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A B S T R A C T   

In deeper ocean area, more and more floating oil/gas production platforms or wind turbine have been in 
operation instead of the fixed truss in shallow water. These floaters need to be located among a range of position 
by its mooring system, e.g. tension tendon and catenary mooring-line, so as to guarantee structural safety and 
stability under environmental loads. Catenary mooring-line is increasingly used due to its lower cost and easier 
installation. Its dynamics coming from structure and fluid flow becomes more obvious with the increase of 
structural length, which may introduce significant impact on restoring performance of mooring-line. In this 
study, the non-linearly restoring performance and the hysteresis behavior of mooring-line’s stiffness are studied. 
The nonlinear dynamic model of the mooring-line is established based on the improved FEM simulations. It is 
found that the restoring stiffness of the catenary mooring-line presents a hysteresis characteristic, principally 
owing to the damping effect of the catenary dynamics, which gets more obvious with the increase of motion 
amplitude/frequency. And, the mooring-line dynamics has significant impacts on the tension (related to its 
restoring stiffness) and displacement response, e.g. the maximum tension amplitude is up to 5.2 times of the 
quasi-static value if slack happens.   

1. Introduction 

As we know, more and more oil, gas, wind and mine industries have 
been developing towards ocean area because of huge volumes of energy 
resources in ocean. Instead of the fixed structures onshore, offshore 
structures are usually floating bodies, such as TLP, Spar and submarine 
rig/production platform and wind turbine, which need to be fixed or 
controlled at expected position by its supporting system. Generally, 
according to the types of floaters and water depth, these mooring sys
tems have mainly three categories (Musial et al., 2004), i.e. catenary 
mooring-lines, tendon lines and vertical tension legs. Catenary (Barrera 
et al., 2019) and taut mooring line (Xiong et al., 2016) are widely used 
due to their lower cost and easier installation. For catenary, as the 
structural length becomes larger, consequently, the dynamic behaviors 
such as the structural inertia and hydrodynamic damping of the 

mooring-line become more obvious. 
Suffering from environmental loads coming from wind, ocean cur

rent and wave, offshore floating system, moored by mooring-lines, often 
present large-amplitude motion which is one of big concerns to struc
tural stability and safety. By now, there have been fruitful researches 
(Yong-Pyo et al., 2005; Sarkar and Eatock Taylor, 2002; Mavrakos and 
Chatjigeorgiou, 1997; Papazoglou et al., 1990; Yong-Pyo et al., 2005; 
Fan et al., 2017) on catenary mooring-line along with its influence on 
dynamic response of a floating system, which mostly focus on moor
ing-line’s restoring force (i.e. the top tension) and stability of floating 
body. To model the top tension, the quasi-static method was originally 
used, where the underwater mooring-line is simplified as a static spring 
to support the up-end and consequently, the restoring force is essentially 
static. For examples, the mooring-line tensions and motions in time and 
frequency domain were studied (Mavrakos and Chatjigeorgiou, 1997), 
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and the parameters predominantly determining the tension of a catenary 
mooring-line were given (Papazoglou et al., 1990). Yoji Ogawa (1984) 
gave the equations of static mooring line equilibrium under consider
ation of gravity and elongation and carried out the static equilibrium 
characteristics. His results showed that the line elongation cannot be 
neglected in deep sea. Fan et al. (2017) predicted the mooring line 
damping for designing truncated mooring system with an improved 
quasi-static method. Based on the empirical model, the catenary 
mooring tension caused by vertical motion of the top-end float was 
presented by Gobat and Grosenbaugh (2001). 

However, it was noted that the mooring-line dynamics, coming from 
the inertia and damping effects of the structure itself and the ambient 
fluid, becomes more obvious due to the increasingly large values of 
water depth and catenary span length. This dynamic behavior could lead 
to a significant impacts on mooring-line tension and, even in some times, 
introduce a sharp increase of top tension when slack happens. Vassalos 
and Huang (1996) derived the non-linear equation of a motion cable 
that subjected to horizontal excitation, and a numerical approach is 
presented to predict the snap loading of marine cables operating in 
alternating taut-slack conditions (Huang and Vassalos, 1993). Consid
ering first order geometric nonlinearities, Mansour et al. (2018) ob
tained exact expression of the catenary curvature and defined the 
catenary effect on the cable motion; Guo et al. (2016) presented the 
influences of the amplitude and frequency of SFT motion on mooring 
line’s displacement and dynamic tension, in the numerical model the 
geometric nonlinearities and the nonlinear fluid force are included. 
Chen et al. (2001) investigated the dynamic coupling effects between 
spar float and its mooring lines using the coupled dynamic approach, 
and the results showed that the tension in mooring lines may greatly 
increase in the wave frequency range when dynamic forces in mooring 
lines are considered. Zhang et al. (2012) found that the taut-slack con
dition significantly amplifies the maximum tension amplitude, the 
maximum tension may get 5 times larger. Based on laboratory experi
ments, Hsu et al. (2017) found that the largest values of snap-induced 
tension may be 1.6 times of the original tension due to involvement of 
mooring-line dynamics. 

The results of top tension of mooring line indicate that its value may 
increase significantly. In fact, the change of top tension could also have 
an impact on the restoring stiffness of the mooring system. By now, there 
is few results on the characteristics and mechanism of dynamic mooring- 
line’s restoring stiffness. In this paper, the hysteresis behavior and 
mechanism of the restoring stiffness are studied, and the displacement 
and tension response of the catenary mooring line are examined based 
on the improved finite element approach. In section 2, the dynamic 
catenary model is established based on the improved FEM method so as 
to efficiently carry out calculation of nonlinear dynamic response, and 
the dynamic effects coming from structural dynamics and hydrody
namics are included. Based on our numerical simulations, in section 3 
the dynamic response of the catenary under top-end motion, i.e. the 
restoring stiffness along with displacement and tension, are analyzed 
and compared with the quasi-static results. Particularly, the restoring 
performance and its hysteresis are discussed. 

2. Dynamic catenary model and verification 

2.1. Basic formulas and the improved FEM model of dynamic catenary 

The static tension and restoring force is only related to the configu
ration and gravity of the structure, and can be obtained with the 
following equations (Mansour et al., 2018): 

d ¼
T0

w
�
sinh� 1ðtan θbÞ � sinh� 1ðtan θaÞ

�

h ¼
T0

w

�
1

cos θb
�

1
cos θa

�

L ¼
T0

w
ðtan θb � tan θaÞ

(1)  

where d is the horizontal projection length, h is the vertical projection 
length, L is the total length of the catenary, w is the weight per unit 
length, T0 is the horizontal tension at the bottom end, θa and θb are the 
angles between the structure and the horizontal axis at the bottom and 
top end. In this case, only the component caused by structural gravity is 
considered. 

To involve the mooring-line dynamics, there are two dominating 
models, i.e., the flexible-bar model and lumped mass model, have been 
developed. In the lumped mass model, mooring line is spatially dis
cretized into several lumped mass nodes which are connected by 
massless springs (Xiong et al., 2016). Azcona et al. (2017) studied the 
snap tension and maximum tension of a catenary model using the 
lumped-mass method and compared his results with the experiments. In 
the flexible-bar model, globally based position vector and its derivative 

Fig. 1. Catenary mooring-line models.  
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are used to allow an accurate non-linear description of the mooring ki
nematics. Using the reduced nonlinear motion equations of a cable, 
Zhang et al. (2010) calculated the displacement, stress and strain of 
mooring line in deep water, and presented the effect of drag force on the 
dynamic tension. 

Here, instead, the dynamic governing equations in terms of vector 
equations (Love, 2013; Garrett, 1982) are introduced to consider the 
dynamics, coming from structural inertial and damping and the fluid 
drag forces, along with the nonlinear geometry and large displacement. 
Then, the flexible beam method is applied to obtain the dynamic 
restoring force of the catenary mooring-line (Lindahl and Sjoberg, 1983; 
Paulling and Webster, 1986; Kwan and Bruen, 1991; Chen, 2002). The 
dynamic equations of the catenary (see Fig. 1b) can be written as: 

T0 þ q0 ¼ ρA€r (2)  

Q0

þ r0 � Tþm ¼ 0 (3)  

where T and Q are respectively the total force and moment of the 
catenary. q and m are respectively the outer force and moment acted on 
per unit length of the catenary. ρ and A are structural mass density and 
area respectively. r represents the position vector. If neglecting the 
external torque and moment, the governing equation can be rewritten 
as: 

�
�
EIr}

�}
þðλr’Þ

’
þ q¼ ρA€rr0 ⋅ r0 ¼ ð1þ εÞ2 (4)  

where ε is the strain of the catenary, λ is the effective tension and EI is the 
bending stiffness. Further, if the bending stiffness in Eq. (4) is zero, we 
can get the governing equation of catenary mooring-line, which include 
the gravity force and hydrodynamic load. 

As the length of the mooring-line is much larger than its diameter, 
the Morison equation (Sarkar and Eatock Taylor, 2002; Chen et al., 
2001) is employed here to calculate the hydrodynamic force as follow: 

f ¼
1
2
Cdρ1DjV � _rjðV � _rÞþCA

πD2

4
ρ1ð

_V � €rÞ þ
πD2

4
ρ1

_V (5)  

where D and V are the structural diameter and the vector of the external 
fluid velocity, ρ1 is the density of the fluid, Cd and CA are the drag co
efficient and added mass coefficient. Combing Eqs. (4) and (5), we can 
get the nonlinear governing equations, and it is hard to theoretically get 
the solution of the equations. To obtain the response of the catenary, the 
improved FEM method is applied to solve above nonlinear equations. 

To bear the hydrodynamic force, perpendicularly distributing along 
the length of catenary, several two-node Euler beam elements are used 
to represent the catenary. And, we only consider the two translation 
displacements in x-y plane [ui,vi] and one rotation around z axis θi, i ¼
1,2, …,Nþ1, of per node. N is the number of beam elements. Then the 
dynamic equation is 

ðMþMÞ €UþC _UþKU¼P (6)  

where M is the structure mass matrix, and M is the added mass matrix. C 
is the damping matrix. K is the stiffness matrix. P is the hydrodynamic 
force. U is the displacement vector. To each beam element, its 
displacement vector is: 

Ui ¼ ½ui; vi; θi; uiþ1; viþ1; θiþ1�
T i¼ 1;⋯;N (7) 

The element mass matrix Me is: 

Me¼
ρAle

2
⋅diag½110110� (8) 

The element stiffness matrix Ke is composed of two parts, i.e. the first 
part is related to the axial displacement [ui, uiþ1], and the second part is 
related to the lateral displacement [vi, θi, viþ1, θiþ1], and it is written as: 
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(9)  

where le is the element length, based on the matrix in Eq. (9) we can 
obtain the element stiffness matrix Ke. Then all the components in Eq. 
(6) will be obtained by superimpose all the element matrices. 

In our improved FEM model, to consider large rotation and trans
lation motions of the catenary, the rotation DOFs of beam elements is 
not constrained. Then the rotational DOFs θ will change into θ; θ0 , and 
the displacement vector of every element, Eq. (7), is rewritten as: 

U0

i ¼
�
ui; vi; θi; θ

0

i ; uiþ1; viþ1; θiþ1; θ
0

iþ1

�T
i ¼ 2;⋯;N � 1 (10) 

It is seen that, because of the additional DOF θ0 , there exist singu
larity of the stiffness matrix. To eliminate this singularity, we use 
additional constraints, i.e. an original shape calculated through tradi
tional static method, see Eq. (1), as the definite condition. 

Owing to the increase number of DOFs and strong structural 
nonlinear characteristics, solving the governing equations is very time 
consuming. Here, super-element is used for sake of a better efficiency of 
computation process. The catenary is discrete by a set of super-elements. 
The processing of each super-element results in a reduced set of matrices 
(mass, damping, stiffness, and loading) that represent the properties of 
the catenary. These reduced matrices are assembled in the residual 
structure, and the assembly solution is performed. Data recovery for 
each super-element is performed by expanding the solution at the 
attachment points. A more simplified presentation of the static 
condensation theory is included here for completeness. 

The equilibrium equation of the whole structure is: 

½K� ⋅ ½U� ¼ ½P� (11) 

This equation may be expanded to show the interior DOFs (referred 
to the a-set) and the boundary/exterior DOFs (referred to O-set) parti
tions as: 
�
½Koo� ½Koa�

½Koa�
T
½Kaa�

�

⋅
�
½Uo�

½Ua�

�

¼

�
½Po�

½Pa�

�

(12)  

where [K] is the stiffness matrix, [U] is the displacement vector and [P] 
is the load vector. In Eq. (12), the matrix [Koo], [Uo] and [Po] represent 
the reduced stiffness matrix, displacement vector and load vector of the 
super-elements respectively. The equation can be written as: 
" �

K*
oo

�
½0�

�
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oa

�T
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#

⋅
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(13) 

Then we get the governing equation of the super-elements as 
�
K*

oo

�
⋅ ½Uo� ¼

�
P*

o

�
(14) 

Obviously, the order of Eq. (14) is significantly reduced comparing 
with the original equation Eq. (11), thus the computational efficiency 
could increase. Solving Eq. (14), we can obtain the displacements of the 
boundary/exterior nodes [Uo]. Then, the displacement vector of the 
interior nodes can be derived by the second formula of Eq. (13). 

Table 1 
Parameters of the catenary.  

Parameter Value Parameter Value 

Total length 7.305m Mass in air 0.162 kg/m 
Initial horizontal projection 6.97m Equivalent diameter 0.0052m 
Initial vertical projection 1.2m Elastic modulus 77.2 GPa  
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2.2. Model verification 

2.2.1. Case 1 
To verify our numerical model, the catenary tension and displace

ment response caused by top-end motion are calculated and compared 
with the experimental results (Barrera et al., 2019). The parameters of 
the catenary are listed in Table 1, and Fig. 2a shows a schematic diagram 
of the structure. Here the top-end surges are considered, of which the 
surge amplitude is 75 mm and the surge periods are 3.16s and 1.58s 
respectively. 

The top tension comparison at 3.16s surge period is shown in Fig. 2b. 
It can be seen that the tension values are in good agreement with the 
experiment, although the phase of time history is slightly different from 
the experiment. The calculated minimum tension, 6.25N, is almost 

Fig. 2. Comparison of numerical and experimental results.  

Table 2 
Comparison of the numerical and experimental displacement results.  

Markers Displacement Numerical/m Experimental/m Error/% 

Marker 1 Maximum 6.881 6.863 0.262 
Amplitude 0.119 0.118 0.847 

Marker 2 Maximum 6.715 6.691 0.358 
Amplitude 0.089 0.087 2.298 

Marker 3 Maximum 0.869 0.895 � 2.905 
Amplitude 0.109 0.116 � 6.304 

Marker 4 Maximum 0.769 0.804 � 4.353 
Amplitude 0.146 0.153 � 4.575  
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consistent with the experimental value. While the maximum tension, 
8.29N, is slightly smaller than the experimental value of 8.73N, and the 
difference is about 5.1%. 

In addition to the tension comparison, catenary displacement re
sponses at different positions along catenary length, with the surge 
period 1.58s, are also compared. In Fig. 2c–f, the numerical and 
experimental displacements at the 4 markers, i.e. located at 0.2m 
(Marker 1), 0.4m (Marker 2), 0.6m (Marker 3), 0.8m (Marker 4) 
respectively from the top-end, are presented. It shows that the numerical 
displacements agree well with the experimental results. And, the hori
zontal displacement is slightly larger than the experiment (see Fig. 2 c 
and d), while the vertical displacement is smaller than the experiment 
(see Fig. 2 e and f). The maximum difference is less than 7% (see 
Table 2). 

2.2.2. Case 2 
Further, the comparison between our numerical and the commercial 

code 3DFloat (Jos�e et al., 2017) is also presented. The tension and 
displacement responses of the catenary caused by top-end motion are 
calculated. The parameters of the catenary are listed in Table 3, here the 
top-end surges are considered, of which the surge amplitude is 0.125m 
and the surge period is 1.58s. The tension and displacement responses of 
a marker located at 2.646m from the top-end are compared in Fig. 3. It 
can be seen that both the tension and displacement responses agree well 
with the results of 3DFloat. 

3. Nonlinear restoring performance and dynamic response of 
catenary mooring-lines 

Here the catenary mooring-line of a 5-MW floating wind turbine is 
selected as the study object, and its structural and geometrical param
eters of the catenary are listed in Table 4. Based on the related researches 
(Karimirad, 2010; Jeon et al., 2013), the surge amplitude of the floating 
spar is several meters under regular environment condition. In our 

study, the amplitude range of the top-end motion is 3–8m. As for the 
motion frequency, a wider range was considered, i.e. 0.025Hz–0.2Hz 
compared to the regular wave frequency 0.1Hz so as to comprehensively 
examine the influence of top-end motion on the dynamic behavior of the 
marine catenary. The restoring performance and its hysteresis of the 
catenary mooring-line are discussed firstly. Then the dynamic response 
of the catenary under the motion of top-end float is analyzed based on 
our numerical simulations, i.e. the displacement, velocity and tension of 
the catenary along structural span are calculated and compared with the 
quasi-static results. Sinusoidal surge (horizontal) and heave (vertical) 
motion with different oscillation frequencies and amplitudes are used as 
the excitation at top end. Here, Eq. (5) is used to calculate the fluid 
damping force acting on the catenary, where the values of added mass 
and damping coefficients are both chosen as 1.0 (Karimirad, 2013). 
Regarding the fluid damping being much larger than the structural 
damping, the structural damping is neglected in this study. 

3.1. The non-linear restoring stiffness and its hysteresis 

In fact, because of involvement of dynamic behaviors, i.e. the inertial 
and damping effect, the restoring stiffness may change, compared with 
the originally static one. Given that catenary mooring line mainly 
functions to control the position of floating body and to prevent large 
surge/sway displacement, the horizontal (surge) restoring stiffness will 
be examined here under conditions of different top-end amplitudes, i.e. 
A ¼ 7, 5, 4 and 3m, and different periods, i.e. T ¼ 5, 10, 20, 30 and 40s. 
And, the selected results are presented in Fig. 4 and Fig. 5. 

Fig. 4a shows the restoring stiffness curve of the catenary, at 10s 
period and 4m amplitude, and also the static curve as a comparison. 
Interestingly, the dynamic stiffness curve shows that the top tension is 
no longer linearly related to only the top-end displacement as it does for 
case of quasi-static scenario, but, notably, it depends on both the top-end 
displacement and velocity approximately in a way of approximately 
ellipse loop, which is called hysteresis loop. Or, the dynamic restoring 
force actually has a directional property mainly owing to the involve
ment of the dynamic behavior which principally depends on both the 

Table 3 
Parameters of the second catenary mooring-line.  

Parameter Value Parameter Value 

Total length 21.0m Equivalent hydrodynamic 
diameter 

0.0034m 

Initial horizontal 
projection 

19.872m Mass per unit length 0.069 kg/ 
m 

Initial vertical 
projection 

5.0m Wet weight per unit length 0.5872 N/ 
m 

Axial stiffness 3.4e5N    

Fig. 3. Comparison of numerical and results provided by 3DFloat.  

Table 4 
The geometrical and material parameters of the catenary.  

Geometrical Value Geometrical Value 

Length 800m Young’s modulus 210 GPa 
Initial horizontal projection 706m Equivalent Mass density 71.2 kg/m 
Initial vertical projection 350m Poisson’s ratio 0.3 
Diameter 0.19m    
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amplitude and direction of the top-end motion. And differently from the 
static stiffness, the dynamic restoring force does not get its maximum 
value at the maximum displacement but at a smaller displacement, that 
produces a bigger dynamic stiffness. The hysteresis character of the 
dynamic stiffness is mainly due to the damping effect coming from the 
structure and fluid of the mooring-line. The spectrum plot, shown in 
Fig. 4b, indicates that the peak values at frequencies of odd times of the 
excitation frequency is much larger than others. 

In addition, if under the same loop area Ad, Fig. 5 presents two 
groups of hysteresis loops respectively with the loop area Ad ¼ 8000kNm 
and Ad ¼ 12000kNm. It is noted that the hysteresis loop may shape from 
horizontal ellipse to more vertical one as the period (or amplitude) 
decreases. 

3.2. Hysteretic behavior at various frequencies and amplitudes 

The loop area of the stiffness curve under different top-end surge 
conditions is shown in Fig. 6. It shows that the loop area of the stiffness 
curve get larger as the amplitude (and/or the frequency) increases. In 
other words, the hysteresis behavior of the dynamic stiffness gets more 
obvious as the amplitude and/or frequency increase. 

For simplicity and representativeness, here a mass-spring damping 
system with on DOF is taken as an example to illustrate relationship 
between the energy consumption and the amplitude/frequency of the 
system. Regarding that the damping effect coming from fluid dynamics 
is much larger that the structural dynamics, we assume the damping 

Fig. 4. Restoring performance of the single mooring line.  

Fig. 5. Hysteresis loop shapes changing with the frequency and amplitude.  

Fig. 6. Restoring loops at different frequency and amplitude.  

Y. Li et al.                                                                                                                                                                                                                                        



Ocean Engineering 209 (2020) 107521

7

force is Fd ¼ c0 _y2, where y ¼ A0 sinðωdtÞ is the displacement and c0 is the 
damping coefficient. Then the energy consumption of one period is the 
integration written as follows (Thomson and Dahleh, 2002): 

Wd ¼ 4
Z ymax

0
Fddy¼ 4

Z π
2ωd

0
c0ω2

dA3
0

�
1 � sin2�ωdt

�
!

dt

 

sin

 

ωdt

!!

¼
8
3
c0ω2

dA3
0 (15) 

In other words, the loop area Ad represents the energy consumption 
during one motion period, and it is proportional to the quadratic fre
quency (ω2

d) and cubic amplitude A3
0. The plot of loop area Ad versus 

ω2
dA3

0 is presented in Fig. 7. It shows that Ad approximately rises linearly 
with ω2

dA3
0, and the fitting index of the linear fitting function is about 

0.986. So we may say the damping effect of the catenary dynamics is 
mainly responsible for the hysteresis of the restoring performance. 

It should be pointed out that the results of T ¼ 5s are not included 
during the linear fitting process. The reason is that in those situations the 
snaps happen as the value ω2

dA3
0 gets larger, which may introduce strong 

nonlinearity of restoring stiffness. Or the deviations of the three results 
of T ¼ 5s (the squares) from the fitting line are larger and should not be 
included due to the snap phenomenon and its strong nonlinearity. The 
happening of slack could be further proven by observing the time history 

Fig. 7. Loop’s area under different conditions.  

Fig. 8. Top tension response of the catenary.  

Fig. 9. Comparison of the restoring performance when slack happens.  
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of the top tension as T ¼ 5s, shown in Fig. 8a, where the minimum top 
tension is approaching zero and an obvious rise of the maximum top 
tension is seen. Further, the maximum/minimum restoring forces, with 
the same value of ω2

dA3
0 ¼ 65, is compared in Fig. 8b. It shows that as the 

top-end period gets smaller, it becomes easier for snap to happen (Guo 
et al., 2017), and, consequently, the maximum tension gets larger. 
Because the top tension is approaching to zero (and the consequent zero 
stiffness), there exists a certain time duration when the restoring force 
does not consume any energy. Then, the energy consumption gets 
smaller for this case, as shown in Fig. 7. If we include just the data of T ¼
40s and T ¼ 20s, or no snap occurrence, the fitting index in Fig. 7 is 

0.999 which is pretty close to the perfect value of 1.0. That means a 
better fitting linearity. 

To find the reason why the loop area will decrease when slack hap
pens to the catenary, the comparison of the restoring loops with the 
same value ω2

dA3
0 ¼ 65, 85 (in the snap/slack region) is shown in Fig. 9. It 

can be seen that as slack happens (the red loops), the displacement of the 
top-end becomes somewhat smaller during the time period when the 
restoring force drops from the maximum point to the minimum. That is 
to say the energy consumption during this period of time gets smaller. It 
should be note that there are minus tensions when the top-end motion 
period is 5s. The negative restoring force indicates that the catenary 

Fig. 10. Normalized RMS displacement and velocity response of the middle point.  

Fig. 11. Comparison of the maximum tension with the static at various top-end amplitudes/frequencies.  
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mooring line is in a slack situation, and the catenary may be compressed 
for a short time caused by large top-end motion. 

3.3. Impacts of the dynamic behavior on catenary response 

As shown above, with the mooring-line dynamics under consider
ation, the mooring-line restoring performance has an obvious difference 
from the quasi-static. That is to say, we should include the dynamic 
effects of the catenary. Here the dynamic response of the catenary under 
different top-end motion conditions are examined and compared with 
the quasi-static. 

Fig. 10a shows the RMS (Root-Mean-Square) displacements under 
the top-end surge with 0.1Hz frequency and the amplitudes ranging 
from 3m to 10m, and Fig. 10b shows the RMS displacement under top- 
end heave (with 0.1Hz frequency and 3–13m amplitudes). For case of 
surge motion (see Fig. 10a), the maximum value of catenary displace
ment occurs almost at the center position along the catenary length. 
While for case of heave motion (see Fig. 10b), the position of the 
maximum displacement moves along the catenary length. And, unlike 
the static case, the maximum displacement does not gradually rise as the 
top-end amplitude increases, but, instead, and it decreases originally 
and then increases with the increase of top-end amplitude. It is worthy to 
note that some shorter waves happen at the catenary ends, and this 
shorter wave gets more obvious, which consequently can cause higher 
values of structural local curvature and stress. 

If concerning the velocity response, as shown in Fig. 10 c and d, the 
time histories of the center position along the catenary, with respec
tively 6m and 9m top-end surge amplitude, show that the velocity in
creases with the increase of top-end amplitude. Moreover, slack may 
happen as the amplitude increases to a certain value, e.g. at 9m ampli
tude (in Fig. 10d) the vertical velocity almost keeps as a constant when it 
approaches to the minimum value and stay there for a period of time. 

The maximum top tensions are compared with the static values in 
Fig. 11 at different amplitudes and frequencies of top-end motion. The 
difference between the dynamic and static tensions gets more obvious as 
the top-end amplitude/frequency increases. Particularly, the dynamic 
tension is around 5.2 times (in Fig. 11b) of the quasi-static one when 
slack happens. This slack can be proved by the minimum tension which 
gradually drops and approaches to zero when the amplitude/frequency 
exceeds 6m/0.10Hz. 

4. Conclusion 

The restoring performance and the hysteresis behavior of the cate
nary mooring-line are presented and deeply discussed based on the 
numerical results using our improved FEM model. And the impacts of 
mooring-line dynamics on the catenary response, including the 
displacement and tension, are studied while the dynamic results are also 
compared to the quasi-static. Based our numerical results we have re
marks as follows:  

1) Owing to the damping effect coming from the fluid and structural 
dynamics, the mooring-lines stiffness presents a hysteresis behavior 
which becomes more obvious as the top-end frequency/amplitude 
gets larger.  

2) It is found that the area of hysteresis loop, which indicates the energy 
consumption during one period, is approximately proportional to 
ω2

dA3
0. So we may say the damping effect of the catenary dynamics is 

mainly responsible for the hysteresis of the restoring performance.  
3) The catenary dynamics has a significant effect on the tension 

(restoring stiffness) and displacement response of the catenary. 
Particularly, as the mooring-line becomes slack, the maximum ten
sion amplitude is up to 5.2 times, i.e. as the amplitude and frequency 
are respectively 6m and 0.15Hz, of the quasi-static method. 
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