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Abstract 
A new subgrid-scale (SGS) stress model is proposed for rotating turbulent flows, and the new model is based on the trace-
less symmetric part of the square of the velocity gradient tensor and the symmetric part of the vorticity gradient tensor (or 
the so-called vorticity strain rate tensor). The new subgrid-scale stress model is taken into account the effect of the vortex 
motions in turbulence, which is reflected on the anti-symmetric part of the velocity gradient tensor. In addition, the eddy 
viscosity of the new model reproduces the proper scaling as O(y3) near the wall. Then, the new SGS model is applied in 
large-eddy simulation of the spanwise rotating turbulent channel flow. Different simulating cases are selected to test the new 
model. The results demonstrate that the present model can well predict the mean velocity profiles, the turbulence intensities, 
and the rotating turbulence structures. In addition, it needs no a second filter, and is convenient to be used in the engineering 
rotational flows.
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1  Introduction

Rotational turbulence is an important phenomenon in natural 
and engineering flows, especially in geophysics, astrophysics 
and turbines. Now, large-eddy simulation (LES) approach, 
which calculates the large-scale fluid motions directly from 
the filtered Navier–Stokes equations with modeled the unre-
solved motions, has made great progresses in simulation of 
turbulent flows.

So far, there are several different SGS models proposed 
for large-eddy simulation. The Smagorinsky model is the 
first subgrid-scale (SGS) stress model proposed by Sma-
gorinsky [1] (1963) and Deaedorff [2]. It is the most widely 
used viscosity model due to its robustness and simplicity 
in form. Based on the eddy-damped quasi-normal Marko-
vian theory, Chollet and Lesieur [3] suggested the spectral 

eddy-viscosity model, which is suitable for homogeneous 
and isotropic turbulence. Cui et al. [4] proposed a new sub-
grid eddy-viscosity model which was formulated directly 
from the filtered Navier–Stokes equation. It performs well in 
rotating turbulence and wall-bounded turbulent flows. Vre-
man [5] also gave eddy-viscosity model (Vreman model) 
which is able to adequately handle not only turbulence but 
also transitional flow. Nicoud et al. [6] proposed another 
eddy-viscosity model (σ-model) derived from the analysis 
of the singular values of the resolved velocity gradient ten-
sor. The σ-model has better results than the dynamic model 
with a low computational cost. Recently, Yu et al. [7] sup-
plied a new eddy-viscosity model, where the eddy viscos-
ity is closely associated with the correlation between the 
large-scale strain rate tensor and vorticity gradient tensor. 
The model (RSM) can predict both the energy and helicity 
spectra better than the traditional eddy-viscosity model, and 
it can also obtain reasonable predicting result in wall turbu-
lence and compressible flows. In addition, there are some 
important LES methods, such as the dynamic procedure. 
The famous dynamic procedure was proposed by Germano 
et al. [8], using the Germano identity to determine the coef-
ficient of the SGS model dynamically in LES of turbulent 
flows. Lilly [9], Piomelli [10], and Meneveau et al. [11] 
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improved and generalized the dynamic procedure, promoting 
the dynamic procedure to become the most commonly used 
method in LES of turbulence. With the Germano identity, 
Yu et al. [12] derived an expression of the subgrid-scale 
dissipation at the test-filter scale, which can be adopted to 
optimize the coefficient of SGS models.

Nevertheless, large-eddy simulation of rotating turbu-
lence has not get so good results by using traditional SGS 
models. To investigate the rotating effects of turbulence, 
Tafti and Vanka [13] firstly used the Smagorinsky model to 
simulate the spanwise rotating channel flow. Vreman model 
and sigma model were also applied to simulate spanwise 
rotating channel flow by Jiang et al. [14], but they didn’t 
obtain rather good results on the mean velocity profiles and 
the turbulence intensity. A subgrid-scale model based on 
coherent structures proposed by Hiromichi et al. [15] was 
applied in rotating homogeneous turbulence and turbulent 
channel flow. This model obtained almost the same results 
as those from the dynamic Smagorinsky model. Yang et al. 
[16] applied a modified nonlinear subgrid-scale model 
(MDNSM) for large-eddy simulation of rotating turbu-
lent channel flows. The modified nonlinear model predicts 
superior results to the previous nonlinear models. Then 
Yang et al. [17] proposed a new dynamic global-coefficient 
nonlinear subgrid-scale model (DNVM-G) for large-eddy 
simulation of rotating turbulent channel flow. The model 
can get good results in some cases and can successfully pre-
dicts the major structures in rotating turbulent channel flow, 
but the model is rather complicated, which makes the new 
model difficult to use. Maurits et al. [18] also proposed a 
nonlinear subgrid-scale model for large-eddy simulation of 
rotating turbulent flows. The suggested model can behave as 
well as the dynamic Smagorinsky model without requiring 
(dynamic) adaptation.

Although some above models contain antisymmetric part 
of deformation tensor, which may get good results in rotat-
ing flows, the influence of vorticity gradient tensor has not 
been taken into account. Recently, Teitelbaum et al. [19] 
showed that the helicity has a major impact on the decay rate 
and can strengthen the local inverse energy cascade when 
rotation is presented. At the same time, many facts [7] have 
revealed that the influence of helicity should be considered 
in subgrid-scale model.

The present model based on the symmetric part of vorti-
city gradient tensor, considers the contributions of the heli-
city to the subgrid-scale model. The new model has O(y3) 
behavior in the vicinity of the wall and satisfies a correct 
asymptotic behavior to a wall for incompressible flows. In 
the following parts, we will present the derivation of the new 
model, test cases and discussion.

2 � Governing equations and subgrid scale 
model

2.1 � Governing equations

In incompressible rotating turbulent flows, the LES govern-
ing equations can be obtained by filtering the Navier–Stokes 
equations with the low-pass filter,

where ūi is the filtered velocity, � is the density, p̄ is the fil-
tered pressure, � is the kinematic viscosity, �k is the rotation 
component. �ij is the SGS stress tensor,

which should be modeled. The eddy-viscosity model is cho-
sen here, and it can be written as

where S̄ij = 1∕2(𝜕jūi + 𝜕iūj) is the resolved (velocity) strain 
rate tensor, and νsgs is the SGS viscosity which needs to be 
modeled.

In the Smagorinsky model (SM), the SGS viscosity is 
proposed as

The constant Cs in SM is given as 0.18.
RSM model is obtained from the resolved helicity trans-

portation equation, the energy and helicity spectra. The 
modeled subgrid-scale stress is

where

R̄ij is the resolved vorticity strain rate tensor, CK and CH can 
be prescribed a priori or empirically. For example, it is sug-
gested that CK = 1.6 [7] and CH = 1.0 [7, 20].

(1)
𝜕ūi
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2.2 � Construction of the subgrid‑scale model

One of the aims of the new model is to adapt to the wall. 
The new model based on the resolved vorticity gradient 
tensor (VOM) reproduces the proper scaling at the wall 
( �sgs = O(y3)).

𝜕ūi∕𝜕x̄i = 0 can be obtained from continuity equation and 
the resolved velocity can be expanded in the limit y → 0 , as 
follows:

O bv i o u s ly,  𝜕ūx∕𝜕y|y=0, 𝜕2ūx∕𝜕y2|y=0, 𝜕2ūy∕𝜕y2|y=0  , 
𝜕ūz∕𝜕y|y=0, 𝜕2ūz∕𝜕y2|y=0 are functions of space and time, 
but are not related to y. It can be shown that R̄ij,S̄ij and S̄ijR̄ij 
are of order O(1). A simple way to get a better behaviour is 
to remodel the eddy-viscosity.

Firstly, the traceless symmetric part of the square of the 
velocity gradient tensor can be considered

By using �ij as the anti-symmetric part of Lij (the velocity 
gradient tensor �ui∕�xj ), Sij

t can be rewritten as:

Secondly, it can be shown that St
ij
R̄ij behaves like O(y). 

Thus St
ij
R̄ij can be rewritten as 

(
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 which behaves like 
O(y3) near the wall.

Thirdly, the new eddy-viscosity should have the same 
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to get no divergence in the eddy-viscosity.

Finally, a new local eddy-viscosity νsgs can be obtained 
as:
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Assuming that the VOM model gives the same ensem-
ble-average subgrid kinetic energy dissipation as the RSM 
model, the constant Cn is obtained:

where OP1 =
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R̄ij

)3
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As has been shown in Eq. (8), the constant Cr is deter-
mined by CK, CH and α. α can be chosen as k−1(�/π) or a 
value between 0 and 1. Cn can be assessed numerically using 
several fields of homogeneous isotropic turbulence. The 
value of Cn can be obtained in the range 0.05≦Cn≦0.15. The 
model coefficient Cn is set to 0.1 in the following part. As 
the eddy-viscosity is scaled as O(y3), it tends to be zero in 
near-wall region and laminar region where it should be zero 
theoretically. As discussed by Yu et al. [7], S̄ijR̄ij reflects the 
intensity of the local helicity flux, and the St

ij
R̄ij can also 

reflect the influences of the local helicity flux to the subgrid-
scale stress model. As suggested by Johnston [21], the flow 
is destabilized in one part of the channel and stabilized in 
the other part by the Coriolis force. The unstable part is 
named pressure side and the stable part is named suction 
side. The suction side will tend to laminarization as the 
Rossby number increases [22–24]. And the eddy viscosity 
of the VOM will tend to zero in the suction part, especially 
at high Rossby number.

3 � Numerical method and discussion

The Fourier–Chebyshev pseudo-spectral algorithm method 
is applied to solve the LES governing equations. The sec-
ond-order Adams–Bashforth scheme is applied to the non-
linear term for temporal integration. The dealiasing error 
is removed by the phase-shift method together with the 3/2 
rule. The new subgrid-scale model is applied to spanwise 
rotating turbulent channel flows, whose computational 
domain is three dimensional box of size 4πh × 2h × 2πh 
(h is the half-width of the channel). The schematic of the 
computational domain is plotted in Fig. 1. Different Reyn-
olds numbers (Reτ = uτh/ν, where uτ is the friction veloc-
ity, h is the channel half-width and ν is the kinematic vis-
cosity) and rotation numbers (Roτ = 2Ωh/uτ, where Ω is 
the angular velocity) are chosen in the simulation cases. 
The four sets of cases are Reτ = 180, Roτ = 22; Reτ = 180, 
Roτ = 40; Reτ = 180, Roτ = 80; Reτ = 435, Roτ = 10.3 differ-
ently, and named as case 1, case 2, case 3 and case 4. In 
case 1, the grid resolution 32 × 33 × 32 is used. In case 2, 
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the grid resolution 32 × 49 × 32 is used. In case 3, the grid 
resolution 32 × 57 × 32 is used. In case 4, the grid resolu-
tion 64 × 65 × 64 is used. The results can be seen in Sect. 4. 
And the analyses of the grid independence can be seen in 
Appendix.

4 � Results

Figure 2 shows the mean velocity profiles using different 
models in four different cases. From Fig. 2, we can see that 
the VOM model has a good agreement with the DNS result 

Fig. 1   Schematic of the geometry (h = 1)

Fig. 2   Mean velocity profiles in different models: a at Reτ= 180, Roτ= 22, b at Reτ= 180, Roτ= 40, c at Reτ= 180, Roτ= 80, d at Reτ= 435, 
Roτ= 10.3
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which is better than other models. As the Rossby number 
increases, the results of VOM still get better agreement with 
DNS. It suggests that the VOM is more effective with the 
increasing of the rotational influence.

In Fig. 3, we display the streamwise turbulence intensity 
by using different models in four different cases. As shown 
in Fig. 3a–d, VOM could better predict the streamwise tur-
bulence intensity totally, especially on the pressure side than 
other models. In Fig. 3a, the VOM and DNVM-G models 
predict better than other models.

In Fig. 3b, the MDNSM and DNVM-G models predict 
better than other models. But at higher Rossby number, all 

of the models can’t well predict the streamwise turbulence 
intensity of the suction side.

Figure 4 shows the results of the total Reynolds shear 
stress in different cases. The VOM model has a better result 
than other models. The MDNSM and DNVM-G models also 
get good results, but VM behaves worst among the models 
especially at high Rossby numbers. In Fig. 4d, near the suc-
tion side (especially at y/δ > 0.7), the VOM and MDNSM 
predict better than other models.

Figure  5 shows the averaged SGS eddy viscos-
ity < νsgs> (normalized by ν) using different eddy-viscosity 
models. In Fig. 5, the averaged SGS eddy viscosity tends to 

Fig. 3   Streamwise turbulence intensity in using different models: a at Reτ= 180, Roτ= 22, b at Reτ= 180, Roτ= 40, c Reτ= 180, Roτ= 80, d at 
Reτ= 435, Roτ= 10.3
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zero near the suction side because of the suppression effect 
of the Coriolis force. In general, < νsgs> of the VOM is lower 
than < νsgs> of the DSM especially at pressure side, so the 
dissipation produced by the VOM is lower than the DSM. 
Thus, in Figs. 3 and 4, the VOM gets a little higher results 
than the DSM and the results from the VOM have better 
agreement with DNS results.

Figure 6 shows the instantaneous isosurface of Q from 
VOM at Reτ= 180, Roτ= 22. From Fig. 6, we can find the 
elongated large-scale vortex on the pressure (unstable) side. 
On another (suction) side, there are a few vortex structures 

and the flow tends to laminarization. And the vortex distri-
bution in Fig. 6 reflects the main character in rotating wall 
turbulence.

The Taylor–Gortler vortices [25, 26] are important struc-
tures in rotating turbulent channel flows. It’s significant for 
SGS models to well predict the Taylor–Gortler vortices. Fig-
ure 7 shows time-averaged Taylor–Gortler vortices on the 
y–z plane from VOM. From Fig. 7, we can clearly observe 
three pairs of the large-scale roll cells. Thus the mean scale 
of one pair of the vortices is about 2πh/3.

Fig. 4   Total Reynolds shear stress (the summation of resolved and modeled) using different models: a at Reτ = 180, Roτ = 22, b at Reτ = 180, 
Roτ = 40, c Reτ = 180, Roτ = 80, d at Reτ = 435, Roτ = 10.3
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Fig. 5   Averaged SGS eddy viscosity < νsgs> (normalised by ν) in different viscosity models: a at Reτ= 180, Roτ= 22, b at Reτ= 180, Roτ= 40, c at 
Reτ= 180, Roτ= 80, d at Reτ= 435, Roτ= 10.3

Fig. 6   Instantaneous isosurface of Q (second invariant of the strain 
rate tensor) at Reτ= 180, Roτ= 22 using VOM

Fig. 7   Time-averaged Taylor–Gortler vortices on the y–z plane from 
VOM
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5 � Conclusion

In this paper, based on the vorticity gradient tensor, and 
considering the proper scaling at the wall ( �sgs ∼ O(y3) ), 
we construct a new wall-adaptive SGS model for rotat-
ing turbulent flows. Through analysis, we found that the 
vorticity gradient tensor plays a key role in rotating flows. 
The proposed model is tested in four different cases of 
spanwise rotating turbulent channel flows and the new 
model can obviously well predict the effect of rotation. 
Contrast to some often used SGS models, the VOM can 
obtain more precise simulating results, such as the mean 
velocity profiles, the streamwise turbulence intensity and 
total Reynolds shear stress, with the increase of rotational 
influence. At the same time, the new model can apparently 

predict the Taylor–Gortler vortices which is the main char-
acter vortex in rotating wall turbulent flows.

Overall, the VOM is a subgrid-scale model suitable for 
simulating rotating turbulence, and it needs no a second 
filtering, which will be easy to applied to the engineering 
rotational wall turbulence.
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Fig. 8   Mean velocity profiles from different grid resolutions a at Reτ= 180, Roτ= 22, b at Reτ= 180, Roτ= 40, c at Reτ= 180, Roτ= 80, d at 
Reτ= 435, Roτ= 10.3
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Appendix: the grid independence

We choose different grid resolutions for each case and then 
obtain a better grid resolution. Nx× Ny× Nz = 32 × 33 × 32, 
32 × 49 × 32, 32 × 57 × 32 are used in case1 (Reτ= 180, 
Roτ= 22), Nx× Ny× Nz= 32 × 33 × 32, 32 × 49 × 32, 
32 × 57 × 32 are used in case 2 (Reτ= 180, Roτ= 40), 
Nx× Ny× Nz= 32 × 33 × 32, 32 × 57 × 32, 32 × 65 × 32 are used 
in case 3 (Reτ= 180, Roτ= 80), and Nx× Ny× Nz= 48 × 49 × 48, 
64 × 65 × 64, 64 × 73 × 64 are used in case 4 (Reτ= 435, 
Roτ= 10.3).

In Fig. 8, we show the mean velocity profiles from dif-
ferent grid resolutions of different cases. From Fig. 8a, we 
found all the resolutions are close to each other. In Fig. 8b, 
the results from grid resolutions 32 × 49 × 32, 32 × 57 × 32 
are close to the DNS result. In Fig. 8c, grid resolutions 
32 × 33 × 32 under-predicts the mean velocity profile, and the 
results of grid resolutions 32 × 57 × 32, 32 × 65 × 32 have a 
better agreement with the DNS result. In Fig. 8d, the results 
of grid resolutions 64 × 65 × 64, 64 × 73 × 64 are close to 
each other and are higher than the results of grid resolution 
48 × 49 × 48. Thus, we use the grid resolution 32 × 33 × 32, 
32 × 49 × 32, 32 × 57 × 32, 64 × 65 × 64 for case 1, 2, 3, and 4.
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