(7))
L
| .
o3
—
((v]
c
:fU
SE
Qo
L C
Fo

Structure and dynamics of
hydrodynamically interacting finite-size
Brownian particles in a spherical cavity:
Spheres and cylinders

Cite as: J. Chem. Phys. 152, 204109 (2020); https://doi.org/10.1063/1.5139431
Submitted: 19 November 2019 . Accepted: 08 April 2020 . Published Online: 27 May 2020

Jiyuan Li "%, Xikai Jiang "%/, Abhinendra Singh "/, Olle G. Heinonen "/, Juan P. Herndndez-Ortiz "', and

Juan J. de Pablo
Y *
% e @

View Online Export Citation CrossMark

an N

ARTICLES YOU MAY BE INTERESTED IN

Shape induced segregation and anomalous particle transport under spherical confinement
Physics of Fluids 32, 053307 (2020); https://doi.org/10.1063/5.0002906

Dynamics of poly[n]Jcatenane melts
The Journal of Chemical Physics 152, 214901 (2020); https://doi.org/10.1063/5.0007573

Time reversal symmetry breaking and odd viscosity in active fluids: Green-Kubo and NEMD
results

The Journal of Chemical Physics 152, 201102 (2020); https://doi.org/10.1063/5.0006441

Lock-in Amplifiers S
up to 600 MHz

c3€p
b jeocat i€ CRERED,

J. Chem. Phys. 152, 204109 (2020); https://doi.org/10.1063/1.5139431 152, 204109

© 2020 Author(s).


https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519893960&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=994cc3a39dfad055e97600b55d242e72d9bc8924&location=
https://doi.org/10.1063/1.5139431
https://doi.org/10.1063/1.5139431
https://aip.scitation.org/author/Li%2C+Jiyuan
http://orcid.org/0000-0002-5479-0912
https://aip.scitation.org/author/Jiang%2C+Xikai
http://orcid.org/0000-0001-5601-8339
https://aip.scitation.org/author/Singh%2C+Abhinendra
http://orcid.org/0000-0003-1952-9505
https://aip.scitation.org/author/Heinonen%2C+Olle+G
http://orcid.org/0000-0002-3618-6092
https://aip.scitation.org/author/Hern%C3%A1ndez-Ortiz%2C+Juan+P
http://orcid.org/0000-0003-0404-9947
https://aip.scitation.org/author/de+Pablo%2C+Juan+J
http://orcid.org/0000-0002-3526-516X
https://doi.org/10.1063/1.5139431
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5139431
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5139431&domain=aip.scitation.org&date_stamp=2020-05-27
https://aip.scitation.org/doi/10.1063/5.0002906
https://doi.org/10.1063/5.0002906
https://aip.scitation.org/doi/10.1063/5.0007573
https://doi.org/10.1063/5.0007573
https://aip.scitation.org/doi/10.1063/5.0006441
https://aip.scitation.org/doi/10.1063/5.0006441
https://doi.org/10.1063/5.0006441

The Journal

of Chemical Physics ARTICLE

scitation.org/journalljcp

Structure and dynamics of hydrodynamically
interacting finite-size Brownian particles
in a spherical cavity: Spheres and cylinders

Cite as: J. Chem. Phys. 152, 204109 (2020); doi: 10.1063/1.513943
Submitted: 19 November 2019 * Accepted: 8 April 2020
Published Online: 27 May 2020

@

1,5.6,a)

Jiyuan Li,' ' Xikai Jiang,”' "' Abhinendra Singh,' "’ Olle G. Heinonen,** "' Juan P. Herndndez-Ortiz,

and Juan J. de Pablo'*"”

AFFILIATIONS

"Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA

2State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
*Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

“Northwestern-Argonne Institute for Science and Engineering, Evanston, lllinois 60208, USA

SDepartmento de Materiales y Nanotecnologia, Universidad Nacional de Colombia, Sede Medellin, Colombia
SColombia/Wisconsin One-Health Consortium, Universidad Nacional de Colombia, Sede Medellin, Colombia

2 Electronic mail: jphernandezo@unal.edu.co
) Author to whom correspondence should be addressed: depablo@uchicago.edu

ABSTRACT

The structure and dynamics of confined suspensions of particles of arbitrary shape are of interest in multiple disciplines from biology to
engineering. Theoretical studies are often limited by the complexity of long-range particle—particle and particle-wall forces, including many-
body fluctuating hydrodynamic interactions. Here, we report a computational study on the diffusion of spherical and cylindrical particles
confined in a spherical cavity. We rely on an immersed-boundary general geometry Ewald-like method to capture lubrication and long-range
hydrodynamics and include appropriate non-slip conditions at the confining walls. A Chebyshev polynomial approximation is used to satisfy
the fluctuation-dissipation theorem for the Brownian suspension. We explore how lubrication, long-range hydrodynamics, particle volume
fraction, and shape affect the equilibrium structure and the diffusion of the particles. It is found that once the particle volume fraction is greater
than 10%, the particles start to form layered aggregates that greatly influence particle dynamics. Hydrodynamic interactions strongly influence
the particle diffusion by inducing spatially dependent short-time diffusion coefficients, stronger wall effects on the particle diffusion toward
the walls, and a sub-diffusive regime—caused by crowding—in the long-time particle mobility. The level of asymmetry of the cylindrical
particles considered here is enough to induce an orientational order in the layered structure, decreasing the diffusion rate and facilitating
a transition to the crowded mobility regime at low particle concentrations. Our results offer fundamental insights into the diffusion and
distribution of globular and fibrillar proteins inside cells.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139431

. INTRODUCTION

Diffusion under confinement is central to multiple physical,
chemical, and biological systems, including colloidal and protein
suspensions, devices for particle separation, and transport through
membranes. A model system to study the diffusion and structure of
highly concentrated particles under confinement could offer insights

into the dynamics of crowded macromolecules, such as proteins,
inside cells where they typically occupy 20%-40% of the cytoplasm
volume.'

Previous studies have shown that crowding between macro-
molecules affects reaction rates of equilibrium reactions” ° and
hinders the diffusion of intra-cellular particles.” In vivo experi-
ments, using fluorescence recovery after photo-bleaching (FRAP)
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techniques, have reported that the apparent diffusion coefficient
for green fluorescent proteins (GFP) in E. coli’s cytoplasm is about
11 times lower than that in water.” '’ Even though a variety of
intracellular activities, namely, metabolism, cellular homeosta-
sis, signaling, transcription, translation, and locomotion, strongly
depend on diffusion of the intracellular macromolecules, the mech-
anisms behind the hindered diffusion are not fully understood. A
review by Skolnick discussed several factors that could lead to hin-
drance, including the viscosity of cytoplasm, steric effects, hydrody-
namic interactions (HI), and other short-range interactions between
particles.'" A significant effort that relied on Brownian simula-
tions of 50 types of macromolecules modeled as spheres inside
E. coli’s cytoplasm was able to reproduce the translational diffu-
sion coefficient of GFP.'*"” The authors demonstrated that steric
repulsions cannot explain the hindered diffusion and suggested that
electrostatic and other short-range interactions are essential vari-
ables to consider. However, short-range interactions modeled as van
der Waals potentials can always be tuned to match experimental
results, and these authors were unable to provide conclusive remarks
regarding the effects of short- and long-range HI. In other work,
Brownian Dynamics (BD) simulations considering fluctuating HI
have been performed in the bulk," confirming that HI plays a non-
trivial role in the hindering of macromolecular diffusion. Unfor-
tunately, the mobility variations induced by confinement were not
considered in this work. Confinement, using a network of wall par-
ticles that are constrained by a predefined potential, was included
in a subsequent study to represent a cell membrane.'” In that work,
the non-slip boundary condition was not strictly satisfied, allowing
the flow to penetrate the membrane and driving a tangential com-
ponent of the particle average velocity. From the point of view of
the role of hydrodynamic interactions on mobility, previous efforts
were centered on the study of dynamics for single or many particles
immersed in an unconfined viscous fluid'*** and that of particles
moving near a wall” "’ or confined in a slit,””' " in cylindrical
geometries,”” and in a spherical cavity.””” " Recently, a theoretical
study examined the behavior of a concentrated colloidal dispersion
of spheres confined in a spherical cavity.”” That framework relied on
a set of hydrodynamic tensors that capture far- and near-field (lubri-
cation) hydrodynamics between particles and walls. The authors
studied the structure and diffusion of the system using a Stoke-
sian dynamics (SD) approach™ and reported that the confinement,
crowding, and HI collectively lead to an anisotropic micro-structure,
which then induces position-dependent and anisotropic short- and
long-time dynamics. That study was, however, limited to spherical
particles.

We have developed an efficient computational framework to
perform BD simulations of arbitrarily shaped particles confined in
any type of geometry. We use an Immersed-Boundary (IB) method
to represent the suspended particles, a parallel finite element general
geometry Ewald-like method (pFE-GgEm)™ to calculate the con-
fined Green’s functions, and a Chebyshev polynomial approxima-
tion to satisfy the fluctuation-dissipation theorem. In this work, we
use this methodology to study how steric repulsion, short- and long-
range hydrodynamic interactions, confinement, particle volume
fraction, and particle shape affect the structure and the diffusion
of spherical and cylindrical finite-size particles confined in a spheri-
cal cavity. The cylinders are selected to break the three-dimensional
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symmetry of the particles, a feature that is common in protein
structures.

The paper starts with a description of the particle model,
the geometry, the methods, and the dimensionless variables to
characterize the system. The BD and the IB-pFE-GgEm meth-
ods are briefly summarized. We then proceed to present and dis-
cuss the results, including the spatial and orientational ordering
of the particles and the short- and long-time diffusion behav-
ior. We finish the paper with a summary of the most important
findings.

Il. MATHEMATICAL MODEL AND SYSTEM

Let us consider N mono-disperse and semi-rigid particles
embedded in a viscous fluid of viscosity #, confined in an spheri-
cal cavity of radius R. Under a zero Reynolds number condition, the
N-body force/torque balance on the particles is

FI+ PP+ FO+ B+ FY =, (1)

where F is the 6N hydrodynamic force/torque vector, F® is the
Brownian force/torque vector, FC is the force/ torque vector contain-
ing configurational forces, F*" represents the force/torque vector
due to excluded volume interactions, and F* includes all external
forces/torques.

The evolution of the suspended particles, from Eq. (1), is
carried out through the grand mobility or resistance tensors that
relate the hydrodynamic forces/torques to the translational and rota-
tional velocities of the particles.”” "' SD**** and boundary inte-
gral methods (BIM)™* have been used extensively to solve this
“mobility problem.” The regularized Stokeslets,”" the accelerated
BIM," and the Immersed Boundary (IB)***" approaches all pro-
vide computational efficiency and simplicity, typically to improve
(or avoid) the calculation of the single- and double-layer hydrody-
namic potentials of the suspended particles. In particular, the IB
method represents the surfaces of the suspended solids as a distri-
bution of discrete force densities that, together with a surface force
description and Stokes equations, generate the temporal evolution
of the suspended particles. This is the approach that we use in this
work.

The surface of each suspended particle is discretized into a set
of Nig nodes that constitute a mesh, similar to boundary element
methods.”” On the surface nodes, we define structural spring poten-
tials that maintain particle shape, volume, and surface. The force
balance on each of the N particles is then translated into the Nig
surface nodes as follows:

ff+£+f +£ =0, )

for every node v = 1, ..., Nig, where ff,{ is the hydrodynamic force,
£? is the Brownian force, £C is the constitutive force, and £V is the
force from all the excluded volume interactions: particle-particle
and particle-wall.

Assuming that the probability density for the nodal positions
is a continuous density for the Fokker-Planck equation,”’ an equiv-
alent stochastic differential equation for the motion of the nodes is
written as follows:”’
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dR:[M-F+i-D]dt+\/§B-dW, (3)
OR

where R = (X1,X2,...,XNxN,, ) denotes a 3N x Ny vector contain-
ing the spatial coordinates of the nodes, D = kgTM is the 3N x 3N
diffusion tensor, kg is the Boltzmann constant, T is the absolute
temperature, and M is the (3N x Nig) x (3N x Np) mobility ten-
sor. In addition, U = M -F contains the 3N fluctuating velocities
from the hydrodynamic interactions and F is the 3N x Np vector
that contains the non-HI and non-Brownian forces on the nodes.
The divergence of the diffusion tensor {% - D is the drift result-
ing from the configuration-dependent mobility of the confined par-
ticles and dW is a random vector, the components of which are
obtained from a real-valued Gaussian distribution with zero mean
and variance dt; dW is coupled to the diffusion tensor through the
fluctuation—dissipation theorem: D = B- BT,

In IB methods, the force distributions at moving solids are dis-
cretized as distributions of regularized point-forces. The “smooth-
ing” function for the delta function scales as the distance between the
surface nodes that are used to represent the moving particles. Con-
sequently, the structural forces on the particles, f,’, define a force
density as follows:

NIB
PICB(X) = vac(xv)(sm(ﬂ,x—xv), (4)
v=1

where 013(a, x) is a smoothing function that is a modified Gaussian
(details available in Ref. 52). The regularization parameter &g in d1p
is related to the characteristic length 4 for the node spacing on the
particle surface, i.e., & ~ h~! ~ a7 !. The rational behind dis(a, x) is
to ensure that the regularized force on each node is spread over the
length scale of the associated surface elements, thereby preventing
fluid from penetrating the particle surface.

In this work, we consider the particles as “semi-rigid,” where
each node on the particle is linked to its neighboring nodes by elas-
tic springs with a prescribed large stiffness constant. The nodes are
also connected to the particle center-of-mass by an elastic spring to
conserve the desired shape. For simplicity, we assumed that each link
is a linear spring where the force acting on the point v by the point y
is given by

fgy :k(rv‘u_qo)xﬂ~ (5)

T

Here, k is the spring elastic constant, qo is the equilibrium spring
size for each speciﬁc situation, Xy, = Xy — Xy, and Ty = |xW|. For
each particle, a spring network is formed (see Fig. 1), resulting in
an internal nodal force that resists the deformation of the parti-
cles. In addition, at each surface node of each particle, a purely
repulsive Lennard-Jones (LJ) force is added to account for particle-
particle and particle-wall excluded volume interactions. This L]
force comes from two contributions: (1) interactions with nodes
from a different particle and (2) interactions with the wall. It is
equivalent to the negative gradient of the L] potential, which is

defined by
VU (r) = 4kBT[(g)12 - (g)ﬁ] +ksT (6)

for r < 2”0 and zero otherwise. Here, r is the Euclidean distance
between nodes of two different particles or between the node and

1/6
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FIG. 1. Snapshot of the spherical cavity of radius R containing spherical particles
with @y = 10%. The spherical particles radius is rs, while the size of the cylindri-
cal particles is determined by r¢ and h¢. The surface of the particles is given by a
collection of discrete nodes that are connected to six neighbors (“trimesh”), similar
to boundary element discretizations, and with a characteristic node separation of
a ~ h ~ &' The neighboring nodes are connected with surface springs (black);
each node is also connected to the particle center-of-mass (red spring). A repul-
sive Lennard-Jones excluded volume is included on each surface node shown
schematically in the particles’ cross section by the blue circles. The characteristic
size of the repulsion is given by o = 2.2a.

walls, and o = 2.2a is chosen empirically to guarantee that each sur-
face node has an excluded volume of radius a. The translational
and rotational velocity of particles are calculated by integrating
the velocity over the surface mesh of each particle, thereby satis-
fying the force and torque balance. For completeness, we include
a validation of our IB approach in Appendixes A-C: (i) fulfill-
ment of Stokes” law of particles under confinement, (ii) validation
of the fluctuation-dissipation theorem (diffusion of particles), and
(iii) consistency of the particle shape as a function of the spring
constants.

In what follows, we use dimensionless variables for all results
and discussions. We use a as the characteristic length scale and
the nodal spacing diffusion time, aZC /kgT, as the characteristic time
scale. We set kgT as the scale for energy and kgT/a for the force.
The friction coefficient ( is related to the fluid viscosity # and a
through Stokes’ law: { = 67774, and the nodal diffusion coefficient is
Do =kgT/C.

Our simulation method, denoted by IB-pFE-GgEm, is an O(N)
algorithm that includes hydrodynamic interactions for confined,
large-scale suspensions of finite-size particles of arbitrary shape.
Details can be found in our previous work.” Briefly, the O(N)
algorithm consists of three major components: (a) pFE-GgEm rou-
tines to calculate the Green’s function (Stokeslet) for any geom-
etry, (b) Fixman’s mid-point algorithm for time integration, and
(c) the Chebyshev polynomial approximation for the fluctuation-
dissipation theorem. The parallel finite element GgEm (pFE-GgEm)
routines are built using open source libraries, thereby facilitat-
ing usage of our software. The routines can be downloaded at
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http://miccomcodes.org as part of the Continuum-Particle Sim-
ulation Suite (COPSS) from the mid-west Integrated Center for
Computational Materials (MICCoM).

Ill. RESULTS

We consider spheres and cylinders, of equal volume, that are
suspended in a spherical cavity of radius R = 15. The particles’ radius
is rs = 3 (volume Vur = 4/ 3ﬂr§’), while the cylinders’ size is deter-
mined by r¢ = 2.62 and h¢ = 2r¢ (volume Vi = ﬂréhc). Figure 1
shows the details of the system. According to our semi-rigid parti-
cle model, there are two ways to define the particle concentration
in a cavity of volume V. One uses the hydrodynamic volume frac-
tion, ®y1 = NVui/V, and a second one is based on the excluded
volume effective size, ®gy = NVEgy/V. Each surface node has an
excluded volume of radius a, thus each spherical particle has an
excluded volume of Vgy = 4/37(rs + a)*, and each cylindrical par-
ticle has an excluded volume of Vgy = n(r¢c + a)z(hc +2a). We
use the hydrodynamic volume fraction as the relevant scale for par-
ticle concentration. In this work, ®yg; = [5%, 10%, 15%, 20%], which
is equivalent to ®gy = [12%, 24%, 36%, 48%)]. The lower volume
concentration selected here is 5%, which represents a limiting vol-
ume fraction between the dilute and finite concentration regimes.
We found that all results for dilute systems, starting from infinite
dilution, are close to those for the limiting volume fraction of 5%.
We start our analysis by exploring the structure of the particles using
the particle number density as a function of radial position within
the cavity. The number density (the probability that a particle is at
a specific location) is calculated by discretizing the spherical cav-
ity into m bins (spherical shells) with an even spacing in the radial
direction. The shell radius of the ith bin is b; = (i + 0.5)R/m. The
particle number density n(r;) = (N(r;)/V;), where N(r;) is the num-
ber of particles at shell that is located a distance #; from the center
of the cavity, V; is the volume of the shell, and ( ) represents an
ensemble average over time. Figure 2 shows the number density of
the particles within the cavity as a function of particle concentra-
tion. Figure 2 (top) is for spherical particles, while Fig. 2 (bottom)
is for the cylindrical ones. At low concentrations, @y = 5%, the
number density is uniform throughout the cavity and goes to zero
once the particles are in contact with the wall. Note that the max-
imum density is at » ~ 10.5, which is smaller than wall contact. In
our model, particles can never “touch” the wall because of the strong
repulsive Lennard-Jones potential. This is common in particle-based
and molecular dynamics simulations that consider infinite poten-
tials at zero distances. As the concentration increases, the probability
of finding particles near the wall increases, forming a layered struc-
ture. At moderate concentrations, ®ur = 10%, 15%, particles start
to form the first layer next to the wall, and inner particles prefer to
stay near the center of the cavity where the steric effects with the
particles in the first layer are the weakest. At higher concentrations,
Dyp = 20%, particles form a second layer, since there is not enough
space at the center to accommodate them. Thus, the layered struc-
ture becomes more pronounced, and the layer separation is deter-
mined by the particle size. In the figure, we include the number
density of a “bead” system where particles are represented as spheres
with an excluded volume with radius a. The spherical cavity has a
radius of R = 10a. In this system, particles interact only through
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FIG. 2. Number density of the particles within a spherical cavity of radius R = 15
as a function of the particle concentration. (Top) Spheres with rs = 3 and (bottom)
cylinders with r¢ = 2.62 and hg = 2r¢. Snapshots for @y = 10% are shown for
both systems, while the number density of HI “beads” is included in the inset.

far-field hydrodynamics and steric repulsions. However, the layered
structure is also observed, becoming a characteristic of highly con-
centrated confined systems.

Cylindrical particles exhibit an orientational distribution
within the cavity. Similar to liquid crystalline systems,”””" we define
an orientational order parameter A = %(3 cos’@ — 1), where
cosf = m, m is the vector parallel to the cylinder’s centerline,
and n is the vector pointing from the cavity center to the cylin-
der’s center-of-mass. A random/disordered structure is character-
ized by A = 0, whereas for ordered morphologies, A = 1 when all
cylinders are aligned parallel to the radial direction of the spherical
cavity (radial phase), and A = —1/2 when all cylinders are aligned
perpendicular to the radial direction of the spherical cavity (con-
centric phase). Figure 3 shows the orientational order parameter of
cylindrical particles within the cavity as a function of particle con-
centration. A major result is that for all concentrations, the cylinders
are in a disordered state at the center of the cavity and oriented
concentrically near the wall. For ®y; = 5%, the disordered mor-
phology spans all locations in the cavity, whereas for ®u; = 15%,
two concentric regions are observed, separated by a layer where
the cylinders are oriented following a (0) = 35° or 145°. Interest-
ingly, the radial-centripetal ordering, A = 1, is never observed; we
believe that this is due to the small aspect ratio of the cylindrical
particles.

We now proceed to analyze the short- and long-time diffu-
sive behavior in an attempt to delineate the consequences of long-
and short-range HI on the dynamics of the particles. The short-time
diffusion coefficient and the mean squared displacement (MSD) of
the particles are used to quantify these effects. The particles are
suspended in a viscous fluid under zero Reynolds number condi-
tions; they interact with other particles and walls through the HI.
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FIG. 3. Orientational order parameter A of cylindrical particles within a spher-
ical cavity of R = 15. The radius of cylinders is rc = 2.62 and the height is
he = 2rc =5.24.

Recall that under these conditions, momentum transport is infinitely
fast.”” ™ Previous studies of confined suspensions have shown that
there are multiple factors that originate from HI that should affect
the diffusion (mobility) of the particles: (i) the reduction of the
particle mobility due to confinement—particles in the bulk diffuse
faster than in confined geometries, (ii) the space dependent mobil-
ity due to the non-slip conditions at the walls—particle diffusion is
zero at the walls, and (iii) the decrease of particle mobility as the
concentration increases—there is an interplay between lubrication
and long-range HI that becomes important as the average inter-
particle distance decreases.”””"”””” We seek to quantify and deter-
mine the consequences of such factors in a cavity enclosure using our
model.

We start by measuring the particles’ radial and tangential short-
time diffusivities within the cavity as a function of particle concen-
tration. These transport coefficients are calculated from the relation
between MSD and time from Stokes-Einstein following a directional
decomposition,” i.e.,

(AX%)(}’,‘) = 2DR(r,-)dt, (7)

(Ax})(ri) = 4Dy (r7)dt, (8)

for t - 0 and where Ax = x(t + dt) — x(t), the radial displacement
Axg = Ax-x/[x|, the tangential displacement Axt = Ax — Axg, Dr(r;)
and Dr(r;) are the instantaneous radial and tangential short-time
diffusivities at a distance r; from the center of the cavity, and dt is
an infinitesimal time interval. Dr(r;) and Dt(r;) are blocked aver-
aged during a typical simulation at each shell and then averaged
over independent simulations. Figure 4 summarizes the diffusion
coefficients within the cavity for spherical particles as a function of
concentration. In the figure, the diffusivities are normalized by the
bulk value, which is defined as single particle diffusivity at infinite
dilution.

We find that the confinement hinders the particle diffusion
in both directions. The highest value for the particle diffusivity at
Dy = 5% is around 60% of the bulk value. The lower particle mobil-
ity is directly related to the long-range character of the HI and
the non-slip conditions at the walls. As the particle concentration
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FIG. 4. Short-time diffusion coefficients for sphere particles (rs = 3) that are con-
fined in a spherical cavity with R = 15: (top) radial diffusivity and (bottom) tangential
diffusivity. The coefficients are normalized by the diffusivity of spherical particles in
bulk at infinite dilution, kg T/(67#rs). The orange dashed line represents the aver-
aged “inner” diffusivities for @y = 10%. The filled shadow area around each curve
represents their respective statistical error. The diffusion coefficients for r/a < 2.3
at @y = 20% are missing because there are not enough particles appearing in this
zone for the diffusivity measurement due to the layered structure.

increases, lubrication forces begin to dominate and particle diffusion
decreases monotonically. In addition, the short-time coefficients are
not constant within the cavity, showing sudden decrease as the par-
ticles approach the wall. For @y = 10%, we calculated the averaged
“inner” coefficients, which are represented by the orange dashed
lines in Fig. 4. Importantly, the decrease in particle mobility at the
walls has a stronger effect on the radial diffusion coefficient, indi-
cated by (i) the radial particle mobility decreases at r = 7, when
compared with the tangential diffusivity that “feels” the presence
of the walls at r = 9, and (ii) the radial diffusivity decreases by
0.2 from r(a) = 7 to the wall contact, whereas the tangential dif-
fusivity only decreases by about 0.12. For a spherical particle near
the walls, it is easier to diffuse concentrically than radially. Finally,
note that for @y = 20%, the coefficients adopt a non monotonic
character, which is correlated with the layered structure of par-
ticle density in the cavity. The diffusivity data for r(a) < 2.3 are
missing for the case of ¢ = 20% because the short-time diffu-
sion coefficient at a given location is measured on particles that
appear at that location; in other words, the diffusion coefficients
are only measured in regions where there is a finite concentration
of particles [see Fig. 2 (top)]. Similar observations have also been
reported by Aponte-Rivera et al. using a Stokesian dynamics (SD)
approach.”

In Fig. 5, we include the short-time diffusion coefficients of
spheres with an excluded volume confined to a spherical cavity,
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FIG. 5. Short-time diffusion coefficients for point-particles
(‘beads,” rg = 1) that are confined in a spherical cav-

o
©

ity with R = 10: radial and tangential diffusivities for HI
(left) and free-draining (right) particles. The inset shows the

long-time diffusion coefficient as a function of the particle
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with and without long-range HI (no lubrication forces). Our inten-
tion is to change the level of the particle description to isolate the
HI contributions. Free draining point-particles do not undergo a
space dependent diffusion and the concentration perturbs the diffu-
sion rate only weakly. For HI point particles, the mobility decreases
monotonically as the particles approach the walls, and the diffusion
rate has a stronger dependence on concentration. Consequently,
long-range HI and the zero mobility at the walls are responsible
for the non-uniform particle diffusion inside the cavity. Lubrica-
tion, on the other hand, imposes a directionality on the short-time
mobility—radial diffusion is different than concentric diffusion near
the walls—and correlates the particle diffusion with the layered
density at high volume fractions. The observed behavior is consistent

with the experimental findings.’"*

It is of interest to compare the short-time diffusion coefficient
between spherical and cylindrical particles and to validate the effects
of the level of confinement. Figure 6 includes the short-time diffu-
sion coefficients for cylindrical particles (left) in a cavity with R = 15
and for spherical particles (right) in a cavity with R = 30. In the
figure, ®ur = 5% and the results for spherical particles in a cavity
with R = 15 are included for reference. Similar to the spherical parti-
cles, the cylinders exhibit position-dependent diffusion coefficients,
and radial diffusion is affected strongly by the presence of the walls
when compared to tangential diffusion. Interestingly, the shape of
the cylindrical particles has an important effect on the rate of diffu-
sion. Recall that the cylinders and spheres have the same volume and
that the diffusion coefficients are normalized by the bulk diffusiv-
ity of spherical particles. Consequently, the short-time diffusion of

0.8
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S
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%= 0.4 / /R FIG. 6. Short-time diffusion coefficients for (left) cylindrical
= ‘ 0.4 . particles with rc = 2.62 and hg = 2r¢ = 5.24 confined in a
_ R=15 spherical cavity with R = 15 and (right) spherical particles
0.2 0.2 with rs = 3 confined in a spherical cavity with R = 30. The
particle concentration is @y = 5%, and the results for spher-
208 —) 1.0 . ical particles with rs = 3 confined in a spherical cavity with
= ‘ e R =30 R = 15 are included for comparative purposes. The filled
S 0.6 0.8 - shadow area on each curve represents their respective
ke \/ statistical error.
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particles of equal volume is decreased when the geometrical symme-
try is broken. Finally, decreasing the level of confinement does not
change the qualitative behavior of the short-time mobility but, as the
confinement decreases, the inner diffusion coefficients approach the
bulk value.

Finally, we examine the long time diffusive behavior. We
use a generalized Stokes-Einstein relation where the MSD is lin-
early correlated with a mobility coefficient following a power
law by

((R(1) ~R(0))*) = Mt )

where R is the 3N particle coordinate vector, M is the particle
mobility coefficient, and « is the power law exponent that char-
acterizes the type of particle transport. For isotropic diffusion, if
a = 1, the particles are diffusive and M = 6D, where D is the particle
long-time diffusion coefficient. If & # 1, the transport of Brown-
ian particles is said to be in the anomalous diffusion regime: o < 1
is sub-diffusive, while a > 1 is super-diffusive. For confined sys-
tems, as t — oo, the walls impose long-time restrictions on the
motion along the confining direction. Therefore, for particles con-
fined in a spherical cavity, the MSD should reach a plateau on a time
scale corresponding to the particle diffusion time over the cavity
size.

Figure 7 shows the MSD of spherical (top) and cylindrical
(bottom) particles in a cavity of R = 15 as a function of particle
concentration. The time scale in Fig. 7 is in a diffusion time unit,
az( /ksT, where { = 6mna. In the figures, we include the results for
®yp = 15% of the other particle shape for comparison purposes. The
MSDs are collected from ten independent simulations with differ-
ent random seeds; the particles were able to diffuse more than 300
a diffusion times. As expected, the MSD exhibits diffusive behav-
ior as t = 0 and a plateau when MSD ~ 200 ~ R? at g, where 1
is characteristic particle diffusion time over the cavity. At low con-
centrations, the diffusive behavior, for spheres and cylinders, spans
from ¢t = 0 to t = 7g (for 5% spheres, 7z ~ 300 in azf/kBT units). As
the particle concentration is increased, the diffusion rate decreases;
it is correlated with the short-time behavior, as indicated by the
monotonic shift of the MSDs in Fig. 7. For spherical particles at
Dy > 15%, there is a clear sub-diffusive regime over more than
two decades that increases as the concentration is increased. Inter-
estingly, the sub-diffusive regime for cylindrical particles starts at
®yp = 10%. Note that the MSD for cylindrical particles at ®yr = 15%
is almost equal to the MSD for spherical particles at ®y; = 20%.
In the inset, we have included the MSD of spheres with excluded
volume but no lubrication to show how the sub-diffusive regime is
never observed when only long-range HI is included, thereby sug-
gesting that the sub-diffusive regime is a lubrication effect. It is then
natural to attribute this anomalous diffusion to crowding driven by
short-range HI. This regime is then characterized by the diffusion-
to-crowding transition 7Tpic time and by the power law exponent a.
In this regime, there are two major features: Tpic and « decrease
as the particle concentration increases. In particular, Tp«c = 20 and
a = 0.85 for cylinders at @y = 10%, while 7pic = 5 and a = 0.65 for
cylinders at ®yr = 15%. After the highly concentrated systems enter
the crowding regime and given the fact that there are three dimen-
sional restrictions in their motion as ¢ approaches 7, the particles
transition from the slow rate sub-diffusive behavior to the plateau.
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FIG. 7. Mean square displacement as a function of time for finite-size particles
suspended in a spherical particle of size R = 15. (Top) Spheres with a radius rs = 3
and (bottom) cylinders with r¢ =2.62 and h¢ = 2r¢. Inset: the evolution of the mean
square displacement for point-particles (“beads”) suspended in a spherical cavity
of radius R = 10. In each figure, the MSDs for @y = 15% of the other particle
shape are included for comparison purposes. The filled shadow area around each
curve represents their respective statistical error.

In Appendix C, we show that our mean square displacements for
spheres agree with the isotropic mean square displacement anal-
ysis reported in the literature”” both qualitatively and quantita-
tively. Past work’” reported on the anisotropic behavior of the long-
time MSD where both sub-diffusive and subsequent super-diffusive
regimes appear at intermediate time scales in the radial direction
for highly concentrated systems, while the super-diffusive regime is
absent in the tangential direction. In view of that past contribution,
our work focuses on the combined effects of different factors on the
isotropic long-time MSD instead and provides a first step toward
understanding the role of the particle shape on the underlying
dynamics.
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IV. CONCLUSIONS

We have used an immersed boundary approach to study the
structure and dynamics of suspended spherical and cylindrical par-
ticles confined in a spherical cavity.

At low concentrations, the particle number density distribu-
tion is uniform in the interior of the cavity. As the concentration
increases, a layered structure appears. Cylindrical particles exhibit a
random orientation at low concentrations and at the center of the
cavity for all concentrations. Excluded volume interactions at the
wall force the cylinders to orient concentrically. Interestingly, at high
concentrations, the layered morphology of the cylinders is correlated
with concentric layers that are separated by a layer of cylinders ori-
ented at an average angle of 35° with respect to the radial direction.
Cylinders are never found forming radial morphologies within the
spherical cavity.

We used multiple hydrodynamical descriptions of the sus-
pended particles to determine the specific influence of hydro-
dynamic interactions during the dynamic of the particles (dif-
fusion/mobility): (i) free draining point-particles, (ii) long-range
hydrodynamic “beads,” and (iii) finite size particles considering
lubrication and long-range HI. We found that long-range HI leads to
a position-dependent diffusion of the particles inside the cavity; the
particles diffuse faster near the center of the cavity and slower near
the walls. The HI also decrease the mobility of the suspended parti-
cles when compared with their diffusion in the bulk. The increase in
particle concentration also results in a decrease in the particles’ diffu-
sion coefficients; this effect is observed for free-draining and HI par-
ticles. However, the concentration decrease in the diffusion rate is
stronger when HI are considered. Lubrication forces, or short-range
HI, influence the dynamics of highly concentrated suspensions; they
generate a direction dependent diffusion, where particles diffuse at a
lower rate when moving toward the walls than when moving paral-
lel to the walls. The non-slip conditions at the walls, i.e., zero particle
mobility, work synergistically with lubrication forces, resulting in an
stronger wall dependence of the diffusion coefficients in the radial
direction.

Regarding the long-time dynamics, lubrication gives rise to
a sub-diffusive regime at high particle concentrations. The sub-
diffusive regime, characterized by the diffusion-to-crowding tran-
sition time and the mobility power law exponent, becomes more
prominent as the concentration increases.

Introducing cylindrical particles has two major consequences:
(i) cylindrical particles have lower short-time diffusion coefficients
and (ii) the crowding regime is observed at lower concentra-
tions compared with spheres of equal volume. These observa-
tions suggest that the shape of bio-molecules, particles, and poly-
mers could determine their mobility and diffusion inside cells and
tissues.
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APPENDIX A: SUSPENDED BROWNIAN SPHERES
WITH THE IB-pFE-GgEm

There are three important validations that are in order to ver-
ify the immersed boundary approach that we used in this work. We
start by verifying the fulfillment of Stokes’ law by measuring the sed-
imentation velocity of a spherical particle that is confined between
two parallel walls. Analytical values for this velocity are extracted
from previous studies.””">"*****"% For the specific IB-pFE-GgEm
calculation, the particle radius rs = 5 and the wall distance is H = 15.
The periodic boundary condition (PBC) is enforced in the uncon-
fined directions, which are set to a length of 200 (>>H) to avoid the
influence of the particle periodic images. The surface of the spher-
ical particle is discretized using 119 surface nodes, resulting in a
nodal separation between hpmin = 1.334 08 and hmax = 1.90539 and a
smoothing parameter &1 = 1/0.76min. For the calculation, we used
a GgEm parameter aGgem = 0.2 and a mesh resolution with a spac-
ing of 1/v/2a. The resulting mesh was 60 x 60 x 6 HEX20 elements
with 324 886 degrees of freedom. The particle is initially located at
(0, 0, d) between the two parallel walls, and it moves parallel to the
walls under a sedimenting force with a body force density of (0, 0, 1).
The particle’s sedimenting velocity (U)) is calculated by averaging
particle’s velocities over 100 time steps. Figure 8 (top) shows the sed-
imenting velocity, normalized by Stokes’ velocity U};/Uy, as a func-
tion of normalized location [(d — R)/H]. According to the results,
the IB-pFE-GgEm provides an excellent agreement with analytical
values.

In addition to Stokes’ law, it is important to verify that our com-
bined approach, between the IB-pFE-GgEm, Fixman’s mid-point
algorithm, and the Chebyshev polynomial approximation, is satis-
fying the fluctuation-dissipation theorem. A sphere that is confined
in a spherical cavity and between parallel walls offers a scenario to
validate the connection between the diffusion and the fluctuating
tensors and the proper calculation of the mobility gradients inside
the confined geometries. First, we used three different particle dis-
cretizations, using 20, 40, and 60 nodes, for the sphere of size rs = 3
that is confined in a spherical cavity of size R = 15. Figure 8 (center)
shows the comparison between the short-time diffusion coefficient
of the sphere computed through our IB-pFE-GgEm algorithm and
SD algorithm previously reported in the literature.”” These results
suggest that even with poor surface descriptions, as long as the IB
parameter is appropriately chosen, the IB-pFE-GgEm follows the
correct fluctuating short-time behavior. Finally, the long-time dif-
fusion for a sphere confined in a slit as a function of the separa-
tion between the walls is shown in Fig. 8 (bottom). Analytical and
numerical solutions for this coefficient had been well assessed in the
literature.”*” For the IB-pFE-GgEm, the particle is initially located
at the mid-plane between two parallel walls. During the particle’s
Brownian movement, its motion is restricted to the plane of sym-
metry. The surface of the spherical particle is discretized using 20
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FIG. 8. Sphere representation with the immersed boundary method: (top) normal-
ized sedimenting velocity of a spherical particle between two parallel walls as a
function of the distance between the particle and the nearest wall. Analytical data
are taken from Ref. 44. (Center) Diffusion coefficient of a spherical particle with
rs = 3 that is confined in a spherical cavity of size R = 15. SD data are taken from
Ref. 37. (Bottom) xy—plane diffusion coefficient for a spherical particle with radius
rs = 3 in the center of a slit with heights H = 12, 15, and 20. Analytical data are
taken from Ref. 66.

surface nodes (hmin = 2.198 26, himax = 2.526 08, and &1 = 1/0.35kmin).
The slit mesh resulted in 60 x 60 x 4 HEX20 elements with 228 872
degrees of freedom. To calculate the error bars of the MSD, five
independent simulations for each confinement ratio are performed
with a constant time step of 0.002.”’ The diffusion coefficients from
the IB-pFE-GgEm shows an excellent agreement with analytical and
numerical results.

APPENDIX B: RIGIDITY OF THE SUSPENDED
PARTICLE

In our immersed boundary description of the finite-size parti-
cles, each surface node is linked to its neighboring nodes and the

ARTICLE scitation.org/journalljcp

center-of-mass through linear springs with a prescribed stiffness
constant k. This parameter controls the stiffness (shape) of particles.
If the springs are too weak, particles are deformable and special care
must be taken to forbid fluid penetration. On the other hand, if the
springs are too stiff, the forces acting on surface nodes will be too
large, requiring very small time steps to ensure numerical stability.
We performed simulations of spherical particles that are confined
in a spherical cavity at high concentrations varying the particle stiff-
ness. We measured the particles’ moment of inertia for each particle
v as follows:

Ng
L(t) = > (1) (B1)
j=1

where I,(f) is the moment of inertia of particle v at time ¢ and
rj(t) is the distance between node j on surface and the parti-
cle center-of-mass. Rigid spheres will have an equal and constant
moment of inertia. On the other hand, our semi-rigid particles
will show a variation in I,(t). Figure 9 shows the averaged stan-
dard deviation of moment of inertia as a function of time for par-
ticles with different k for ®y; = 20%. The standard deviation is
calculated by

N _ 2
o(t) = \/ I () - L))" (2)

where I,(0) is the moment of inertia of particle v at time 0, which
corresponds to a perfect sphere. As one can observe from the figure,
in the case that k = 10, the moment of inertia jumps from 0.05 to 0.06
att ~ 10, indicating that k = 10 is not stiff enough to maintain particle
shape. As the stiffness is increased, the shape variations decrease. In
this paper, we used a k = 200 for all simulations.

0.08
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S
© 0.04
K=50 | _100 k=200
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0.00 ; :
0 5 10 15
t (ak,T)

FIG. 9. Time evolution of the standard deviation of the sphere moment of inertia
as a function of the spring stiffness. The particle volume fraction is @y = 20%,
the particle radius is rs = 3, and the number of surface nodes on each particle
is 20.
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APPENDIX C: COMPARISON OF MSD
WITH LITERATURE RESULTS

The equilibrium structure and diffusion in concentrated hydro-
dynamically interacting spherical particles confined in a spherical
cavity were studied using SD by Aponte-Rivera et al.”’ There are
differences between methods in our and their work such as particles
models and HI models. However, one can draw both quantitative
and qualitative agreements between results from two methods. Here,
we present the comparison of isotropic MSD at different volume
fractions [Fig. 15(a) in Ref. 37 and the top panel in Fig. 7 in this
work]. Qualitatively, a short-time diffusive regime and a long-time
plateau for systems at all concentrations are observed in both works.
At intermediate times, a sub-diffusive region emerges for highly con-
centrated systems only. To make a semi-quantitative comparison,
we convert the MSD data in Ref. 37 to the units used in our work at
the same level of excluded volume crowding. Specifically, the length
and time reported by Aponte-Rivera et al. are normalized by the
radius of a sphere with radius r; and the characteristic diffusion time
to of a sphere with radius r,, respectively (t = r2/Dy, where Dy
= kgT/6mnrs). By multiplying the time, MSD, and volume fraction
in the their work by rf, rsz, and (rs/rs + a)3 (rs = 3a), respectively,
we can compare the isotropic MSD directly. Note that the hydro-
dynamic crowding, ®yi, and the excluded volume crowding, ®xy,
are equivalent in the work of Aponte-Rivera et al. In contrast, in our
work, ®py/Pur = (s + a)3 / rf. Thus, the comparison is conducted
at the same level of excluded volume crowding but not the same
hydrodynamic crowding. For example, the highest concentration in
Ref. 37 is 40%, which is comparable to the highest excluded volume
crowding in our work, ®gy = 47% (Pur = 20%). For this highest
concentrated system, in the work of Aponte-Rivera et al. (after con-
version to our units, the converted value is reported in parentheses
in the following), the short-time diffusive regime lasts from t ~ 107>
(1072) to ~107! (10°), while the MSD increases from 107> (1072)
to 107! (10°); the intermediate sub-diffusive regime lasts from t ~
1071 (10%) to t ~ 10! (10%), while the MSD increases from 10~ (10°)
to 10° (10'); and the MSD reaches a plateau at 10" (10%) at t ~ 102
(10%). Good agreement is found between our MSD data and those
reported in Ref. 37.
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