves of the well not drilled into the unfilled cavity have a 

valley on the derivative caused by the cavity. They are very similar to 
the filled cavity model. However, the unfilled cavity model is not the 
limit case of the filled cavity model with extremely large mobility of 
the cavity.  
� A cavity with a larger size and smaller distance from the wellbore 

would give rise to a deeper valley. 
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Nomenclature 

d distance between the center of the cavity and the wellbore, L 
rv radius of cavity, L 
φ porosity 
ct total compressibility coefficient, M� 1LT2 

p pressure, ML� 1LT2 

t time, T 
u fluid velocity vector, LT� 1 

u fluid velocity in x direction, LT� 1 

v fluid velocity in y direction, LT� 1 

k permeability, L2 

μ fluid viscosity, ML� 1T� 1 

Fig. 10. Log-log plots of the pw and pw’ vs.t for the WOC model with different d.  
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ρ fluid density, ML� 3 

D model control coefficient 
rw radius of wellbore, L 
Γ boundary 
q fluid volume rate, L3T� 1 

B volume factor of the fluid 
C wellbore storage coefficient 
P interpolation function of pressure 
N interpolation function of velocity 
G number of the interpolation points for p 
R number of the interpolation points for u and v 
G number of the interpolation points for p  

Subscripts 
m matrix 
c cavity 
w wellbore 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.petrol.2020.107085. 
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