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ABSTRACT
By using a graphics processing unit-accelerated parallel algorithm on a compute unified device architecture platform, we perform large-scale
molecular dynamics simulations in a Lennard-Jones system to observe the entire crystallization process, including metastable stage, critical
nuclei formation, and the stage of crystal growth. Although the intermediated precursors that play a role in determining the polymorphs
are predominantly bcc ordered, the polymorph selection is rather different at different stages. The precursors that have a relatively high
orientational order will be on average in a denser region than uniform liquids, but microscopically the crystal nucleation happens without
a density change. The average density of nuclei first increases significantly, and then almost keeps independent on the crystallite size after
the growing post-critical nucleus becomes large enough. With such a large enough system, the crystal growth rate is able to be calculated
directly by doing a linear fit to the temporal evolution of growing crystallite size. The obtained value of the growth rate indicates that the
actual crystal growth in the Lennard-Jones system where the crystal–liquid interface has several kinds of structures is possibly driven by both
collision-controlled and diffusion-controlled mechanisms.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5139574., s

I. INTRODUCTION

Crystallization is a typical process where the supercooled liquid
passes through some scenarios to transform into a crystal eventually.
Due to its practical consequences in science, technology, and our
daily life, it has attracted a lot of interests in scientific research.1 The
crystallization process, which is physically a first-order phase tran-
sition, usually has three stages: (I) the metastable stage where many
subcritical nuclei form and dissolve, (II) the stage of critical nuclei
formation, and (III) the stage of crystal growth. So far, experimental,
theoretical, and numerical studies on the crystallization have been
done extensively, but the understanding of the crystallization pro-
cess is far from being complete as there are still a lot of debates over
its subtle details and the underlying mechanism.2,3

Among the countless studies of the crystallization process,
computer simulation is a good way because it can provide a detailed
picture of the nuclei formation and subsequent crystal growth on

a microscopic level.4 When considering the methods of computer
simulation, a natural choice is the so-called brute-force molecu-
lar dynamics (MD), in which one would just cool the system to
below the melting temperature and then simply wait for the crys-
tal nucleation to happen. Until now, the brute-force MD has been
a popular and robust method to study the crystallization process as
it is straightforward and can directly provide a “real” temporal evo-
lution. Although some enhanced sampling methods where specific
and complex computational techniques that artificially accelerate the
emergence of the critical nucleus are proposed to observe the nucle-
ation event within a much shorter time scale,2 they in principle alter
the dynamics of a system.

As for the simulation of the crystallization process, stage (I)
and stage (II) have been well studied, but not stage (III) because it
requires a large enough system whose computational cost is very
expensive. Actually, this is also related to a long-standing disadvan-
tage that has to be considered in simulation, i.e., the finite size effects

J. Chem. Phys. 152, 054903 (2020); doi: 10.1063/1.5139574 152, 054903-1

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1063/1.5139574
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5139574
https://crossmark.crossref.org/dialog/?doi=10.1063/1.5139574&domain=pdf&date_stamp=2020-February-4
https://doi.org/10.1063/1.5139574
https://orcid.org/0000-0002-8839-0781
https://orcid.org/0000-0001-5433-0409
mailto:oywz@imech.ac.cn
mailto:xush@imech.ac.cn
https://doi.org/10.1063/1.5139574


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

due to the small number of particles or molecules. To eliminate the
artifacts from finite size effects, people have not yet agreed on exactly
how many particles should be used in a typical MD simulation of
crystallization. In 1986, Honeycutt and Andersen reported that the
critical nucleus size and nucleation rate were largely dependent on
the size of the simulated Lennard-Jones (LJ) system, i.e., the criti-
cal nucleus size and nucleation rate were smaller in a small system
than those in a large system, indicating that artifacts in the crys-
tallization process might be produced by the small system size and
periodic boundary conditions.5 A few years later, Swope and Ander-
sen continued to study the crystal nucleation of the LJ system with a
sufficiently large number of particles and their results suggested that
more than 104 particles would avoid finite-size effects.6 The work of
Huitema7 seemed to support the outcome of Swope and Andersen as
they studied the nucleation rate of the LJ system. Yet, when concern-
ing the growth of post-critical nuclei, one should take into account
additional artifacts produced by the finite system size. As is known, a
solid crystalline region that emerges and grows in a liquid often has
a structure with crystal particles and an attached liquid-like inter-
face and extends to a distance. Especially, when the solid crystalline
reaches a rather large size where its extending distance exceeds half
the simulation cell length, the nucleus will definitely “feel” the image
of itself under the periodic boundary conditions. This may influ-
ence some observations such as the rate of crystal growth and the
subsequent structure formation related to the polymorph selection.
In 2006, Streitz et al. observed the solidification in molten tantalum
and showed that the independence from finite-size effects during the
entire nucleation and growth process should need more than 106

atoms.8 In other words, in order to circumvent the artifacts from
finite-size effects and produce an accurate model of reality, the sys-
tem size used for the simulation of the entire crystallization process
had better be much larger than normal expectation.

In this work, we will perform large-scale brute-force MD sim-
ulations via a graphics processing unit (GPU)-accelerated parallel
algorithm implemented on a Compute Unified Device Architecture
(CUDA) platform, where more than 106 particles are used to observe
the entire crystallization process. As an illustration, the model LJ
system is considered here based on the following reasons. First, the
LJ potential has a simple functional form which facilitates evalua-
tions. Second, as the LJ system plays an important role in statistical
physics and has become one of the most widely studied model sys-
tems,9 much data, especially its accurately characterized liquid–solid
phase diagram, are already available,10–12 which makes the simula-
tion of solidification explicit. Third, there are already a lot of pre-
vious numerical studies on the crystal nucleation and its underlying
nucleation mechanism, where a small number of particles are mostly
used so that we can compare our results of the large system size
with previous observations conveniently as well as discover some-
thing new relevant to crystallization. In most previous simulations
of LJ crystallization, the stage of crystal growth is not well studied
somewhat due to small system size, which makes the understanding
of the entire crystallization process incomplete. Here, more than 106

particles are used in MD simulations, where the system size would
be large enough to let the post-critical nucleus in a simulation box
extend to fairly long distance before it can “feel” the image of itself.
We expect some useful information, especially the observations of
crystal growth, can be achieved so as to shed a new insight into the
physics of the crystallization process.

II. DETAILS OF SIMULATION
As is known, the LJ potential is written as

U(rij) = 4ϵ[(σ/rij)12 − (σ/rij)6], (1)

where rij is the pair distance between the centers of ith particle and
jth particle. The parameters ϵ and σ define the strength and length
scale of the interaction, respectively. As is common for the simu-
lations of the LJ system, we use the reduced units, where energy
unit ϵ, length unit σ, and the mass of particle m are chosen as the
basic units. The cutoff distance of LJ interaction is rcut = 3.0 and a
long-range correction is added for the calculation of thermodynamic
quantities.4,13

In order to make the large-scale MD simulations run fast and
efficiently, we implement a GPU-accelerated parallel algorithm14

via the program of CUDA.15 The ensemble of each MD simu-
lation is the NPT ensemble, where the total number of particles
N, the pressure P, and the temperature T are kept constant. We
apply the period boundary conditions and integrate the equation of
motion by using the velocity Verlet algorithm4,13 with the time step
δt = 0.005. To control the constant temperature and pressure, we
adopt the Berendsen thermostat and barostat.16

During the numerical study of crystallization, we need to iden-
tify different structures, especially the crystal or solid particles in
the simulation box. Here, we distinguish crystal particles from liq-
uid particles using the bond-orientational order parameters. Those
bond-orientational order parameters are originally introduced by
Steinhardt et al.17 and afterward applied by ten Wolde and co-
workers18,19 for crystal identification. First of all, we should con-
sider a set of nearest neighbors of a particle i we are interested in
as all particles j. Formerly, the nearest neighbors of a concerned
particle are often determined based on a cutoff radius or the assign-
ment of a fixed number of nearest neighbors. Such a straightforward
way is actually not appropriate to identify neighborhood arrange-
ment for a lot of systems, especially when concerning long-range
interactions.20,21 Hence, we adopt the Voronoi tessellation instead
of a straightforward method to determine the nearest neighbors,
in which the arbitrary parameters are definitely not used. We also
normalize bond-orientational order parameters via the surface area
of each Voronoi cell, as suggested by Mickel et al.20 Assuming
that the surface area of the Voronoi cell facet separating particle i
and its nearest-neighbor particle j is Aij and the total surface area
Atot(i) = ∑Nnb(i)

j=1 Aij, we can define a complex vector qlm(i) for a
particle i,

qlm(i) =
1

Nnb(i)

Nnb(i)

∑
j=1

Aij

Atot(i)
Ylm(rij). (2)

Nnb(i) is the number of the nearest neighbors of particle i and rij is
the vector from particle i to j. The functions Y lm(rij) are the spherical
harmonics, l is a free integer parameter, and m is an integer that runs
from m = −l to m = l. In order for the identification of solid particles,
we take the integer parameter l = 6 and normalize the complex vector
q6m(i) as

d6m(i) =
q6m(i)

[∑6
m=−6 ∣q6m(i)∣2]

1/2
. (3)
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Then, we calculate a scalar product which measures the correlation
between neighboring particles i and j,

Sij =
6

∑
m=−6

d6m(i) ⋅ d∗6m( j), (4)

where the superscript ∗ indicates complex conjugation. We consider
two neighboring particles i and j to be connected if Sij exceeds a
given value, typically Sij > 0.7. When a particle i has at least seven
connected neighbors, we can say that it is a solid or crystal particle.

We use the coarse-grained bond-orientational order parame-
ters introduced by Lechner and Dellago22 to further determine the
structure of each solid particle. Different from Eq. (2), the coarse-
grained complex vector q̄lm(i) of particle i is calculated by averaging
qlm over all its nearest neighbors as

q̄lm(i) =
1

Nnb(i)

Nnb(i)

∑
k=0

qlm(k), (5)

where k = 0 means particle i itself. Then we calculate the local order
parameters of averaged version

Ql(i) = (
4π

2l + 1

l

∑
m=−l
∣q̄lm(i)∣2)

1/2

(6)

and

Wl(i) = ∑
m1+m2+m3=0

( l l l
m1 m2 m3

) q̄lm1(i)q̄lm2(i)q̄lm3(i)
(∑l

m=−l ∣q̄lm(i)∣2)
3/2

, (7)

where the term in parentheses is the Wigner 3 − j symbol. The inte-
gers m1, m2, and m3 run from −l to l with the precondition that
m1 + m2 + m3 = 0. After a crystal particle is identified,18,19 we take
advantage of the sign of W6 and W4 to distinguish its symmetry
type.23 The following criterion is used: the symmetry of a crystal par-
ticle is (i) face-centered-cubic (fcc) as W6(i) < 0 and W4(i) ≤ 0; (ii)
hexagonal close-packed (hcp) as W6(i) < 0 and W4(i) > 0; and (iii)
body-centered-cubic (bcc) as W6(i) ≥ 0.

III. RESULTS AND DISCUSSION
The phase diagrams, especially the liquid–solid phase diagram

of the LJ system have been extensively studied and accurately con-
structed. It is well known that the thermodynamically stable solid
phase of the LJ system has a fcc structure. Besides stable fcc, there
are also two kinds of metastable crystal structures, i.e., hcp and bcc.
For a given melting temperature Tm, here we use the fitting formula
of the coexisting curve obtained by van der Hoef11 to calculate the
coexistence pressure

P coex = β−5/4 exp(−0.4759β1/2)[16.89 − 7.2866β − 2.9895β2], (8)

where β = 1/kBTm. When performing a brute-force MD simulation,
we should bear in mind that the temperature must be below the
melting temperature to ensure a large enough supercooling. We use
a very large number of particlesN = 4× 643 = 1 048 576, and find that
the LJ liquids can crystallize under a fairly lower supercooling than
those with small number of particles. Here, we take the supercooling
as 28%, in order that the coalescence of nuclei seldom happens and

the post-critical nuclei can grow to a rather large size before exceed-
ing the boundary of the simulation box. The melting temperature
we take is Tm = 2.0 (the temperature of simulation is T = 1.44 for
a supercooling of 28%) and the pressure P = 21.23 can be calculated
immediately by Eq. (8). For a better statistics, we have performed 100
sets of MD simulations independently. Among those 100 generated
trajectories, we have seen that 74 trajectories succeed in crystalliza-
tion. In the following, we will describe in detail the observations of
the entire crystallization process.

A. Precursor-mediated crystallization
The degree of crystallinity f c can be defined as the number of

solid particles divided by the total number of particles N. In the
top of Fig. 1, we show the temporal evolution of f c during a typical

FIG. 1. Crystallization process in a typical MD simulation for T = 1.44 (the melting
temperature Tm = 2.0 and the supercooling is 28%) and P = 21.23. Top: Degree
of crystallinity (crystal fraction) f c . Middle: Size of the largest crystal nucleus nL.
Bottom: Mean square displacement (MSD).
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crystallization process. Obviously, the system at such a relatively
small supercooling we chose has been a steady-state metastable
fluid for a rather long time (more than 2 × 105δt). In the stage of
metastable fluid, the fraction of solid particles is very small and most
of the particles that are in liquid environments can move freely (see
the evolution of mean square distance in the bottom of Fig. 1). After
the system succeeds in the formation of a critical nucleus, more
and more liquid particles transform into solid particles so that f c
increases significantly. Eventually, the system can almost completely
crystallize as f c nearly reaches 1.0.

To directly see the crystallization process, we plot some snap-
shots of the typical MD trajectory (corresponding to Fig. 1) via the
software Ovito.24 As there are so many (more than one million) par-
ticles, we only display the crystal particles for a clear view. The crystal
particles with different structures are depicted as different colored
spheres. As is shown in Fig. 2(a), many small nuclei form and dis-
solve in the metastable fluid. These subcritical nuclei are indeed not
spherical as assumed in the classic nucleation theory (CNT), but
seem to be diffusive. Only when one of these nuclei reach a critical
size [see Fig. 2(b)], can it grow up until the whole system crystal-
lize. During this typical crystallization process, we clearly see that the

FIG. 2. Snapshots of a typical crystallization process, corresponding to Fig. 1.
Red, green, and blue spheres represent fcc, hcp, and bcc crystal particles,
respectively. Liquid particles are not displayed for clear view. (a) t = 2 × 105δt.
(b) t = 2.4 × 105δt. (c) t = 2.6 × 105δt. (d) t = 2.8 × 105δt. (e) t = 2.9 × 105δt.
(f) t = 4.0 × 105δt.

crystallization starts from one critical nucleus but not many. As the
post-critical nucleus grows larger and larger, its size may increase
until it can even feel the image of itself or even touch itself [see
Figs. 2(d) and 2(e)]. When concentrating on the structure of the
growing largest nucleus, we investigate that its surface has most of
the bcc crystals, while the inside structures are predominantly fcc
and hcp crystals. This observation is in agreement with the previous
results of ten Wolde and co-workers.18,19 In Subsection III B, we will
analyze more deeply the polymorphs in the nuclei, especially in the
growing post-critical nuclei. It can be seen from Fig. 2(f) that there
are mostly fcc and hcp crystals and very few bcc crystals left at the
end of crystallization.

It has already been found that a coarse-grained bond-
orientational order parameter Q6 [see Eq. (6)] plays an essential role
in the crystallization of many kinds of liquids as Q6 drives the whole
crystallization process.3,25 Usually, the crystal nucleation happens in
the region of preordered liquids with relatively high Q6. Those pre-
ordered liquid particles that act as the seeds of crystal nucleation
are often defined as precursors. Here, we just simply identify the
precursor particles using a threshold value of Q6 (typically liquid
particles with Q6 ≥ 0.25) as previously done.26–28 To study the struc-
ture of precursors, we use the method similar to the identification
of crystal structures, i.e., different precursor structures are identified
by their symmetries on the W6–W4 plane. For a precursor parti-
cle, it is (i) fcc-like as W6 < 0 and W4 ≤ 0; (ii) hcp-like as W6 < 0
and W4 > 0; (iii) bcc-like as W6 ≥ 0. After counting the number
and evaluating the fraction of different precursors (Fig. 3), we can
see that the precursors during the whole crystallization process have

FIG. 3. Evolution of precursors during a typical crystallization process, correspond-
ing to Fig. 1. Top: Number of fcc-like, hcp-like, and bcc-like precursors. Bottom:
Fraction of fcc-like, hcp-like, and bcc-like precursors.
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a structure with dominant bcc symmetries, which is also found in
other systems.21,23,26,28 For a further understanding of the precursor-
mediated scenario, we evaluate the average connected neighbors
ξ̄ (ξ ≥ 7 for solid particles) of precursors. Seen from the top of Fig. 4,
the ξ̄ of precursors is almost constant at the metastable stage but
increases during crystallization due to the increase in the attached
precursors on the surfaces of growing crystal nuclei (see the bot-
tom of Fig. 4). Eventually, most of the particles have become crystals
and only few precursors that have relatively high ξ are left (see also
Fig. 3).

Based on the picture of precursor-mediated crystallization, we
describe the entire crystallization process as follows: Starting from an
initial random configuration, the system soon become a metastable
fluid where many small precursor clusters appear to spread all over
the simulation box. Subsequently, some nuclei emerge inside the
precursor clusters. However, these nuclei are not stable at all and
always dissolve, while some other nuclei form in other places. After
waiting for a long enough time, one nucleus fortunately grows up to
a critical size and can continue to grow. During the crystal growth,
there are also many precursor particles attached on the surface of the
growing post-critical nucleus. These precursors, which are not only
the seed of crystal nucleation but also the mediated transformation
for crystal growth, have the structure of predominantly bcc ordered.
Eventually, the growing post-critical nucleus exceeds the boundary
of the simulation box and no more transformed precursors attach;
so there happens a self-adjusting of the system in which most bcc
crystals transform into fcc or hcp crystals.

FIG. 4. Average connected neighbors of precursors ξ̄. Top: Temporal ξ̄ during a
typical crystallization process, corresponding to Fig. 1. Bottom: ξ̄ of precursors
attached on the surface of nuclei vs the crystallite size n.

B. Polymorph selection

To study the polymorphs of the LJ system during the crystal-
lization process, we apply the method of crystal identification18,19 to
all of MD trajectories and make a statistic analysis on the composi-
tion of each solid cluster. Figure 5 displays the average number of
particles and fraction for fcc, hcp, and bcc polymorphs as a function
of crystallite size n. As expected, the fcc phase is always dominant
over hcp and bcc phases during the entire crystallization process.
Such a dominant fcc phase, especially during crystal nucleation, has
been observed frequently in previous studies.6,18,19,29–31 For small
nuclei, the number or the fraction of bcc particles seems to be fairly
significant (even be close to that of fcc particles for extremely small
nuclei). With the increase in the nucleus size, the number of bcc par-
ticles begins to increase slower than that of fcc and hcp particles so
that the fraction of bcc decreases until it reaches a rather small value.
As for the hcp, its fraction decreases slightly first and then increases
apparently with the growth of nuclei.

From the observations of Fig. 5, we can say that the polymorph
selection is very different at different stages of the crystallization pro-
cess. At the stage of metastable fluid, the systems bear a lot of small
nuclei with different sizes [see Fig. 2(a)] that may dissolve again.
Notice here that the crystal nucleus size n in metastable fluid can
reach a value more than 100 (see the top of Fig. 6). Concerning
the composition of total crystal particles at the metastable stage for
a typical MD simulation, fcc particles account for about 40% and
bcc particles account for about 37%, while hcp particles account for

FIG. 5. Average number (top) and fraction (bottom) of different solid particles in
the crystal as a function of the total crystal size n. Red circles, green squares, and
blue diamonds represent fcc, hcp, and bcc polymorphs, respectively.
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FIG. 6. Evolution of each polymorph during a typical crystallization process, corre-
sponding to Fig. 1. Top: Number of each kind of crystal particles. Bottom: Fraction
of each kind of the crystal structure.

about 23% indicating that the hcp phase plays a minor role in small
nuclei (see the bottom of Fig. 6). When the crystallization enters
stage (II), one of the nuclei reaches a critical size and can grow sub-
sequently. This nucleus, which is considered to be a critical one,
probably has a predominant fcc core with some attached bcc par-
ticles and few hcp particles. During the growth of a post-critical
nucleus, more and more both fcc and hcp particles are formed at the
expense of bcc. Especially, when the size of the post-critical nucleus
grows to be very big, the fraction of hcp can eventually reach a
significantly large value (close to 0.4), while bcc seems to become
minor.

For a deeper view of the polymorph selection of the LJ sys-
tem, it is necessary to answer the question why the composition of
crystal nuclei changes at different stages of crystallization. Indeed,
this issue is related to the underlying mechanism of crystallization.
As already stated, the system holds for a precursor-mediated crys-
tallization process, thus we first need to investigate the precursors
attached on the surfaces of crystal nuclei that may probably trans-
form into crystals. In Fig. 7, we present the fraction of different
kinds of precursors attached on the surfaces of crystal nuclei as a
function of the corresponding nucleus size. During the entire crys-
tallization process, the bcc-like precursors always dominate over the
fcc-like and hcp-like precursors, which is in accord with the obser-
vations of Fig. 3. For a fairly wide range of nucleus size (up to
n = 1000 that is definitely larger than the critical size), the com-
position of attached precursor hardly changes. This means that the
structure of precursors does not vary much both in metastable fluid
and during the nucleation process. After the nucleus grows to a large
enough size so that the polymorph varies much, the fraction of the

FIG. 7. Average number (top) and fraction (bottom) of different precursor particles
attached on the surface of nuclei as a function of the total crystal size n. Red
circles, green squares, and blue diamonds represent the curves of fcc-like, hcp-
like, and bcc-like precursors, respectively.

hcp phase increases and the fraction of the bcc phase decreases (see
Fig. 5). In return, the crystal composition, especially the one near the
nucleus surface influences the newly transformed precursors so as to
make the hcp-like and bcc-like precursors vary consistently with the
tendency of hcp and fcc crystals.

Knowing the dominant bcc-like structure of the intermediated
precursors, we can immediately explain the significant bcc order-
ing in small nuclei, as it is easier for a bcc-like precursor particle to
transform into a bcc crystal particle due to the compatible symme-
try. When concentrating on the largest nucleus in crystallizing fluid,
we have seen that the bcc crystal particles mostly scatter on the sur-
face of the growing nucleus, especially for a fairly large post-critical
nucleus [see, e.g., Fig. 2(c)]. Such a phenomenon was also observed
by ten Wolde and co-workers,18,19 which has been regarded as the
manifestation of the Ostwald’s step rule.32 During the growth of the
crystallite, the bcc phase near its surface can transform into a fcc or
hcp phase, while the outside precursors spontaneously join in and
become a new bcc phase. As the bcc crystals are more likely to stay
on the nucleus surface, it is no wonder that the number of bcc crys-
tal particles increases more slowly than that of fcc and hcp for large
nuclei. At the later stage of crystal growth, besides the decrease in
the fractional bcc phase, the fraction of the hcp phase becomes sig-
nificant. This relatively high fraction of the hcp phase is considered
to result from the cross nucleation of hcp clusters on the (111) fcc
planes.29,30
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C. Role of density
There are two order parameters that characterize the liquid–

solid phase transition (orientational order and translational order).
The orientational order (typically the bond-orientational order
parameter Q6) has been convinced by many previous works to play a
key role in the crystallization. The translational order, which can be
obtained by computing two-body correlation functions, is in prac-
tice found to correlate well with the local density. Thus the local
density is often used as a measure of translational order. Up to
now, it is still unclear whether the local density plays the same role
as the orientational order during the crystallization. For instance,
there have been some debates about “density-first” or “bond-order-
first” in the literature.3 For the crystallization of hard spheres, a very
recent study suggested a simultaneous increase of density and the
bond-orientational order in the early crystal nucleation process.33

In the following crystal growth, the crystal density of hard spheres
increases with crystallite size.34 However, the case is very different
in crystallization of soft particles as some studies have indicated that
the role of density seems to be trivial.23,27,35

Here, we calculate the local density of each particle via Voronoi
diagrams, i.e., a particle’s density ρi = 1/vi, where vi is the vol-
ume of polyhedron subdivided for the particle. Then it is likely to
address the interplay between the density and orientational order. In
Fig. 8, we show the correlation between the local density and orien-
tational order at the stage of metastable fluid. As is shown in the top
of Fig. 8, we average over all the local densities of particles whose

FIG. 8. Relation between local density and coarse-grained bond-orientational order
parameter Q6 in metastable fluid. Top: average density as a function of Q6. Bottom:
average Q6 as a function of local density.

orientational order has the desired value. Apparently, there is a
weakly linear coupling relation between the average density ρ̄ and Q6
for a relatively high order, which is already observed in the crystal-
lization of hard spheres.34 This linear term indicates that the regions
of high orientational order will on average have higher density than
the uniform fluid. However, the opposite is not sure to be true, i.e.,
the regions of high density are not necessary on average to have a
high orientational order. In the bottom of Fig. 8, we present the aver-
age orientational order Q̄6 for a set of local density values. Indeed,
higher density does not correspond to higher orientational order
because the average orientational order is a non-monotonic func-
tion of the local density. This implies that there would be some
structures that have high local density but do not have a high bond-
orientational order. The icosahedral clusters, as an inhibitor to crys-
tallization,36 are considered to belong to such a kind of structure,
as they correspond to very high local packing of particles, but are
incompatible with the crystalline bond-orientational order.

We also investigate the temporal evolution of average densi-
ties for different structures (uniform liquids with Q6 < 0.25, pre-
cursors, and crystals) during a typical crystallization process. Seen
from Fig. 9, both precursors and uniform liquids have on average
a nearly constant density during the entire crystallization process.
The average density of precursors is a little higher (∼2.4%) than that
of uniform liquids. Notice that the unnatural behavior in the tail of
curves is due to the fact that most liquid particles have transformed
into crystals and the system gets into a rearrangement. Obviously,
the variation of crystal density is different from that of liquid density.
At the stage of metastable fluid, where there are a lot of small nuclei,
the average density of crystals is very close to that of precursors. As
the precursor acts as the intermediate structure of crystallization, we
can conclude that when the liquid–solid transition happens there is
almost no density change microscopically. Such a conclusion was
also found to hold true for other systems such as hard spheres and
soft particles.23,26,34 At the stage of crystal nucleation and growth, the
average density of crystals increases remarkably until its value almost
reaches a plateau.

In order to have a further understanding of the role of den-
sity during crystal nucleation and growth, we calculate the average
density of crystallites with different cluster sizes, as is displayed in
Fig. 10. The average density of crystallites evidently increases with

FIG. 9. Temporal evolution of average density for different structural particles
(uniform liquids, precursors, and crystals) during a typical crystallization process,
corresponding to Fig. 1.
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FIG. 10. Relation between average density of nuclei ρ̄c and crystallite size n.

the size for n < 1000. Definitely, at the stage of metastable fluid and
crystal nucleation when the nuclei embedded in the system are not
yet so big, the increasing crystallite density will be conspicuous with
the size. After the nucleus grows to a large enough size, an unex-
pected phenomenon appears, i.e., its average density almost does
not increase any longer (see the plateau appearing in Fig. 10), which
is unlike the previous observations of hard spheres.34 The possi-
ble reason is that the system used in previous simulations is much
smaller than ours so as to make the nuclei concerned not that large.
Moreover, there is another interesting observation that the crystal-
lite density increases once again when n > 105. We infer here that
it is probably due to an artifact of finite size effects too. Assuming a
nucleus to be spherical, it will feel the image of itself if its diameter
exceeds the half box length. So we can estimate the critical number
of particles in such a nucleus Nc = πL3

48 ρc =
πρc

48Nρ , where L is the box
length, ρ ≈ 1.14 (see Fig. 9) is the density of the whole system, and
ρc ≈ 1.163 (see the plateau value in Fig. 10) is the average density of
this nucleus. Then immediately we get to know that a nucleus whose
number of crystal particles exceeds 6.7 × 104 will feel the image of
itself so as to produce an artifact. For n > 6.7 × 104, the artifact of
“self-interaction” will become more and more significant with the
growth of nucleus and eventually leads to the self-adjusting so as to
make its average density increase again.

In all, the role of density during the whole crystallization pro-
cess of LJ liquids seems to be distinct, although the variation of
density is less significant than that in hard spheres. First, the system
gets into a metastable fluid. Some precursors with a relatively high
orientational order form and simultaneously, the density of these
precursors will increase slightly. Then the crystals emerge inside the
precursors but their local density hardly changes. When the crystal
nucleation happens, the nucleus size will continue to grow to critical
size; meanwhile, the average density of crystal nuclei will increase.
During the growth of post-critical nucleus, the average crystal den-
sity will increase up to a fixed value and then keep constant. Such a
constant density is in fact remarkably smaller than the bulk crystals.
Therefore, the crystal nucleation of the LJ system occurs at a den-
sity smaller than the bulk crystal density and the subsequent crystal
growth cannot make the crystal density increase to a bulk crystal
density either. It is possible that a bulk density has to be obtained
by other ways in the late period of crystallization such as nucleus
coalescence, system rearrangement, etc.

D. Growth rate
The crystal growth rate is the growth velocity of the crystal–

liquid interface. In colloidal experiment, the temporal evolution
of the effective radius of the growing post-critical nucleus often
approximately shows a linear curve.37 By plotting the data of grow-
ing crystallites and then doing a linear fit to get the slope, one can
measure the crystal growth rate. In contrast, the crystal growth rate
of the atomic system is almost impossible to be detected by experi-
ment due to its microscopic scale level. Computer simulation, espe-
cially molecular dynamics, is a good method to study the growth
rate of the atomic system. In former computation of the growth
rate, some special simulation methods had to be presented38 because
the direct simulation of the growing post-critical nucleus required a
large system making the computational cost too expensive. Here, we
have used the GPU-accelerated algorithm to perform a direct molec-
ular simulation of crystal growth in a very large system, where the
post-critical nucleus can grow to a large enough size.

Let us first focus on the post-critical nuclei that are growing up
and embedding in the liquids. Notice here that in a typical simula-
tion there is only one post-critical nucleus growing which actually
become the largest nucleus at the growth stage. Then we trace all
the trajectories of post-critical nuclei, including their formation and
growth, as well as calculate their extending size. Here, we define the
growth rate v = dReff /dt, where Reff = 3

√
3Vnucleus/4π is the effec-

tive radius of the growing post-critical nucleus. In Fig. 11, we show
the temporal evolution of Reff in a typical MD simulation (corre-
sponding to Fig. 1). Obviously, the emergence of such a nucleus that
subsequently grows to a critical size and can continue to grow up
happens at t ≈ 2.3 × 105δt. When t ≈ 2.4 × 105δt, the nucleus seems
to reach a critical size, but its growth rate is very small because the
rate difference between crystal addition and subtraction is almost
zero. After the post-critical nucleus grows to a rather large size which
makes the nucleus growth irreversible, the relationship between the
size of the post-critical nucleus and time appear to become approx-
imately linear so that the growth rate can be obtained by a linear fit
(see the solid line in Fig. 11). After doing the linear fit for all the
74 MD trajectories that succeed in crystallization, we can obtain the
averaged growth rate v̄ = 0.2.

FIG. 11. Temporal evolution of the effective nucleus radius for a typical crystal-
lization process corresponding to Fig. 1. Solid line represents the linear fit to the
data of Reff . The slope of the linear fit is b = 1.2 × 10−3; so the growth rate is
v = b/δt = 0.24.
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Theoretically, the crystal growth rate is expressed as

v(T) = K(T)[1 − exp(−βΔμ)], (9)

where Δμ is the chemical potential difference between the liquid and
crystal phases. For the crystallization of the LJ system, Burke et al.
observed in 1980s that the growth rate was anisotropic.39 The growth
of the (110) and (100) crystal surfaces is interpreted as a collision-
controlled scenario, i.e., K(T) = (a/λ)(3kBT/m)1/2f , where
λ = 0.4a and f = 0.27.39 On the other hand, the growth rate of
the (111) crystal surface that is relevant to the formation of hcp is
diffusion-controlled and can be described as the Wilson–Frenkel
expression; so K(T) = 6Df /l, where D is the diffusion coefficient
at the crystal–liquid interface (approximated as diffusion coefficient
in liquid, see the bottom of Fig. 1) and l = σϕ−1/3 is the thick-
ness of a particle layer.37 From the above formulas, we can estimate
the growth rates of both collision-controlled kinetics and diffusion-
controlled kinetics at T = 1.44 and P = 21.23. We have found that
the averaged growth rate we obtain from MD simulations is lower
than that of collision-controlled kinetics but much larger than that
of diffusion-controlled kinetics. As the crystal–liquid interface dur-
ing actual crystal growth is roughly spherical and the crystals on
the interface are the mixture of fcc, hcp, and bcc, it is possible that
the crystal growth is the combination of both diffusion-controlled
kinetics and collision-controlled kinetics.

IV. CONCLUSION
We have performed large-scale MD simulations to investigate

the entire crystallization process of LJ liquids. By implementing a
GPU-accelerated parallel algorithm on a CUDA platform, we are
able to use more than 106 particles to efficiently study the crystal
nucleation and growth. Trying to avoid the coalescence of nuclei
in order for an explicit observation of the crystallization process,
we set a supercooling that makes only one critical nucleus emerge
and grow. As expected, the crystallization of LJ liquids is typically
a precursor-mediated process. Although the precursors that could
play a role in determining the polymorph are predominantly bcc
ordered, the polymorph selection at different stages is rather differ-
ent. At the stage of metastable fluid, the fraction of bcc is comparable
to that of dominant fcc, while the fraction of hcp is the smallest.
After the critical nucleus is formed and continue to grow up, bcc
particles mostly scatter on the surface of the growing post-critical
nucleus, which is in accord with the previous observations18,19 and
is considered as a manifest of Ostwald’s step rule.32 With the crystal
growth, the fraction of hcp increases to be larger than that of bcc and
is eventually comparable to that of fcc.

We study in detail the role of density in the crystallization of LJ
liquids. The precursors that have a relatively high orientational order
are on average in a denser region than uniform liquids as there is a
weakly linear coupling relationship between the average density ρ̄
and Q6. However, the regions of high density are not necessary on
average to have a high orientational order suggesting that the crys-
tal nucleation is not sure to happen in the densest regions, as some
confocal experiments have observed in colloids.40,41 When the pre-
cursors transform into crystals, on average there is almost no density
change indicating that the liquid–solid transition microscopically
involves a continuous density. More interestingly, the average den-
sity of nuclei first seems to increase with the crystal growth and then

almost keeps constant after the nucleus reaches a large enough size.
After all, the density variation of LJ crystallization is more appar-
ent than that of soft particles but a bit less significant than that of
hard spheres. Thus one may be curious to know whether such a sim-
ilar phenomenon also happens in the crystallization of hard spheres,
which would call for another study of large-scale simulation.

With large enough system size, the growth rate is able to be
directly calculated by using the linear fit to the temporal evolution of
the growing nucleus radius. The value of the growth rate is between
that of collision-controlled kinetics and diffusion-controlled kinet-
ics. Due to the anisotropy of crystal growth in the Lennard-Jones
system, it can be expected that the polymorph selection, especially
the structures of the crystal–liquid interface have an important role
in the growth rate. In the actual crystallization process, the region
of interface is often the mixture of fcc, hcp, and bcc crystals, so
we may assume that a typical crystal growth is driven by both
collision-controlled and diffusion-controlled mechanisms.
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