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A B S T R A C T

This paper studies the influence of build orientation and mean stress on the very-high-cycle fatigue (VHCF)
behavior of AlSi10Mg fabricated by selective laser melting (SLM). Horizontally built specimens demonstrate
better mechanical performance than vertically built specimens. Four crack initiation modes are identified for the
specimens in high-cycle fatigue (HCF) and VHCF regimes, namely initiation by lack-of-fusion, initiation by
internal pore, initiation with no obvious defect and initiation by tearing. Moreover, it turns out that the mean
stress accelerates crack initiation, and hence reduces fatigue life. A model is proposed to describe the effect of
crack initiation location on fatigue strength.

1. Introduction

Additive manufacturing (AM) technology is a new frontier tech-
nology that directly processes parts by layers according to three-di-
mensional digital model [1]. Among all AM technologies, selective laser
melting (SLM) has attracted considerable academic attention [2,3],
which is a process of melting and cooling metal powder rapidly by a
high energy laser. This process is based on the interaction between laser
and powder which includes a series of physical and chemical processes
such as energy transfer and state change. SLM has been widely em-
ployed for AM of metals and alloys, such as Ti6Al4V, AlSi10Mg and
Inconel 718 [4]. The SLM process provides an alternative to manu-
facture components with unique microstructures [5-7]. Despite many
research efforts on the optimization of SLM process parameters, a de-
fect-free component with uniform microstructures has not been fully
achieved [8]. For example, the complex interactions between laser and
powder can lead to the formation of pores in SLM materials [9,10]. The
influence of SLM processing parameters on fabricated components has
been extensively investigated. It is found that the laser power could
affect the porosity of SLM materials [11]. The power of laser must be
selected carefully because neither too high nor too low power leads to
low porosity. In order to fully industrialize this technology for load
bearing components, it is critical to characterize and understand the
effect of microstructures properly on mechanical properties of materials
manufactured by SLM, especially under cyclic loadings [10,12-14].

Recently, studies found that the static mechanical properties of SLM
alloys are much better than those by traditional casting [15]. However,
in real engineering application there is a high chance of having geo-
metrical discontinuities in the AM parts, which can consequently in-
fluence the stress concentration and the fatigue behavior of the part
[16-19]. Therefore, the fatigue properties of SLM alloys need to be fully
understood [16-18]. A lot of methods can be used to study the fatigue
mechanism and the corresponding fatigue lifetime [19-31]. Among
different factors, build orientation is an important parameter and has
been investigated frequently. Some results [32,33] showed no obvious
influence of build orientation on fatigue performance, whereas it is
reported [15] that there is about 25% difference in fatigue strength
between horizontally and vertically built parts. A thorough under-
standing is needed for the relationships among process parameters,
microstructure and mechanical properties.

For the fatigue analysis of AlSi10Mg made by SLM, it is general
accepted that heat treatment will improve the fatigue performance as it
reduces internal pores [34,35]. Surface polishing improves fatigue
performance [36], whereas tensile mean stress reduces the fatigue life
of SLM materials [37]. However, the very-high-cycle fatigue (VHCF)
properties of SLM AlSi10Mg need to be fully understood.

This paper aims to understand the influence of build orientation and
mean stress on high-cycle fatigue (HCF) and VHCF properties of SLM
fabricated AlSi10Mg. Special attention is paid to the crack initiation
mechanism in the specimens with different build orientations. A model
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is proposed to describe the effect of crack initiation location on fatigue
strength.

2. Material, specimens and experimental procedure

2.1. Material

The nominal chemical composition of the AlSi10Mg specimens for
tensile and fatigue tests manufactured by SLM process is listed in
Table 1 [38].

2.2. Specimen

In order to investigate the influence of building orientation, speci-
mens with two orientations, namely vertically (90°) built and hor-
izontally (0°) built, were used in tensile and fatigue test experiments.
The tensile tests were conducted on standard dog bone specimens
(Fig. 1a and b) to obtain basic mechanical properties of this material.
Fig. 1a shows the geometry of the specimen and Fig. 1c shows the side
views of fracture specimens with two build orientations (0° and 90°).
The average surface roughness of the AlSi10Mg specimens is 2.526 μm.
In the tensile experiment, four specimens in each printing direction
were tested.

In fatigue tests, hourglass shape specimens (Fig. 2a and b) with two
build orientations were used. The build orientation is the layer added
direction, as shown in Fig. 2c.

2.3. Selective laser melting process

Fig. 3 shows the schematic of selective laser melting process, in
which a fiber laser is adopted and the laser beam irradiates the base to
melt the metal powder through the scanning mirror. Then the metal
powder melts and solidifies rapidly to form one layer of the component,
and the base will drop one layer after scanning and the powder pool
will feed the powder. Thus the required components will be formed.
The related SLM processing parameters used in this paper are listed in
Table 2.

2.4. Tensile tests

The design of the tensile test specimens of AlSi10Mg is according to
the Chinese standard of GB/T228-2002. For each group of specimens
printed with different orientations, standard dog bone specimens were
tested at a loading rate of 2 mm/min.

2.5. Ultrasonic fatigue tests

The test equipment for fatigue experiment is an ultrasonic fatigue
testing machine (Lasur GF20-TC) equipped with a tensile machine, as
shown in Fig. 4. It also consists of a ventilation system, which was
designed to eliminate the potential temperature increase of specimen
due to ultrahigh frequency vibration. The experimental principle of
ultrasonic fatigue machine is the resonance of the specimen. A re-
sonance frequency of 20 kHz was used for the tests. Therefore, the
experiments were carried out under displacement control in the range
from 2.2 μm to 21.5 μm according to the stress–strain relationship (the
stress range is from 40 MPa to 390 MPa). The temperature was kept at
room temperature during the experiment. An advantage of this equip-
ment is that fatigue experiment could be performed with tensile mean
stress. As a result, it is possible to investigate the effect of tensile mean
stress on fatigue life of specimen.

3. Results and discussion

3.1. Stress–strain curve

Fig. 5 presents the engineering stress versus engineering strain for
the specimens with two build orientations. It is clear that 0° built spe-
cimen has better mechanical properties than 90° built specimen, espe-
cially in terms of ultimate elongation. The values of yield strength (YS)
of 0° and 90° built specimens are 270 MPa and 235 MPa, respectively.
The ultimate tensile stress (UTS) of 0° built specimen is 465 MPa and
that for 90° built specimen is 440 MPa, which is in line with [39]. The
elongation of 0° built (12.7%) specimen is far better than that of 90°
built (4.3%), similar to the result in [40]. For the 0° built specimen, the
loading direction is perpendicular to layer added direction while for 90°
built specimen, the loading direction is parallel with layer added di-
rection. The side view of fracture surface in Fig. 1c shows clearly the
difference. The 90° built specimen has horizontal fracture surface while
the 0◦ built specimen has 45° fracture surface. Shear stress plays a more
important role in the fracture of 0° built specimen while tensile stress is
the key stress in the fracture of 90° built specimen.

3.2. Microstructures

It is well known that materials fabricated by SLM demonstrate an-
isotropy and heterogeneity characteristics [41,42]. The microstructures
of SLM AlSi10Mg were observed with an optical microscope and a
scanning electron microscope (SEM). Due to material anisotropy, two
sections (i.e. section along the build orientation and section perpendi-
cular to the build orientation) of both 0° built and 90° built specimens
were observed. The microstructures of two specimens by optical mi-
croscopy are shown in Fig. 6.

From Fig. 6, it is seen that there is no obvious difference in the
microstructures between 0° built specimen (as shown in Fig. 6a and b)
and 90° built specimen (as shown in Fig. 6c and d). For both 0° built and
90° built specimens, the section along the build orientation shows a

Table 1
Nominal chemical composition of AlSi10Mg specimen (wt. %).

Element Al Si Mg Fe Ti Cr Cu Mn Ni V Zn

wt. % Balance 9.75 0.22 0.092 0.011 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Fig. 1. Standard dog bone specimen for tensile test: a) geometry of specimen
(dimensions in mm), b) specimen photo and c) side views of fracture specimens
with two build orientations.
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fish-scale pattern, which is formed during the SLM process [43,44]. The
fish-scale pattern consists of semi-elliptical melt pool, which is a char-
acteristic of SLM technology. The segments in Fig. 6b and 6c are not
continuous because the laser beam may penetrate the previous layer
when melting. In addition, hatch distance measured from Fig. 6b and c
is about 200 µm, which is very close to the set value 190 µm. As a
consequence, it is the laser process parameters rather than the build
orientation that determines the microstructure of the material. As the
section along build orientation is made up of melt zone, it is important
to investigate the structure of melt zone, which is caused by the
Gaussian distribution of laser power. The powders scanned by middle
portion of a laser beam absorbed more energy than that scanned by its
edge portion. As a result, some powders completely melted and others
not, which resulted in the melt pool structure. From inner to outer, melt
pool is divided into three zones, i.e. the fine zone, coarser zone and heat
affected zone (HAZ). The temperature decreases from inner zone to

outer zone, which resulted in the formation of different microstructures
in the three zones.

More microstructure information was observed with SEM, as pre-
sented in Fig. 7. Both the melt pool boundary (MPB) and the HAZ can
be clearly seen in Fig. 7a. A coarse zone is located at the MPB and it
consists of relatively coarse microstructures. At higher magnification
(Fig. 7d), it is clear that the coarse zone contains numerous small pores,
which were formed due to shrinkage during solidification, as explained

Fig. 2. Hourglass specimen used in fatigue tests: a) specimen geometry (dimensions in mm), b) specimen photo and c) schematic of build orientation.

Fig. 3. Schematic of SLM process.

Table 2
SLM manufacturing parameters of AlSi10Mg specimen.

Laser power [W] Scanning speed [mm/s] Scanning spacing [mm] Preheating temperature [°C] Powder size [mm] Printing direction [°] Laser beam profile

370 1300 0.19 35 0.05 0, 90 Gaussian

Fig. 4. Ultrasonic fatigue testing machine: ultrasonic device connected with a
tensile machine.
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by [35]. The fine cellular structure composed of α-Al and eutectic Si
(Fig. 7b) can be seen from the section along the build orientation. It is
generally accepted that the fine eutectic Si helps improve mechanical
properties of the material. The section perpendicular to the build or-
ientation has elongated structure instead of equiaxed structure.

3.3. S-N data

The S-N data for both 0° built and 90° built specimens are plotted in
Fig. 8a. According to the Basquin relation =N C· a , the S-N data can
be approximately fitted by the curves shown in Fig. 8a. It is indicated
that tensile mean stress plays an important role in HCF and VHCF
property of the specimens. With the increase of mean stress, the fatigue
strength decreases, which agrees with [45,46]. In addition, the build
orientation has an important effect on the fatigue property. As shown in
Fig. 8a, the fatigue strength of 90° built specimens is obviously lower

than that of 0° built specimens. One reason is that different stresses act
on the specimens manufactured at different orientations. The other
reason may be due to the fact that the defect size of 90° built specimens
is larger than that of 0° built specimens, as reported in [46]. The var-
iation of fatigue strength with build orientation is also in agreement
with that of tensile strength, as described in Section 3.1.

A probabilistic model proposed in [47] was applied to perform a P-
S-N study from a statistical point of view. The conditional fatigue life is
assumed to be a normal random variable with mean µY and standard
deviation Y . The standard deviation is constant and the mean can be
expressed with logarithm of stress amplitude × and logarithm of initial
defect size, alog ( )d10 ,0 as follows:

= + +c m x n alog( )Y Y Y Y d,0 (1)

where c m n, ,Y Y Y are constants estimated from experimental data and
ad o, is initial defect size, measured by the methods described in [47].

According to the statement that one failure mode is due to one cause
with fatigue limit described in [47],

= =F y x a F x a F y( ; , ) ( , ) ( )Y d X d Y,0 ,0l f (2)

By combining quantile definition, the relationship between fatigue
life and stress can be expressed as:

= +y µ x a
x µ a

( , )
( )

Y d Y Gauss
Gauss

X d

X
,0

1 ,0l

l (3)

With this model, the conditional P-S-N curves related to initial de-
fect size are obtained in Fig. 8b. According to Fig. 8b, the probabilistic
model is in good agreement with experiments, i.e. a confidence interval
of 90% covers most of experimental data. Therefore, it is practical to
apply this approach as design curve in engineering applications.

3.4. Fractography

The fracture surfaces of failed specimens were observed by SEM in
order to obtain more information on the crack initiation. The fracture
surface can be roughly divided into three zones according to their
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Fig.6. Microstructure of 0° and 90° built specimens: a) section along build orientation, b) section perpendicular to build orientation for 0°built specimen, c) section
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features under SEM, as shown in Fig. 9a and b. A smooth zone in SEM
image is formed by crack initiation and slow propagation, which is
called initiation zone. In general, initiation zone includes an initial
defect where crack initiates and a zone caused by crack slow propa-
gation. In the case of surface initiation, initiation zone tends to be a
semi-circle. In contrast, it is a circle if crack initiates from interior. This
usually happens in VHCF regime for both conventionally fabricated
materials [48-50] and AM materials [51,52]. Initiation zone contains a
fisheye pattern in this case.

For specimens with different build orientations, sizes of fisheye vary
greatly. Fig. 9c and d present fisheye in 0° built specimen and in 90°
built specimen, respectively. The size of fisheye in 90° built specimen is

usually much larger than that in 0° built specimen, due to the difference
in the melt pool structure. For 0° built specimen, the crack propagates
across build layers, i.e., crack needs to cross the melt pool, as shown in
Fig. 9c. Fine particle area (FPA), where the microstructure is very fine,
takes up most area of the melt pool. Consequently, a crack is most
possible to initiate in the melt zone. The temperature near the center of
melt pool is high and the structure is fine relatively. Therefore the crack
is difficult to propagate in FPA. Hence, the initiation zone is small in
this case. However, for 90° built specimen, crack propagates almost in
the same layer, as shown in Fig. 9d. The existence of discontinuity helps
crack propagation, such that the initiation size is relatively large.

The crack initiation mechanism was further studied and four crack

Fig. 7. SEM images of SLM AlSi10Mg: a) section along build orientation, b) equiaxed cellular structure, c) section perpendicular to build orientation, and d) coarse
zone.

104 105 106 107 108 109 1010
0

25

50

75

100

125

150

175
0°, R=0   90°, R=0
0°, R=-1  90°, R=-1
0°, R=0.5 90°, R=0.5

St
re

ss
 a

m
pl

itu
de

 [M
Pa

]

Number of cycles to failure
104 105 106 107 108 109
0

50

100

150

 R=-1
 R=0
 R=0.5

St
re

ss
 a

m
pl

itu
de

 [M
Pa

]

Number of cycles to failure

95%5% 50%

a) b)
Fig. 8. a) S-N data for specimens made with different orientations and under different mean stresses, b) conditional P-S-N curves.

G. Qian, et al. International Journal of Fatigue 138 (2020) 105696

5



initiation patterns were identified, namely initiation by lack-of-fusion
(inclusion), initiation by internal pore, initiation with no obvious defect
and initiation by tearing, as shown in Fig. 10a-d. The most common
pattern of failure in the specimens is lack-of-fusion (Fig. 10a). This type
of failure initiated from all three locations, i.e. surface, subsurface and
interior. Fatigue failure by internal pore is shown in Fig. 10b. It is
reasonable that SLM specimen has some pores of small size. However,
the well-set SLM processing parameters ensure that most of the pore
sizes are below the threshold to initiate a crack. The only exception case
that initiated from internal pore occurred in VHCF regime. In addition,
it is interesting that failure could happen with no obvious appearance of
defect, as shown in Fig. 10c. This type of failure could be explained by
stress concentration effect. The stress concentration at rough surface
has an important influence on crack initiation under high stress. The
last failure type is by tearing in VHCF regime, as shown in Fig. 10d. It is
clear that a layer of material is torn and internal material is thus ex-
posed. The exposed internal material looks very smooth and the melt
pool is clearly seen in Fig. 10e. The melt pool is fragile and the mi-
crostructure is discontinuous. Therefore, a part of material is torn out
and crack initiated under cyclic stress.

3.5. Fracture mechanics parameter

Stress intensity factor (SIF) plays an important role in fatigue
failure. According to Murakami [53], SIF is calculated by:

=K Y a (4)

where Y = 0.5 for internal crack initiation and Y = 0.65 for surface
crack initiation. The crack depth parameter a is estimated directly by
measuring the initiation defect size from the fracture surface. The
equivalent semi-length of crack is calculated by:

=a area/ (5)

By substituting Eq. (5) into Eq. (4), the threshold of fatigue crack
growth is:

=K Y area·th (6)

The calculated ΔKth is around 1.5 MPa m , which is very close to
that in [54-56], as shown in Fig. 11a. In addition, tensile mean stress
has no obvious effect on this threshold, which is due to the fact that
ΔKth is the boundary for propagation while mean stress has an influence
on the propagation rate.

The threshold for crack stable propagation zone denoted as ΔKp is
further calculated with Eq. (6), as shown in Fig. 11b. It is shown that
with increasing tensile mean stress (from R = −1 to R = 0.5), ΔKp

decreases. The interesting fact is that for the same R, the propagation
threshold increases with the initiation zone. According to Eq. (4), ΔKp is
determined by the applied stress and the area of initiation zone and ΔKp

increases with area of initiation zone. This implies that it is the tensile
mean stress that dominates crack initiation and early slow propagation.

Fig. 9. Fracture surface of 0° built and 90° built specimens: a) crack initiated from surface, the initiation zone is usually a semi-circle. b) crack initiated from interior,
the initiation zone is usually a circle, forming a fisheye pattern. c) fracture surface of 0° built specimen. d) fracture surface and fisheye pattern in 90° built specimen.
Fisheye is marked by red circle.
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3.6. Modified Murakami model

According to the Murakami model [50,53], fatigue strength σw in
HCF and VHCF regimes is predicted by

= +C HV
area

R( 120)
( )

1
21/6 (7)

where C takes 1.43 (or 1.56) for surface (or internal) crack initiation
and α = 0.226 + HV × 10−4. The difference between surface and
internal crack initiation is due to the distance from initiation defect to
fracture surface. The model has been applied for many materials
[57–59]. In an attempt to use the model for both surface and internal
crack initiation, new variable distance and r were defined in Fig. 12a.

Considering that the coefficient of internal (or surface) crack in-
itiation and hardness of material are both constant, a new combined
material constant Cm was defined. Furthermore, the distance variable
may not be adequacy to represent the fatigue failure as the specimen

geometry could also have an effect on the crack initiation. The radius of
fracture surface r was thus introduced and the ratio of distance to r was
used. Therefore, a modified model to include crack initiation effect is
written by:

= C f area R distance
r

, ,m (8)

With inspiration from Murakami’s model, the new model is ex-
pressed:

= C
area

R distance
r

1
2

exp 1m
31

2

(9)

or in logarithm form:

= + +C area R distance
r

log log log log 1
2

1w m 1 2 3

(10)

Fig. 10. Four patterns of crack initiation: a) initiation by inclusion (lack-of-fusion), b) initiation by internal pore, c) initiation with no obvious defect, d) initiation by
tearing, e) initiation by tearing with melt pool (MP).
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where C , , ,m 1 2 3 are constants that can be determined by linear
regression using the least square method. The comparison of the model
prediction with the experimental results is shown in Fig. 12b. It is seen
that the proposed model well predicts the fatigue strength for both
internal and surface crack initiation.

4. Conclusions

This paper investigated the influence of build orientation and mean
stress on the HCF and VHCF property of AlSi10Mg alloy fabricated by
SLM. The main conclusions are as follows:

(1) The build orientation has great effect on mechanical properties and
fatigue performance of SLM AlSi10Mg. Horizontally built specimen
has better performance than vertically built specimen, especially in
tensile strength, elongation and fatigue property.

(2) Four crack initiation modes are identified for SLM AlSi10Mg in HCF
and VHCF regimes, namely initiation by lack-of-fusion, by internal
pore, with no obvious defect and by tearing. Fisheye patter with
different morphology is observed in VHCF for the specimens man-
ufactured with different orientations.

(3) The crack propagation threshold for AlSi10Mg is about
1.5 MPa m . Tensile mean stress reduces the fatigue life by redu-
cing the life for crack initiation and early growth.

(4) A model proposed in this paper well describes the effect of crack
initiation on fatigue strength of SLM AlSi10Mg.
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