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ABSTRACT
The resolution and robustness properties of a numerical scheme are twomutually restricted aspects
for the detailed simulation of complex flows. In the present paper, an improved seventh-order
finite difference weighted essentially non-oscillatory scheme (WENO-PR) is developed by distribut-
ing largerweights to the less smooth stencils. Tomeet theoptimization requirements, thehigh-order
smoothness indicator τ ismodified by some constraints and a real-number index factor p is designed
under the control of a wavenumber identifier. The results show that the modifications in the pro-
posed scheme improve self-adaptation features in the smooth and discontinuous regions, which
greatly balance the numerical resolution and robustness. Compared with the existing schemes such
as WENO-Z and WENO-JS, the WENO-PR is more flexible, accurate and robust. Several one- and
two-dimensional numerical tests are performed to confirm the high-resolution capability and the
non-oscillatory property of the proposed scheme.
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1. Introduction

Currently, many studies are focussing on detailed sim-
ulations of compressible complex flows, such as direct
numerical simulation (DNS) and large eddy simula-
tion (LES). For the DNS and LES of compressible
turbulent flows, numerical schemes should possess
non-oscillatory properties to capture shock waves that
characterise the flows. Additionally, these schemes
should provide an accurate representation of the vary-
ing ranges of flow details, including high-frequency
small-scale turbulent fluctuations and multi-scaled
turbulent vortices. Significantly low dissipation may
lead to numerical oscillation and computation over-
flow. Hence, researchers need to resolve the contra-
diction between shock-capturing capabilities and low
dissipation.

Several numerical methods have been developed
to resolve this contradiction. Harten (1983) and Shu
(1987) proposed a second-order accurate total vari-
ation diminishing (TVD) scheme and an improved
total variation bounded (TVB) scheme, respectively.

CONTACT Xin-Liang Li lixl@imech.ac.cn

Subsequently, a successful high-order method, essen-
tially non-oscillatory schemes (ENO), was introduced
(Harten et al. 1986), which was used to resolve
reduced-order problems (Harten 1989; Harten et al.
1987). The ENO scheme maintains the higher order
by cancelling the monotonicity-preserving limit of the
TVD, and the substencils with high-order interpola-
tion are adaptively selected to reconstruct numerical
flux to avoid spurious oscillation (Shu andOsher 1988,
1989). However, some effective information is wasted
when selecting the smoothest stencil and discarding
others. To overcome this drawback, Liu, Osher, and
Chan (1994) proposed the first weighted ENO scheme
(WENO) by introducing a weight function to combine
the information on all candidate substencils. Further-
more, a finite difference WENO scheme (WENO-JS)
was constructed (Jiang and Shu 1996; Balsara and
Shu 2000), in which a practical smoothness indicator
was designed to improve computational efficiency, but
the WENO-JS scheme was still too dissipative for the
detailed simulations of high-frequency fluctuations
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in flow fields (Liu et al. 2015). Henrick, Aslam, and
Powers (2005) clearly pointed out that the WENO-
JS scheme failed to recover the maximum order at
critical points. In their study, a correcting mapping
function that approximating the WENO-JS scheme
to an original linear scheme was devised, leading a
resulting mapped WENO scheme called WENO-M
recovered the optimal order of accuracy at critical
points. Subsequently,Martín et al. (2006) proposed the
WENO-SYMBO and the WENO-SYMBOO schemes
which rely on symmetrical stencils and discriminant
functions. While these schemes have been success-
fully applied, they possess reduced robustness (Wu and
Martín 2007). In an attempt to perform high-fidelity
simulation of turbulence, ameaningful high-order tar-
geted ENO scheme (TENO) was proposed by assem-
bling the low-order substencils with incrementally
increasing width (Fu, Hu, and Adams 2016). There-
after, the TENO scheme was extended to the eighth-
order TENO scheme (Fu, Hu, and Adams 2017), the
dispersion and dissipation properties of which were
optimised independently in a unified framework. Fur-
thermore, the TENO scheme was improved by an
adaptation parameter CT for effectively minimising
numerical dissipation and maintaining robustness for
shock-capturing (Fu, Hu, and Adams 2018). In addi-
tion, various improved versions of theWENOschemes
have been launched (Ha et al. 2013; Kim,Ha, and Yoon
2016; Gande, Rathod, and Rathan 2017; Li et al. 2017;
Rathan and Raju 2018) and have been widely used in
different simulations (Zhou, He, and Shen 2012; Tong
et al. 2017; Kitamura and Nonomura 2017).

An effective scheme, named as WENO-Z, was
developed by Borges et al. (2008). The study succeeded
in modifying the low-order smoothness indicator by
designing a coefficient of higher-order smoothness
indicator τ to examine overall accuracy. Under the
action of τ , theWENO-Z scheme achieves the desired
order of convergence at critical points. The index fac-
tor p is dependent on the accuracy and the dissipation
of the numerical scheme, that is, a smaller p leads to
less dissipation, lower robustness and vice-versa. For
p = 1, theWENO-Z is not sufficiently robust for prac-
tical cases and reduces one order at the critical points
in smooth regions. For p = 2, the scheme recovers
maximum order with higher numerical dissipation.
However, although the index p attains larger values in
[1, r−1], the robustness of WENO-Z is weaker than
the classicalWENO-JS. Castro, Costa, andDon (2011)

extended this scheme to the 2r−1 order and obtained
a general formula, wherein the smoothness indicators
τ and p have been considered together. It is found that
the discontinuities can be identified by using a more
effective τ , and the scheme with p = r−1 has no vis-
ible oscillation owing to the large dissipation. Hence,
these modifications essentially increase the weights
of the discontinuous stencils. Recently, a sixth-order
WENO-CU scheme with a sixth-order τ 6 and a fifth-
order WENO-η scheme with τ based on Lagrange
interpolation were proposed by Hu,Wang, and Adams
(2010) andFan et al. (2014), respectively. Subsequently,
a WENO-AMM scheme was developed by getting
some constraints on the nonlinear weights to guar-
antee maximal order accuracy (Aràndiga, Martí, and
Mulet 2014). Later, a problem-independent nonlinear
switch was investigated (Arshed and Khan 2019) and
a new global smoothness indicator was obtained by
applying the Taylor expansion to the local smooth-
ness indicator (Li, Li, and Ge 2019). For approx-
imating the derivative of a smooth function with
high order critical points, two improved WENO-D
and WENO-A schemes employing sensitivity param-
eters were developed (Wang, Wang, and Don 2019).
These schemes are based on theWENO-Z scheme and
achieve an improved balance between resolution and
robustness.

Based on the discussion mentioned above, WENO-
Z depends on the expression of the τ and the selection
of the integer index p, which enlightens this study to
explore the abilities of τ and p to reassign the weights
for further optimisation. The smoothness indicator
τ is initially modified for less numerical dissipation,
following which the index p is extended to the real
number domain using a wavenumber identifier. The
improved τ and adaptive p are determined via numer-
ical characteristic analyses.

This remainder of this paper is organised as follows.
In Section 2 and Section 3, reviews of the WENO-
JS and WENO-Z schemes are provided. The pro-
posed WENO-PR scheme is described in Section 4,
with detailed discussions on the structuring of the
new scheme. In Section 5, the numerical charac-
teristics of the WENO-PR are discussed. Section 6
presents the assessment of the scheme and its valida-
tion based on the benchmark cases involving disconti-
nuities andmulti scales;more accurate numerical solu-
tions and better no-oscillatory properties than those of
the WENO-JS andWENO-Z schemes are achieved by
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the proposed scheme. Finally, we conclude our results
in Section 7.

2. WENO-JS scheme

In this section, a brief description of the seventh-
orderWENO-JS scheme employing four 4-points sub-
stencils is provided, as shown in Figure 1. H(k)

j+1/2 is
computed by the fourth-order polynomial interpola-
tion for each stencil, and all of them are combined
with weight functions for the overall seventh-order
accuracy in the smooth region.

For simplicity, the one-dimensional scalar hyper-
bolic conservation law can be expressed by:

∂u
∂t

+ ∂f (u)
∂x

= 0, f (u) = au, a > 0, (1)

On uniform grids, it can be written as a semi-discrete
conservative finite difference scheme in the form of the
WENO scheme:

∂u
∂t

∣∣∣∣
j
=

f WENO
j+1/2 − f WENO

j−1/2

�x
, (2)

where f WENO
j+1/2 is the numerical flux at the semi-point

j+ 1/2. For the seventh-order WENO-JS, the numeri-
cal flux is computed as:

f WENO−JS
j+1/2 =

3∑
k=0

ωkH
(k)
j+1/2, (3)

H(k)
j+1/2 =

3∑
k=0

α
(k)
l fj−k+l, (4)

where H(k)
j+1/2 is the fourth-order polynomial interpo-

lation for the kth stencil, k = 0,1,2,3. The weight ωk is

Figure 1. Computational grids and the four 4-points stencils of
the seventh-order WENO-JS scheme.

defined by:

ωk = αk∑3
k=0 αl

, (5)

αk = Ck

(βk + ε)p
, (6)

C0 = 1
35

,C1 = 12
35

,C2 = 18
35

,C3 = 4
35

(7)

where Ck is an ideal weight. The constant ε has a small
value of 10−7 to avoid division by zero. The parameter
p ensures adaptation sensitivity to discontinuities and
p = 2 is usually chosen to ensure numerical stability.
The smooth degree of the flow field is measured using
the low-order smoothness indicator βk given by:

βk =
3∑

k=0

∫ xj+1/2

xj−1/2

�x2l−1

(
∂ l

∂xl
qk(x)

)2

dx, (8)

where the function qk(x) is interpolated by the corre-
sponding stencil.

In the smooth regions, becauseωk is a good approx-
imation to the ideal weight resulting from the small
and similar value of βk, WENO-JS tends to the
seventh-order upwind spatial discretization scheme.
βk substantially increases when discontinuities occur,
so the weights in the continuous regions become sig-
nificant in all stencils. InWENO-JS, the weights in the
continuous regions are assigned larger values than oth-
ers, thereby enhancing the numerical dissipation and
reducing second-order accuracy near discontinuities.

3. WENO-Z scheme

Based on the WENO-JS, the WENO-Z scheme is
developed to recover high order near critical points.
The numerical flux of the seventh-order WENO-Z is:

f WENO−Z
j+1/2 =

3∑
k=0

ωZ
k H

(k)
j+1/2, (9)

where H(k)
j+1/2 is the numerical flux of each candidate

stencil. The nonlinear weight ωZ
k of the kth substencil
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(k = 0,1,2,3) is given by:

ωZ
k = αZ

k∑3
k=0 αZ

l
, (10)

αZ
k = Ck

βZ
k

= Ck

[
1 +

(
τ7

ε + βk

)p]
, (11)

βZ
k = (βk + ε)/(βk + τ7 + ε), (12)

τ7 = max(|β0 + 3β1 − 3β2 − β3|, ε), (13)

The increasing p leads to larger numerical dissipa-
tion and more robustness, while it is often considered
as 1 and 2 in Equation (11). The scheme is dissipative
to prevent spurious oscillation when p = r − 1 and it
has r = 4 for the seventh-order WENO-Z. The terms
βk and H(k)

j+1/2 are the same as those in the WENO-JS.
Following the features of the high-order smoothness
indicator τ 7 obtained by Don and Borges (2013), we
have:

• In the smooth stencils, τ 7 = O(�x7);
• In the stencils with discontinuities, if the kth

substencil is relatively smooth, βk is less than τ 7;
• τ 7 ≤ maxkβk.

The nonlinear parameter αZ
k is slightly modified

by replacing βk with βZ
k to obtain higher robustness

(Wang and Wu 2015), and the new αZ
k is defined by:

αZ
k = Ck

[
1 +

(
τ7

ε + βZ
k

)p]
, (14)

where βZ
k is given by Equation (12).

4. ProposedWENO-PR scheme

The procedure for the construction of the WENO-PR
is presented in this section. The high order smooth-
ness indicator τ 7 is modified, and the expression of p
based on the local smoothness is designed for adaptive
dissipation.

4.1. Modification of τ7

As demonstrated in Section III, if βk is less than τ 7 at
the discontinuities, αZ

k increases and the correspond-
ing ωZ

k becomes a dominant value. Therefore, the dif-
ferences in each ωZ

k can be reduced by limiting the
maximumdifference betweenβk and τ 7. The complete

scheme is approximately linear when the ωZ
k increases

at discontinuities. For this purpose, τ 7 is replaced by
Zpratan(τ 7) with the maximum absolute value limited
by Zpr•π /2, where atan represents the function of arc
tangent and Zpr is an artificial parameter called limit
coefficient which indicates the similarity between βk
and τ 7. The modification of atan decreases the differ-
ences between τ 7 and ωZ

k at discontinuities, resulting
in the new nonlinear parameter as:

αZ
k = Ck

[
1 +

(
Zpratan(τ7)

βZ
k + ε

)p]
, (15)

where βZ
k is defined as shown in Equation (12).

To estimate the influence of atan and Zpr, the non-
linear spectral analysis proposed by Pirozzoli (2002)
is adopted. In Figure 2, the solid black lines repre-
sent ideal dispersion and dissipation, respectively. The
dashed lines depict the ranges of the upper–lower
limit of the results with these selected parameters. It
is found that the dispersion and dissipation proper-
ties are optimised with the modification of atan and
depend on Zpr. Ki and Kr are approximately the ideal
situations with a decreasing Zpr, as indicated by the
arrows. Although atan leads to few changes, it is nec-
essary to add it first. A finite value is given as the
limitation of atan to avoid a significantly large value
of τ 7, which is the foundation of the control of Zpr.
However, owing to a significantly small Zpr may lead
to high numerical oscillation, a compromise value,
Zpr = 0.3/(2π), is chosen to balance the dispersion
and dissipation, whose results are at the centre of the
two dashed black lines, as shown in Figure 2. Here, Zpr
is an adjustable parameter, whose magnitude can be
measured by treating π as a unit.

4.2. Adaptive p

From linearisation owing to modification of τ 7,
certain numerical oscillations may occur in the
high-wavenumber regions. These oscillations can be
removed bymodifying the index p that plays an impor-
tant role in WENO adaptation sensitivity. Previously,
p is chosen as an integer such as p = 1 and 2. To
ensure a small amount of dissipation and the stability
in low- and high-wavenumber regions, respectively, an
adaptive p will be considered.

The numerical oscillation of the WENO scheme
disappears when p = r − 1. For r = 4 adopted in the
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Figure 2. Numerical characteristics with different τ 7. (a) Dispersion. (b) Dissipation.

seventh-order WENO scheme, p = 3 is chosen as the
upper limit of the adaptive p. In order to reduce the
dissipation error and ensure better resolution property
than the WENO-Z scheme, a compromise minimum
value p = 0.5 between 0 and 1 is chosen. Thus, an
adaptive p whose range is in the interval [0.5,3] is fur-
ther designed as a linear function of θ j+1/2 and can be
expressed as:

p = 0.5 + 2.5θj+1/2, (16)

where θ j+1/2 is a numerical wavenumber identifier (Li
et al. 2016) defined by:

θj+1/2 = |Sr1 − Sr2|s
|Sr1 + Sr2|s

, (17)

S1 = |uj+1 + uj−1|, (18)

S1 = |uj+2 + uj+1 − uj − uj−1|/4, (19)

As shown in Figure 3, the identifier θ j+1/2 with
r = 4 and s = 1 recommended by Li monotonously
increases with the increasing wavenumber α ≡k�x. It
can be seen that θ j+1/2 varies in the range from 0 to
1 in the smooth region (low-wavenumber region) and
the discontinuous region (high-wavenumber region).
The location of θ = 0.98 is depicted by a short dash
line indicating a high-wavenumber region.

Comparedwith the constants p = 0.5 and 3, the dis-
persion and dissipation properties of the scheme with
the adaptive p are shown in Figure 4. It is observed
that the dispersion and dissipation with the adap-
tive p are similar to that for p = 3, although they
are not completely coincident. Furthermore, the adap-
tive p ensures that the dissipation is non-negative in

Figure 3. Values of θ j+1/2 as a function of the wavenumber α.

the high-wavenumber region and has similar charac-
teristics as those for p = 0.5 in the low-wavenumber
region. The intersected location is depicted by a short
horizontal dash line, which is consistent with Figure 3.

4.3. Expression ofWENO-PR

Here, we summarise the final expressions of the
WENO-PR scheme which can be written into the uni-
form framework as:

f WENO−PR
j+1/2 =

3∑
k=0

ωZ
k H

(k)
j+1/2, (20)
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Figure 4. Numerical characteristics with the adaptive p. (a) Dispersion. (b) Dissipation.

where the nonlinear weight is:

ωZ
k = αZ

k∑3
k=0 αZ

l
, (21)

Other related functions are:

αZ
k = Ck

[
1 +

(
Zpratan(τ7)

βZ
k + ε

)p]
, (22)

βZ
k = (βk + ε)/(βk + τ7 + ε), (23)

τ7 = max(|β0 + 3β1 − 3β2 − β3|, ε), (24)

where p is defined as:

p = 0.5 + 2.5θj+1/2, (25)

θj+1/2 = |S41 − S42|
|S41 + S42|

, (26)

S1 = |uj+1 + uj−1|, (27)

S1 = |uj+2 + uj+1 − uj − uj−1|/4, (28)

The terms ωZ
k , Ck, βk, and H(k)

j+1/2 have the same
forms andmeanings as those inWENO-Z. InWENO-
PR, only the limit coefficient Zpr which is recom-
mended as Zpr = 0.3/(2π) is an adjustable parameter
and the other parameters are fixed.

5. Analysis of the numerical characteristics

5.1. Nonlinear spectral analysis

Figure 5 provides a spectral study of the WENO-PR
scheme, compared with the WENO-JS and WENO-
Z schemes with different p. It is observed that the

results from WENO-PR coincide with the ideal solu-
tions in the lower-wavenumber region, thereby indi-
cating better dissipation and dispersion properties. In
the medium-wavenumber region for 1.5 ≤ α ≤ 2, the
results of WENO-PR are more similar to the ideal
results by comparison with the other two schemes.
Additionally, in the higher-wavenumber region, the
results of WENO-PR are between WENO-JS and
WENO-Z, indicating that a certain amount of dissipa-
tion is introduced to ensure the stability of the scheme.
These characteristics are considered in practical simu-
lations.

5.2. Weights analysis

To further illustrate the changes after applying the
adaptive p, the non-linear weights of the substencils on
the discontinuities are analysed. Figure 6 presents the
first-order derivatives of the discontinuous function in
the first-time step.

u(x, 0) = f (x)

=
{

− sin(πx) − 1
2x

3, −1 ≤ x ≤ 0
− sin(πx) − 1

2x
3 + 1, 0 ≤ x ≤ 1

(29)

It is observed that when a substencil encounters a dis-
continuity, the correspondingweight deviates from the
ideal situation and becomes smaller. As p increases, the
weights are fixed at zero from x = −0.01 to x = 0.02,
indicating that the information from these weights is
ignored for high dissipation, as shown in Figure 6(b).
However, Figure 6(c) shows that the small weights
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Figure 5. Numerical characteristics for the WENO-JS, WENO-Z and WENO-PR schemes. (a) Dispersion. (b) Dissipation.

Figure 6. Distribution of ideal weights Ck and nonlinear weights ωZ
k , k = 0, 1, 2, 3. (a) WENO-PR with Zpr = 0.3/(2π) and p = 0.5.

The discontinuous function is shown in the lower part. (b) WENO-PR with Zpr = 0.3/(2π) and p = 3. (c) WENO-PR with adaptive p.

of the WENO-PR are concentrated near the discon-
tinuity and a few non-zero weights which hold dis-
continuity information are at x = 0. It indicates that
the discontinuity is more accurately identified with
an adaptive p. Thus, higher linear property and lower
dissipation can be expected of theWENO-PR scheme.

5.3. Accuracy test and CPU costs of the schemes

The function u = cos(x), x ∈ [−π ,π], with an exact
derivative ∂u/∂x = −sin(x), is chosen to test the
L1 and L∞ errors of the WENO-JS, WENO-Z, and
WENO-PR schemes. As shown in Table 1, WENO-
JS reduces one order in L1 and two orders in L∞ at
the extreme points (Henrick, Aslam, and Powers 2005;
Rathan and Raju 2018), whereas WENO-Z has the
highest order of accuracy at the same locations. It is
also shown that the WENO-PR maintains its actual
accuracy approaching the seventh-order.

An average value of the one-time step is computed
to evaluate the efficiency of the WENO-JS, WENO-
Z, and WENO-PR schemes. As shown in Table 1, the
computing times of the WENO-PR are 9–20% more
than that of WENO-Z, whereas the CPU costs of the
WENO-Z are 2–16% more than that of WENO-JS.
Considering the higher resolution of the WENO-PR,
the small increase in the costs is acceptable.

6. Numerical experiments

Several one- and two-dimensional numerical experi-
ments are performed to assess the performance of the
new scheme. The experiments solve Euler equations
and adopt Steger-Warming flux vector splitting and
local characteristic decomposition. Time marching is
achieved via the third-order Total Variation Dimin-
ishing Runge–Kutta scheme (Suresh and Huynh 1997)
which is also applicable to the seventh-order scheme
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Table 1. The L1, L∞ errors and the rates of the convergence of theWENO-JS (p = 2, ε = 10−7),WENO-Z (p = 2, ε = 10−16) andWENO-
PR (ε = 10−16) schemes with the function u = cos(x).

Methods N L1 error L1 order L∞ error L∞ order CPU time

WENO-JS 10 1.60E− 03 − 2.88E− 03 − 5.10E− 05
20 2.80E− 05 5.84 1.19E− 04 4.59 5.22E− 05
40 5.06E− 07 5.81 3.91E− 06 4.76 5.32E− 05
80 8.21E− 09 5.85 1.23E− 07 4.85 5.60E− 05
160 1.29E− 10 5.88 3.84E− 09 4.89 6.79E− 05

WENO-Z 10 8.05E− 05 − 1.46E− 04 − 5.20E− 05
20 6.73E− 07 6.90 1.18E− 06 6.95 5.34E− 05
40 5.34E− 09 6.94 8.63E− 09 7.02 5.48E− 05
80 4.19E− 11 6.96 6.62E− 11 7.03 6.51E− 05
160 3.28E− 13 6.97 5.22E− 13 7.02 7.51E− 05

WENO-PR 10 7.88E− 05 − 1.24E− 04 − 6.20E− 05
20 6.74E− 07 6.87 1.45E− 06 6.42 6.30E− 05
40 6.57E− 09 6.77 1.83E− 08 6.36 6.51E− 05
80 5.80E− 11 6.78 3.23E− 10 6.20 7.10E− 05
160 4.94E− 13 6.80 5.92E− 12 6.16 9.01E− 05

(Zhu et al. 2017).

u(1) = un + �t · L(un) (30)

u(2) = 3
4
un + 1

4
[u1 + �t · L(u(1))] (31)

u(3) = 1
3
un + 2

3
[u2 + �t · L(u(2))] (32)

The time step of the one-dimensional case is calcu-
lated using:

�t = CFL · h
maxj(|uj| + aj)

(33)

and that of the two-dimensional case is:

�t = CFL · �tx�ty
�tx + �ty

(34)

where �tx = h
maxj,k(|u|j,k+aj,k)

, and CFL = 0.2. The
coefficient ε is set as a small constant as previous
studies (Henrick, Aslam, and Powers 2005; Don and
Borges 2013). It is noted that some computations of the
WENO-Z with p = 1 fail under the same conditions
because of its too low dissipation, so only the WENO-
JS (p = 2, ε = 10−7), WENO-Z (p = 2, ε = 10−16)
and WENO-PR (ε = 10−16) schemes are adopted for
further comparison.

6.1. Shu-Osher and Titarev-Toro problems

For the Shu-Osher problem, a one-dimensional Mach
3 shock-entropy wave interaction is mainly used to
assess the resolution on the small and the strong waves
(Shu and Osher 1988). It is specified by the following

initial conditions:

(ρ, u, p)

=
{

(3.857143, 2.629369, 10.333333), 0 ≤ x ≤ 1
(1 + 0.2 sin(5x), 0, 1), 1 ≤ x ≤ 10

(35)

The uniform grid points are N = 400, and the end
time is t = 1.8. The ‘exact’ solution is considered as the
numerical solution of the WENO-JS with N = 4000,
whereas the analytic solution is non-existent.

The second case is based on the Shu-Osher prob-
lem, in which the higher frequency entropy wave
occurs (Titarev and Toro 2004). The initial condition
is:

(ρ, u, p)

=
{

(1.515695, 0.523346, 1.805),−5 ≤ x ≤ −4.5
(1 + 0.1 sin(20πx), 0, 1),−4.5 ≤ x ≤ 5

(36)

The density variation is shown with grid points
N = 800 and final time t = 5, and the exact solution
is calculated by theWENO-JS scheme withN = 8000.

As shown in Figure 7(a), it is observed that the
WENO-JS is the most dissipative one and theWENO-
Z demonstrates superior resolution than the WENO-
JS. The solution from the WENO-PR achieves the
wave peaks, especially works well in reproducing the
accurate flow features on the strong discontinuities
at x ≈ 7 where the density changes sharply after the
shock waves.

As shown in Figure 7(b), the high-frequency waves
of all the schemes decay after passing the shock wave,
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Figure 7. Density of two shock-entropy interaction problems. (a) Shu-Osher problem, t = 1.8,N = 400. (b) Titarev-Toro problem,
t = 5,N = 800.

but the solution of the WENO-PR is sharper than the
WENO-Z at most peaks. TheWENO-PR is more sen-
sitive to higher frequency waves. In the region with the
rapidly changing waves, the WENO-PR shows better
discontinuity-capturing capability. These results are
consistent with the numerical characteristics as shown
in Figure 5.

6.2. Two-blast-wave problem

This case involves complex interactions of strong
shock (Hui, Li, and Li 1984; Hu, Adams, and Shu 2013;
Sumi and Kurotaki 2015). The initial condition is:

(ρ, u, p) =

⎧⎪⎨
⎪⎩

(1, 0, 1000), 0 ≤ x ≤ 0.1
(1, 0, 0.01), 0.1 ≤ x ≤ 0.9
(1, 0, 100), 0.9 ≤ x ≤ 1

(37)

and the reflective conditions are imposed on both x =
0 and x = 1. The computation is advanced till t =
0.038withN = 400. The exact solution is calculated by
the seventh-order WENO-JS scheme with N = 4000.

The density distribution is plotted in Figure 8 which
shows that the improved result is generally given by
the WENO-PR, especially in the turn region at x =
0.65, 0.75, 0.8. It indicates that the WENO-PR sta-
bilises for strong discontinuities.

6.3. Double-Mach shock reflection problem

The WENO-PR is applied to the two-dimensional
double-Mach shock reflection problem (Woodward

and Colella 2015). It shows that a right-moving Mach
10 shock starts up on x = 1/6, y = 0, and forms a
60◦ angle between the x-axis and itself. The param-
eters of the undisturbed flow before shock wave are
ρ = 1.4, p = 1, γ = 1.4. The exact post-shock condi-
tions are used on the interval 0 ≤ x ≤ 1/6 for the bot-
tom boundary, and the reflective boundary condition
is imposed for others. The values at the top boundary
are imposed to describe the exact motion of the Mach
10 shock. The inflow and outflow boundary conditions
are applied to the left and right, respectively. The solu-
tion is advanced in time up to t = 0.2with incremental
grid points 160× 60, 512× 128 and 1024× 256 on
the computational domain [0,0]× [4,1]. As the Mach
number is significantly high, the computation can eas-
ily overflow if the numerical scheme lacks stability.

From the density contours, as shown in Figure 9,
it is found that there are some basic flow characteris-
tics around the incident shock, two Mach stems and
two slip lines. For different resolutions, better rolled-
up small vortices and more complex shear surfaces are
captured by the WENO-PR along the incline Mach
stems as well as the round mushroom shape vorti-
cal structure under the incline slip line. The results
fromWENO-PR are better predictions of the real solu-
tion, while theWENO-JS andWENO-Z yield damped
solutions owing to their larger dissipation. This test
can be run using WENO-PR, but the computation
overflows (occurs with negative pressure) when the
WENO-Z with p = 1 is used, which indicates that the
WENO-PR is robust enough.



10 X. LI ET AL.

Figure 8. Density profiles in the two-blast-wave problem, t = 0.038,N = 400.

Figure 9. Density information of Double-Mach shock reflection problem plotted by 30 isolines from ρ = 1.5 to ρ = 22.9705, with
incremental grid points.
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6.4. Rayleigh-Taylor instability problem

The R-T instability occurs on the unstable interface
between different densities of two fluids. If heavier
fluid flows into the lighter one, a number of the result-
ing fine flow structures will occur. Thus, this problem
is usually used to test the resolution of a numeri-
cal scheme (Shi, Zhang, and Shu 2003). The two-
dimensional Euler equation in conservative form is:

∂U
∂t

+ ∂F1(U)

∂x
+ ∂F2(U)

∂y
= S (38)

where source item S = (0, ρ, 0, ρv)T . The initial con-
dition of the above equation is:

(ρ, u, v, p)

=
{

(2, 0,−0.025c · cos(8πx), 2y + 1), 0 ≤ y ≤ 0.5
(1, 0,−0.025c · cos(8πx), 2y + 1.5), 0.5 ≤ y ≤ 1

(39)

where c is the speed of sound expressed as
c = √

(γ p/ρ), γ = 5/3. The computational domain
is [0, 0.25]× [0, 1]. The 120× 480 uniform grids are
taken and the simulation till t = 1.95 is performed.

The resulting density contours are shown in
Figure 10. It can be seen that heavier fluid flows into
the other along the vertical axis, forming mushroom
pattern structures. There are two large vortices under
the mushroom head and several small vortices rolling
up beside the central flow column.

Although all the WENO schemes distinguish the
basic structures, the isolines from the WENO- PR
are more intensive inside the mushroom head cap-
turing small vortices. Some spurious oscillations are
removed at (0.12,0.75) compared to the WENO-Z. In
the remaining smooth regions, the WENO-PR and
WENO-Z schemes agree well, indicating a reliable
solution and better resolution results given by the
WENO-PR. This case shows that theWENO-PR has a
better balance in capturing small-scale structures and
avoiding numerical oscillations.

6.5. Two-dimensional implosion case

This example is an unsteady flow in a two-dimensional
container (Hui, Li, and Li 1999). The initial condition
is:

(ρ, u, v, p) =
{

(1, 0, 0, 1), x2 + y2 ≤ 0.152

(0.125, 0, 0, 0.14), else
(40)

At t = 0, the flow field is separated into two parts,
the inner one of which is a circle. If the computa-
tion starts, the circular region begins to interact with
the outer region. Owing to the reflective boundary
condition applied except the outflow condition on
the upper boundary, the flow becomes more com-
plex. As shown in Figure 11, complex flow details
are identified by the WENO-Z and WENO-PR, and
the latter is better. It can be seen that the WENO-
PR achieves a compromise between resolution and
robustness.

6.6. Shock-Bubble interaction problem

This case describes a normal shock wave propagates
through air from left to right and impacts on a cylin-
drical helium bubble (Bagabir and Drikakis 2001). It is
a challenging problem to determine the resolution and
the robustness of the numerical schemes. The problem
is simplified by assuming air and helium as perfect gas
with the ratio of specific heat capacities γ = 1.4. The
initial conditions are given by:

(ρ, u, v, p) =

⎧⎪⎨
⎪⎩

(1,−6, 0, 1) pre shocked air
(5.799, 5.5750, 0, 167.833), post shocked air
(0.138,−6, 0, 1), helium bubble

(41)

Initially, the radius of the helium bubble is 0.15 with
the centre at (0.25, 0) and a shock wave moves from
(0.05, 0). Notably, u = −6 is applied to maintain the
bubble in the computation domain. The inflow con-
dition is applied with post-shock condition to the left
boundary and the outflow condition is considered to
the right boundary. The reflective conditions are given
for the upper and lower boundaries.

Figure 12 provides a comparison of the three
schemes at t = 0.075. The strong shock smashes into
the bubble and generates a group of vortices, shown
by the distorted isolines. As shown in Figure 12(d),
while the relatively sketchy solutions are given by
the WENO-JS and WENO-Z, richer structures are
captured by the WENO-PR, for example, the result
contains greater distortion near (0.6,0.25), indicat-
ing that linearity is provided by the adaptive p.
Also, the WENO-Z with p = 1 overflows in this
test owing to its instability. It indicates that the
resolution and robustness of the WENO-PR are
improved.
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Figure 10. Density of R-T instability problem plotted by 15 isolines from ρ = 0.9952269 to 2.14589 with N = 120× 480. (a) WENO-JS.
(b) WENO-Z. (c) WENO-PR.

Figure 11. Density of implosion problem with N = 256× 256. (a) WENO-JS. (b) WENO-Z. (c) WENO-PR.
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Figure 12. Density of Shock-Bubble interaction problem plotted by 33 isolines from ρ = 0.6 to 7.1, with N = 200 × 100. (a) WENO-JS.
(b) WENO-Z. (c) WENO-PR. (d) Details for WENO-PR.

7. Conclusions

In this paper, a new WENO scheme (WENO-PR)
is proposed based on the seventh-order WENO-Z
scheme. In the WENO-PR, the high-order smooth-
ness indicator τ 7 is modified by a limiting function
and a parameter Zpr, which leads to larger weights
assigned at the discontinuities. Also, an expression of
the real-number adaptive p controlled by a wavenum-
ber identifier is proposed. Owing to the adaptive p,
the numerical dissipation can be adjusted reason-
ably in low- and high-wavenumber regions, result-
ing in less dissipation and more robustness. Fur-
thermore, the nonlinear spectral analysis is adopted
to determine the expressions of τ 7 and p. The
weights analysis proves that the numerical character-
istics of the WENO-PR are better than the WENO-
JS and WENO-Z schemes. Canonical test problems
are applied to test the new scheme, including one-
dimensional Shu-Osher, Titarev-Toro and two-blast-
wave problems, two-dimensional Double-Mach shock
reflection, Rayleigh-Taylor instability, implosion and
Shock-Bubble interaction problems. The tests illus-
trate that the WENO-PR is less dissipative and more
robust with little increase in CPU cost. The methods
for improving τ 7 and p in this paper provide differ-
ent ways to control dissipation and assign the weights,

and they may be further promoted by more accurate
wavenumber identifier and modification.
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